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Abstract

Let R be a multiplicative hyperring and S ⊆ R be a
multiplicatively closed subset of R. In this paper, we
introduce and study the concept of S-prime hyperide-
als which is a generalization of prime hyperideals. Some
properties of S-prime hyperideals in multiplicative hyper-
ring are presented. Then we investigate the behaviour of
S-prime hyperideals under homomorphism hyperrings, in
factor hyperrings, Cartesian products of hyperrings, and
the fundamental relation in the context of multiplicative
hyperring.
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A Title

1 Introduction

Algebraic hyperstructures are a suitable generalization of classical algebraic structures. In a clas-
sical algebraic structure, the composition of two elements is an element, while in an algebraic
hyperstructure, the composition of two elements is a set. Hyperstructures have many applications
to several sectors of both pure and applied mathematics (see [5, 8]). The hypergroup notion was
introduced in 1934 by a French mathematician Marty [11], at the 8th Congress of Scandinavian
Mathematicians. Contrary to classical algebra, in hyperstructure theory, there are various kinds of
hyperrings and studied by many authors. The notion of hyperrings was introduced by M. Krasner
in 1983, where the addition is a hyperoperation, while the multiplication is an operation [10].
The notion of multiplicative hyperrings are an important class of algebraic hyperstructures that
generalize rings, initiated the study by Rota in 1982, where the multiplication is a hyperoperation,
while the addition is an operation [14]. The principal notions of algebraic hyperstructure theory
can be found in [4, 6, 8]. Procesi and Rota introduced and studied, in brief, the prime hyperideals
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of multiplicative hyperrings [12, 13] and this idea is further generalized in a paper by U. Dasgupta
in [6, 7]. Ameri et al. in [1] described multiplicative hyperring of fractions and coprime hyperide-
als. Later on, many types of research have observed that generalizations of prime hyperideals in
multiplicative hyperrings. Ghiasvand in [9] has introduced and studied the concept of 2-absorbing
hyperideals of a multiplicative hyperring as a generalization of prime hyperideals. Also, Anbarloei
has studied 2-absorbing and 2-absorbing primary hyperideals of a multiplicative hyperring in [2, 3].
In this paper, we introduce and study the concept of S-prime hyperideal in a multiplicative hy-
perring which is also a generalization of prime hyperideals, and obtain their basic properties. For
example, we show that every prime hyperideal is an S-prime hyperideal, but the converse is not
true in general (see Example 3.4). After we investigate the behaviour of S-prime hyperideals under
homomorphism hyperrings, in factor hyperrings, and Cartesian products of hyperrings. Also, we
show that the hyperideal P is S-prime if and only if P/γ∗ is an S/γ∗-prime ideal of R/γ∗.

2 Preliminaries

Definition 2.1. [8] Let H be a non-empty set. By P ∗(H), we mean the set of all non-empty
subsets of H. A hyperoperation on H is a map ◦ : H×H → P ∗(H). Then (H, ◦) is called a hyper-
groupoid. A hypergroup is a hypergroupoid (H, ◦) that satisfies the associative and the reproductive
law, i.e.,
(1) x ◦ (y ◦ z) = (x ◦ y) ◦ z, ∀x, y, z ∈ H, (associative law)
(2) x ◦H = H ◦ x = H, ∀x ∈ H. (reproductive law)

A hypergroupoid (H, ◦) is called a semihypergroup if only the associative law holds. Here, we
mean a semihypergroup by a non-empty set H with an associative hyperoperation ◦, i. e.,

a ◦ (b ◦ c) =
∪

t∈(b◦c)

a ◦ t =
∪

s∈(a◦b)

s ◦ c = (a ◦ b) ◦ c

for all a, b, c ∈ H.

For any two non-empty subsets A and B of H and x ∈ H, we define

A ◦B =
∪

a∈A,b∈B
a ◦ b, A ◦ x = A ◦ {x}.

Definition 2.2. [8] A non-empty subset A of a hypergroup (H, ◦) is called a sub-hypergroup of H
if (A, ◦) is itself a hypergroup.

Definition 2.3. [8] A triple (R,+, ◦) is called a multiplicative hyperring, if it has the following
properties:
(i) (R,+) is an Abelian group;
(ii) (R, ◦) is a semihypergroup;
(iii) For all a, b, c ∈ R, a ◦ (b+ c) ⊆ a ◦ b+ a ◦ c and (b+ c) ◦ a ⊆ b ◦ a+ c ◦ a;
(iv) a ◦ (−b) = (−a) ◦ b = −(a ◦ b).

If in (iii) we have equalities instead of inclusions, then we say that the multiplicative hyperring
is strongly distributive.

Definition 2.4. [6] (a) If (R, ◦) is a multiplicative hyperring with a ◦ b = b ◦ a for all a, b ∈ R,
then (R, ◦) is called a commutative multiplicative hyperring.
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(b) A non-zero element a of a multiplicative hyperring R is said to be unit if 1 ∈ a◦x and 1 ∈ x◦a
for some x ∈ R. The set of all unit elements of R is denoted by U(R).
(c) A commutative hyperring R with identity 1 is called hyperfield if every non-zero element of R
is unit.

Example 2.5. Let (R,+, ◦) be a ring and I be an ideal of R. We define the following hyperoper-
ation on R: For all a, b ∈ R, a ◦ b = a · b+ I. Then (R,+, ◦) is a multiplicative hyperring.

Definition 2.6. [6] (a) Let (R,+, ◦) be a multiplicative hyperring and S be a non-empty subset
of R. Then S is said to be a sub-hyperring of R if (S,+, ◦) is itself a multiplicative hyperring.
(b) A non-empty subset I of a multiplicative hyperring R is a hyperideal of R if
(i) a, b ∈ I, then a− b ∈ I,
(ii) a ∈ I and r ∈ R, then r ◦ a ⊆ I.

A hyperideal I of a commutative multiplicative hyperring R with identity 1 is finitely generated
if I = ⟨r1, · · · , rn⟩ for some r1, · · · , rn ∈ R, i. e., for any x ∈ I, there exist x1, · · · , xn ∈ R such
that x ∈ r1 ◦ x1 + · · ·+ rn ◦ xn. A hyperideal I of R is called principal if I = ⟨x⟩ for some x ∈ R.
Also, R is called principal hyperideal hyperring, if every hyperideal of R is principal.

Let I, J be two hyperideals of R. We define (I :R J) = {a ∈ R | a ◦ J ⊆ I}. It is clear that
(I :R J) is a hyperideal of R.

Definition 2.7. [6] (a) A proper hyperideal M of a multiplicative hyperring R is maximal in R
if for any hyperideal I of R, M ⊂ I ⊆ R implies I = M or I = R.
(b) A proper hyperideal P of a multiplicative hyperring R is said to be a prime hyperideal of R if
for any a, b ∈ R, a ◦ b ⊆ P implies a ∈ P or b ∈ P .
(c) A proper hyperideal Q of a multiplicative hyperring R is said to be a primary hyperideal of R
if for any a, b ∈ R, a ◦ b ⊆ Q implies a ∈ Q or bn ⊆ Q, for some n ∈ N.

Definition 2.8. [1] Let I be a hyperideal of a multiplicative hyperring R and R/I = {r+I | r ∈ R}.
Define the operations + and ◦ on R/I by (a + I) + (b + I) = a + b + I and (a + I) ◦ (b + I) =
∪{c+ I | c ∈ a ◦ b}. Then (R/I,+, ◦) is called a quotient hyperring.

Definition 2.9. [6] Let C be the class of all finite products of elements of a multiplicative hyperring
R i. e. C = {r1 ◦ r2 ◦ · · · ◦ rn : ri ∈ R,n ∈ N} ⊆ P ∗(R). A hyperideal I of R is said to be a C-ideal
of R if for any A ∈ C, A ∩ I ̸= ∅, then A ⊆ I.

Let I be a hyperideal of a multiplicative hyperring (R,+, ◦). The intersection of all prime
hyperideals of R containing I is called the radical of I, being denoted by Rad(I). If the multiplica-
tive hyperring R does not have any prime hyperideal containing I, we define Rad(I) = R. Also,
the hyperideal {r ∈ R : rn ⊆ I for some n ∈ N} will be designated by D(I) and note that the
inclusion D(I) ⊆ Rad(I) always holds. In addition, if I is a C-ideal of R, other inclusion holds by
[6, Proposition 3.2].

Definition 2.10. [1] Let R and S be hyperrings. A mapping ϕ : R → S is said to be a hyperring
good homomorphism if for all a, b ∈ R;
(1) ϕ(a+ b) = ϕ(a) + ϕ(b),
(2) ϕ(a ◦ b) = ϕ(a) ◦ ϕ(b).

Throughout this paper, R is a commutative multiplicative hyperring with scalar identity 1.
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3 S-prime hyperideals

In this section, the basic properties of S-prime hyperideals are studied.

Definition 3.1. A nonempty subset S of a multiplicative hyperring (R,+, ◦) with identity 1 is
called a multiplicatively closed subset of R if S ⊆ R has the following properties:
(i) 1 ∈ S,
(ii) s1 ◦ s2 ∩ S ̸= ∅ for all s1, s2 ∈ S.

Example 3.2. Let R = (Z5,+, ·). For all a, b ∈ R we define the hyperoperation a ∗ b = {a · b, 2a ·
b, 3a · b}. Then (R,+, ∗) is a multiplicative hyperring, which is not strongly distributive. Now, let
S = {1, 3}. Then S is a multiplicatively closed subset of (R,+, ∗).

Definition 3.3. Let R be a multiplicative hyperring, S ⊆ R be a multiplicatively closed subset of
R and P be a hyperideal of R such that P ∩ S = ∅. We say that P is S-prime if there exists an
s ∈ S such that for all a, b ∈ R with a ◦ b ⊆ P , we have s ◦ a ⊆ P or s ◦ b ⊆ P .

Example 3.4. Let (R,+, ·) be a ring. Then corresponding to every subset A ∈ P ∗(R)(|A| ≥ 2),
there exists a multiplicative hyperring with absorbing zero (RA,+, ◦), where RA = R and for
any α, β ∈ RA, α ◦ β = {α · a · β : a ∈ A}. Let (RA,+, ◦) be a commutative multiplicative
hyperring and element x indeterminate over RA. Consider the polynomial multiplicative hyperring
T = (RA[x],+, ∗), where operation + and hyperoperation ∗ defined on T as follows:
for all f(x) =

∑n
k=0 akx

k and g(x) =
∑m

k=0 bkx
k of T , we consider

f(x) + g(x) =
∑
k=0

(ak + bk)x
k, f(x) ∗ g(x) =


n+m∑
k=0

ckx
k | ck ∈

∑
i+j=k

ai ◦ bj

 .

Let RA = (Z,+, ◦) with A = {1, 2, 4} be the multiplicative hyperring. Consider the multiplicative
polynomial hyperring T = (ZA[x],+, ∗) and S = {2n | n ∈ N}. Then S is a multiplicatively closed
subset of T . Let P = ⟨4x⟩. It is easy to see that P ∩ S = ∅. Put s = 4. Thus P is an S-prime
hyperideal of T , but P is not a prime hyperideal of T because 2 ◦2x = {4x, 8x, 16x} ⊆ P but 2 ̸∈ P
and 2x ̸∈ P .

Proposition 3.5. Let R be a multiplicative hyperring and S ⊆ R be a multiplicatively closed subset
of R. Then:
(i) Every prime hyperideal P of R such that P ∩ S = ∅ is also an S-prime hyperideal of R.
(ii) If S consists of units of R, then a hyperideal P of R is prime if and only if P is S-prime.
(iii) Let S1 ⊆ S2 be a multiplicatively closed subset of R. If P is an S1-prime hyperideal of R
such that P ∩ S2 = ∅, then P is an S2-prime hyperideal of R.

Proof. The proof is straightforward.

Let I be a hyperideal of a multiplicative hyperring R and x ∈ I. We note (I : x) = {r ∈
R | r ◦ x ⊆ I}. Then for all x ∈ R, (I : x) is a hyperideal of R.

Proposition 3.6. Let R be a multiplicative hyperring, S ⊆ R be a multiplicatively closed subset
of R and P be a hyperideal of R such that P ∩ S = ∅. Then P is an S-prime hyperideal of R if
and only if (P : s) is a prime hyperideal of R for some s ∈ S.
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Proof. (⇒) Since P is an S-prime hyperideal of R, there exists an s ∈ S such that for all a, b ∈ R
with a◦ b ⊆ P , then s◦a ⊆ P or s◦ b ⊆ P . Let a◦b ⊆ (P : s) where a, b ∈ R. Hence (s◦a)◦b ⊆ P .
Thus for any t ∈ s ◦ a, t ◦ b ⊆ P . Since P is an S-prime hyperideal, then s1 ◦ t ⊆ P or s1 ◦ b ⊆ P .
Since for all t ∈ s ◦ a, we have s1 ◦ t ⊆ P , so (s1 ◦ s) ◦ a ⊆ P . Since s, s1 ∈ S and S is a subalgebra,
we get (s1 ◦ s) ∩ S ̸= ∅. So there exists u ∈ (s1 ◦ s) ∩ S such that u ◦ a ⊆ P . Thus s ◦ u ⊆ P or
s ◦ a ⊆ P because P is an S-prime hyperideal. If s ◦ u ⊆ P , then (s ◦ u) ∩ S ⊆ P ∩ S = ∅ which is
a contradiction. Thus s ◦ a ⊆ P or s ◦ b ⊆ P . Therefore a ∈ (P : s) or b ∈ (P : s), and so P is a
prime hyperideal of R.
(⇐) Let (P : s) is a prime hyperideal. Assume that a ◦ b ⊆ P for some a, b ∈ R. It is clear that
P ⊆ (P : s) since P is a hyperideal. Thus a ◦ b ⊆ (P : s), so since (P : s) is prime, a ∈ (P : s) or
b ∈ (P : s). Therefore s ◦ a ⊆ P or s ◦ b ⊆ P , as required.

Proposition 3.7. Let R be a multiplicative hyperring, S ⊆ R be a multiplicatively closed subset
of R and P be a hyperideal of R disjoint with S. Then
(i) If J is a hyperideal of R such that J ∩ S ̸= ∅ and P is an S-prime hyperideal of R, then JP
is an S-prime hyperideal of R.
(ii) Let R ⊆ R′ be an extension of R. If Q is an S-prime hyperideal of R′, then Q ∩ R is an
S-prime hyperideal of R.

Proof. (i) Let t ∈ J ∩ S. Let a ◦ b ⊆ JP ⊆ P where a, b ∈ R. Hence there exists an s ∈ S such
that s ◦ a ⊆ P or s ◦ b ⊆ P . Thus t ◦ s ◦ a ⊆ JP or t ◦ s ◦ b ⊆ JP . Since (t ◦ s) ∩ S ̸= ∅, so there is
u ∈ (t ◦ s) ∩ S. Thus u ◦ a ⊆ JP or u ◦ b ⊆ JP . So JP is an S-prime hyperideal of R.
(ii) Let a ◦ b ⊆ Q ∩R where a, b ∈ R. Since Q is an S-prime hyperideal of R′, there exists s ∈ S
such that s ◦ a ⊆ Q or s ◦ b ⊆ Q. Therefore, s ◦ a ⊆ Q ∩R or s ◦ b ⊆ Q ∩R.

Theorem 3.8. Let R be a multiplicative hyperring and S ⊆ R be a multiplicatively closed subset
of R. Suppose f : R → R′ is a good homomorphism of hyperrings such that f(S) does not contain
zero. If Q is an f(S)-prime hyperideal of R′, then f−1(Q) is an S-prime hyperideal of R.

Proof. It is easy to see that f(S) is a multiplicatively closed subset of R′. Let Q be an f(S)-prime
hyperideal of R′. Hence there exists an s ∈ S such that for all x, y ∈ R′ if x ◦ y ⊆ Q, then
f(s) ◦ x ⊆ Q or f(s) ◦ y ⊆ Q. Let P = f−1(Q). Hence we have P ∩ S = ∅ since Q∩ f(S) = ∅. Let
a ◦ b ⊆ P where a, b ∈ R. Thus f(a ◦ b) = f(a) ◦ f(b) ⊆ Q which implies that f(s) ◦ f(a) ⊆ Q or
f(s) ◦ f(b) ⊆ Q. Therefore f(s ◦ a) ⊆ Q or f(s ◦ b) ⊆ Q since f is a good homomorphism. Hence
s ◦ a ⊆ f−1(Q) = P or s ◦ b ⊆ f−1(Q) = P , as needed.

Let R be a multiplicative hyperring, S ⊆ Rbe a multiplicatively closed subset of R and I be
a hyperideal of R such that I ∩ S = ∅. Let s ∈ S, we denote by s̄ = s + I the equivalence class
of s in the quotient hyperring R/I. Let S̄ = {s + I | s ∈ S}. Then S̄ is a multiplicatively closed
subset of R/I, because if s+ I, t+ I ∈ S̄, then (s+ I) ◦ (t+ I) ∩ S̄ ̸= ∅ because s ◦ t ∩ S ̸= ∅.

Proposition 3.9. Let R be a multiplicative hyperring, S ⊆ R be a multiplicatively closed subset
of R and I be a hyperideal of R such that I ∩ S = ∅. Let P be a proper hyperideal of R containing
I such that (P/I)∩ S̄ = ∅. Then P is an S-prime hyperideal of R if and only if P/I is an S̄-prime
hyperideal of R/I.

Proof. Let P be an S-prime hyperideal. Then there exists an s ∈ S such that for all a, b ∈ R with
a ◦ b ⊆ P , then s ◦ a ⊆ P or s ◦ b ⊆ P . Let (a+ I) ◦ (b+ I) ⊆ P/I where a+ I, b+ I ∈ R/I. Hence
a ◦ b ⊆ P , and so s ◦ a ⊆ P or s ◦ b ⊆ P . Thus (s+ I) ◦ (a+ I) ⊆ P/I or (s+ I) ◦ (b+ I) ⊆ P/I.
Therefore, P/I is an S̄-prime hyperideal of R/I.
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Conversely, since (P/I) ∩ S̄ = ∅, we can easily prove that P ∩ S = ∅. Let a ◦ b ⊆ P where
a, b ∈ R. Thus (a+I)◦(b+I) ⊆ P/I. There exists an s̄ = s+I ∈ S̄ such that (s+I)◦(a+I) ⊆ P/I
or (s+ I) ◦ (b+ I) ⊆ P/I. Hence we conclude s ◦ a ⊆ P or s ◦ b ⊆ P , as required.

Theorem 3.10. Let R be a multiplicative hyperring, S ⊆ Rbe a multiplicatively closed subset of
R and P be a hyperideal of R such that P ∩ S = ∅. Then P is an S-prime hyperideal of R if and
only if there exists an s ∈ S such that for all hyperideals I, J of R, if IJ ⊆ P , then s ◦ I ⊆ P or
s ◦ J ⊆ P .

Proof. (⇐) Let a ◦ b ⊆ P where a, b ∈ R. Thus ⟨a ◦ b⟩ ⊆ P . By [6, Proposition 2.15], we have
⟨a⟩ ◦ ⟨b⟩ ⊆ ⟨a ◦ b⟩, and so ⟨a⟩ ◦ ⟨b⟩ ⊆ P . Thus there exists an s ∈ S such that s ◦ ⟨a⟩ ⊆ P or
s ◦ ⟨b⟩ ⊆ P by hypothesis. Therefore s ◦ a ⊆ P or s ◦ b ⊆ P , hence P is S-prime.
(⇒) Since P is S-prime, there exists an s ∈ S such that a ◦ b ⊆ P , implies s ◦ a ⊆ P or s ◦ b ⊆ P
for any a, b ∈ R. Let for all t ∈ S, there exist hyperideals A,B of R with AB ⊆ P , t ◦A * P and
t ◦ B * P . Since s ∈ S, there exists hyperideals I, J of R with IJ ⊆ P , t ◦ I * P and t ◦ J * P .
Thus there exist a ∈ I and b ∈ J such that s ◦ a * P and s ◦ b * P with a ◦ b ⊆ IJ ⊆ P that it
contradicts with hypothesis.

Corollary 3.11. Let R be a multiplicative hyperring, S ⊆ R be a multiplicatively closed subset of
R and P be a hyperideal of R such that P ∩ S = ∅. Then P is an S-prime hyperideal of R if and
only if there exists an s ∈ S such that for all hyperideals I1, I2, · · · , In of R, if I1I2 · · · In ⊆ P , then
s ◦ Ii ⊆ P for some i ∈ {1, 2, . . . , n}.

Proof. (⇐) It follows from Theorem 3.10.
(⇒) Since P is S-prime, there exists an s ∈ S so that a ◦ b ⊆ P , implies s ◦ a ⊆ P or s ◦ b ⊆ P
for any a, b ∈ R. We will proceed by induction on n. For n = 2, the result is true by Theorem
3.10. Let n ≥ 3. Suppose that the property holds up to the order n − 1 and let I1, I2, · · · , In be
hyperideals of R such that I1I2 · · · In ⊆ P . Thus (I1I2 · · · In−1)In ⊆ P . Hence by Theorem 3.10,
s ◦ (I1I2 · · · In−1) ⊆ P or s ◦ In ⊆ P . If s(I1I2 · · · In−1) ⊆ P , then (s ◦ s) ◦ I1 ⊆ P or s ◦ Ii ⊆ P for
some i ∈ {2, · · · , n− 1}. If (s ◦ s) ◦ I1 ⊆ P , then t ◦ I1 ⊆ P for some t ∈ s ◦ s ∩ S. Hence s ◦ t ⊆ P
or s ◦ I1 ⊆ P , but if s ◦ t ⊆ P , then (s ◦ t) ∩ S ⊆ P ∩ S = ∅, a contradiction. Therefore, s ◦ Ii ⊆ P
for some i ∈ {1, · · · , n}.

Proposition 3.12. Let R be a multiplicative hyperring, S ⊆ R be a multiplicatively closed subset
of R and P be a hyperideal of R such that P ∩ S = ∅. Then P is an S-prime hyperideal of R if
and only if there exists an s ∈ S such that for all a1, a2, · · · , an of R, if a1 ◦ a2 ◦ · · · ◦ an ⊆ P , then
s ◦ ai ⊆ P for some i ∈ {1, 2, . . . , n}.

Proof. (⇐) Take n = 2.
(⇒) Let P be an S-prime hyperideal of R. Then there exists an s ∈ S so that a ◦ b ⊆ P ,
implies s ◦ a ⊆ P or s ◦ b ⊆ P for any a, b ∈ R. Let a1 ◦ a2 ◦ · · · ◦ an ⊆ P where a1, · · · , an ∈ R.
Hence ⟨a1 ◦ a2 ◦ · · · ◦ an⟩ ⊆ P , so by [6, Proposition 2.15] and induction, we get ⟨a1⟩ ◦ · · · ◦ ⟨an⟩ ⊆
⟨a1 ◦ a2 ◦ · · · ◦ an⟩ ⊆ P . Thus by Corollary 3.11, s ◦ ⟨ai⟩ ⊆ P for some i ∈ {1, 2, . . . , n}.

Corollary 3.13. Let R be a multiplicative hyperring, S ⊆ R be a multiplicatively closed subset of
R and P be a hyperideal of R such that P ∩ S = ∅. Then P is prime hyperideal of R if and only
if for all hyperideals I1, I2, · · · , In of R, if I1I2 · · · In ⊆ P , then Ii ⊆ P for some i ∈ {1, 2, . . . , n}.

Proof. Take S = {1} in Corollary 3.11.
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Proposition 3.14. Let R be a multiplicative hyperring, S ⊆ R be a multiplicatively closed subset
of R and P be a hyperideal of R such that P ∩ S = ∅. Then if I is a C-hyperideal of R and P an
S-prime hyperideal of R such that I ⊆ P , then there exists an s ∈ S such that s ◦ (Rad(I)) ⊆ P .

Proof. Let a ∈ Rad(I). Since I is a C-ideal, we have Rad(I) = D(I) = {r ∈ R | rn ⊆
I for some n ∈ N}. Hence an ⊆ I ⊆ P for some n ∈ N. Thus there exists an s ∈ S such
that s ◦ a ⊆ P by Proposition 3.12, and so s ◦ (Rad(I)) ⊆ P .

Theorem 3.15. Let R be a multiplicative hyperring and S ⊆ R be a multiplicatively closed subset
of R. Let I be a hyperideal of R and P1, P2, · · · , Pn be S-prime C-hyperideals of R such that
I ⊆

∪n
i=1 Pi. Then there exists an s ∈ S and i ∈ {1, 2, · · · , n} such that s ◦ I ⊆ Pi.

Proof. Let P1, P2, · · · , Pn be S-prime C-hyperideals of R. Let I ⊆
∪n

i=1 Pi. By Proposition 3.6,
for all i, 1 ≤ i ≤ n, there exists si ∈ S such that (Pi : si) is a prime hyperideal of R. We have
I ⊆

∪n
i=1 Pi ⊆

∪n
i=1(Pi : si). Thus by [6, Proposition 2.15], there exists i ∈ {1, · · · , n} such that

I ⊆ (Pi : si), and so si ◦ I ⊆ Pi.

Let (R1,+, ◦) and (R2,+, ◦) be two multiplicative hyperrings with identity 1. Then (R =
R1×R2,+, ◦) is a multiplicative hyperring with operation + and the hyperoperation ◦ are defined,
respectively, as (x, y) + (z, t) = (x+ z, y + t) and (x, y) ◦ (z, t) = {(a, b) ∈ R | a ∈ x ◦ z, b ∈ y ◦ t}
for all (x, y), (z, t) ∈ R.

Theorem 3.16. Let R = R1×R2 be a decomposable hyperring where R1 and R2 be multiplicative
hyperrings with identity 1 and S = S1 × S2 where Si be a multiplicatively closed subset of Ri.
Suppose P = P1 × P2 is a hyperideal of R. Then the following are equivalent:
(i) P is an S-prime hyperideal of R.
(ii) P1 is an S1-prime hyperideal of R1 and P2 ∩ S2 ̸= ∅ or P2 is an S2-prime hyperideal of R2

and P1 ∩ S1 ̸= ∅.

Proof. (i) ⇒ (ii) Since (1, 0)◦(0, 1) ⊆ P , then there exists an s = (s1, s2) ∈ S so that s◦(1, 0) ⊆ P
or s(0, 1) ⊆ P . Thus P1 ∩S1 ̸= ∅ or P2 ∩S2 ̸= ∅. We may assume that P1 ∩S1 ̸= ∅. As P ∩S = ∅,
we have P2∩S2 = ∅. Let a◦b ⊆ P2 for some a, b ∈ R2. Since (0, a)◦(0, b) ⊆ P and P is an S-prime
hyperideal of R, s ◦ (0, a) ⊆ P or s ◦ (0, b) ⊆ P . Hence we get s2 ◦ a ⊆ P2 or s2 ◦ b ⊆ P2. Thus
P2 is an S2-prime hyperideal of R2. In the other case, one can easily show that P1 is an S1-prime
hyperideal of R1.
(ii) ⇒ (i) Assume that P1∩S1 ̸= ∅ and P2 is an S2-prime hyperideal of R2. Therefore there exists
an s1 ∈ P1 ∩S1. Let (a, b) ◦ (c, d) ⊆ P for some a, c ∈ R1 and b, d ∈ R2. This yields that b ◦ d ⊆ P2

and so there exists an s2 ∈ S2 so that s2 ◦ b ⊆ P2 or s2 ◦ d ⊆ P2. Put s = (s1, s2) ∈ S. Thus we
get s ◦ (a, b) ⊆ P or s ◦ (c, d) ⊆ P . Therefore, P is an S-prime hyperideal of R. In the other case,
one can similarly prove that P is an S-prime hyperideal of R.

Let (R,+, ◦) be a hyperring with identity 1. We define the relation γ as follows: aγb if and
only if a, b ⊆ U where U is a finite sum of finite products of elements of R, i.e.,

aγb ⇔ ∃z1, z2, · · · , zn ∈ R such that {a, b} ⊆
∑
j∈J

∏
i∈Ij

zi, Ij , J ⊆ {1, 2, · · · , n}.

We denote the transitive closure of γ by γ∗. The relation γ∗ is the smallest equivalence relation on
a multiplicative hyperring (R,+, ◦) such that the quotient R/γ∗, the set of all equivalence classes,
is a fundamental ring. Let U be the set of all finite sums of products of elements of R. We can
rewrite the definition of γ∗ on R as follows:
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aγb ⇔ ∃z1, z2, · · · , zn ∈ R with z1 = a and zn+1 = b and u1, u2, · · · , un ∈ U such that {zi, zi+1} ⊆
ui for i ∈ {1, 2, · · · , n}.
Suppose that γ∗(a) is the equivalence class containing a ∈ R. Then, both the sum ⊕ and the
product ⊙ in R/γ∗ are defined as follows: γ∗(a) ⊕ γ∗(b) = γ∗(c) for all c ∈ γ∗(a) + γ∗(b) and
γ∗(a)⊙ γ∗(b) = γ∗(d) for all d ∈ γ∗(a) ◦ γ∗(b) . Then R/γ∗ is a ring, which is called a fundamental
ring of R (see [8]).

Proposition 3.17. Let R be a multiplicative hyperring with scaler 1. Then S ⊆ R is a mul-
tiplicatively closed subset of R if and only if S/γ∗ is a multiplicatively closed subset of the ring
R/γ∗.

Proof. Let S ⊆ R be a multiplicatively closed subset of R. Suppose x, y ∈ S/γ∗. We show that
xy ∈ S/γ∗. We have x = γ∗(s) and y = γ∗(t) for some s, t ∈ S. Hence xy = γ∗(s)γ∗(t) = γ∗(s ◦ t).
Since (s ◦ t) ∩ S ̸= ∅, there exists u ∈ (s ◦ t) ∩ S. Thus xy = γ∗(s ◦ t) = γ∗(u) ∈ S/γ∗ since γ∗ is a
strongly regular relation of R.

Conversely, let S/γ∗ be a multiplicatively closed subset of R/γ∗. Let s1, s2 ∈ S. We show
that (s1 ◦ s2) ∩ S ̸= ∅. We have γ∗(s1), γ

∗(s2) ∈ S/γ∗. Thus γ∗(s1)γ
∗(s2) ∈ S/γ∗ since R/γ∗

is a multiplicatively closed subset of R/γ∗. Hence γ∗(s1 ◦ s2) = γ∗(s1)γ
∗(s2) ∈ S/γ∗. Therefore

s1 ◦ s2 ⊆ S, and so (s1 ◦ s2) ∩ S ̸= ∅. Thus S is a multiplicatively closed subset of R.

Theorem 3.18. Let R be a multiplicative hyperring with identity 1 and S ⊆ R be a multiplicatively
closed subset of R. Then the hyperideal P is S-prime if and only if P/γ∗ is an S/γ∗-prime ideal
of R/γ∗.

Proof. Let P be an S-prime hyperideal of R. Let xy ∈ P/γ∗ where x, y ∈ R/γ∗. Thus there exist
a, b ∈ R such that x = γ∗(a) and y = γ∗(b). Hence xy = γ∗(a ◦ b) ∈ P/γ∗, and so a ◦ b ⊆ P . Then
there exists an s ∈ S such that s ◦ a ⊆ P or s ◦ b ⊆ P since P is an S-prime hyperideal of R.
Therefore γ∗(s)γ∗(a) = γ∗(s ◦ a) ∈ P/γ∗ or γ∗(s)γ∗(b) = γ∗(s ◦ b) ∈ P/γ∗ since γ∗ is a strongly
regular relation of R.

Conversely, assume that P/γ∗ is an S/γ∗-prime ideal of R/γ∗. Let a ◦ b ⊆ P where a, b ∈ R.
Thus γ∗(a ◦ b) = γ∗(a)γ∗(b) ∈ P/γ∗. Thus there exists s ∈ S such that γ∗(s)γ∗(a) ∈ P/γ∗ or
γ∗(s)γ∗(b) ∈ P/γ∗ since P/γ∗ is an S/γ∗-prime ideal of R/γ∗. Therefore s ◦ a ⊆ P or s ◦ b ⊆ P ,
as required.

Example 3.19. Let R = {0, 1, 2, 3}. Consider the multiplicative hyperring (R,+, ◦), where oper-
ation + and hyperoperation ◦ are defined on R as follows,

+ 0 1 2 3

0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

◦ 0 1 2 3

0 {0} {0} {0} {0}
1 {0} {1, 3} {2} {1, 3}
2 {0} {2} {0} {2}
3 {0} {1, 3} {2} {1, 3}

Let S = {1, 3} and P = {0, 2}. Then it is easy to verify that S is a multiplicatively closed subset
of R and P is a prime hyperideal of R. Since S ∩ P = ∅, then P is an S-prime hyperideal of R.

Also, we have S/γ∗ = {γ∗(1), γ∗(3)} which is a multiplicatively closed subset of R/γ∗ and
P/γ∗ = {γ∗(0), γ∗(2)} which is an S/γ∗-prime ideal of R/γ∗.

Let R be a multiplicative hyperring. Then Mn(R) denotes the set of all hypermatrixes of R.
Also, for all A = (Aij)nn, B = (Bij)nn ∈ P ∗(Mn(R)), A ⊆ B if and only if Aij ⊆ Bij .
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Theorem 3.20. Let R be a multiplicative hyperring with identity 1, S ⊆ R be a multiplicatively

closed subset of R and P be a hyperideal of R. If Mn(P ) is an Mn(S) =



s 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

 | s ∈ S

-

prime hyperideal of Mn(R), then P is an S-prime hyperideal of R.

Proof. It is clear that Mn(S) is a multiplicatively closed subset of Mn(R). Let x ◦ y ⊆ P where
x, y ∈ R. Then 

x ◦ y 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

 ⊆ Mn(R).

We have 
x ◦ y 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

 =


x 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0



y 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0


Since Mn(P ) is an Mn(S)-prime hyperideal of Mn(R), then

s 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0



x 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

 ⊆ Mn(P )

or 
s 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0



y 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

 ⊆ Mn(P )

Hence 
s ◦ x 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

 ⊆ Mn(P ) or


s ◦ y 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

 ⊆ Mn(P )

Therefore, s ◦ x ⊆ P or s ◦ y ⊆ P . Hence P is an S-prime hyperideal of R.

4 Conclusions

The concepts of multiplicatively closed subset of a multiplicative hyperrings and S-prime hyper-
ideals of a multiplicative hyperring have been studied and some results where established.

In fact, the notion of S-prime hyperideals differ with the notion of prime hyperideals and
many of the results concerning of prime hyperideals are not hold for S-prime hyperideals. The
notion of S-prime hyperideals was proposed and basic properties of S-prime hyperideals based
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on their formations were introduced. We also explored the behaviour of S-prime hyperideals
under homomorphism hyperrings, in factor hyperrings, Cartesian products of hyperrings and the
fundamental relation in the context of multiplicative hyperrings with some related results.
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