Ideals in pseudo-hoop algebras

F. Xie¹ and H. Liu²

¹,²School of Mathematics and Statistics, Shandong Normal University, 250014, Jinan, P. R. China
850938132@qq.com, lhxshanda@163.com

Abstract

Pseudo-hoop algebras are non-commutative generalizations of hoop-algebras, originally introduced by Bosbach. In this paper, we study ideals in pseudo-hoop algebras. We define congruences induced by ideals and construct the quotient structure. We show that there is a one-to-one correspondence between the set of all normal ideals of a pseudo-hoop algebra \(A \) with condition (pDN) and the set of all congruences on \(A \). Also, we prove that if \(A \) is a good pseudo-hoop algebra with pre-linear condition, then a normal ideal \(P \) of \(A \) is prime if and only if \(A/P \) is a pseudo-hoop chain. Furthermore, we analyse the relationship between ideals and filters of \(A \).

Article Information

Corresponding Author: H. Liu;
Received: July 2020;
Revised: September 2020;
Accepted: September 2020,
Paper type: Original.

Keywords:
Pseudo-hoop algebra, ideal, congruence, filter.

1 Introduction

Hoop algebras were presented by Bosbach in [4, 5]. Then Büchi and Owens investigated this algebraic structure in an unpublished paper. Pseudo-hoop algebras were presented as non-commutative generalizations of hoop algebras by Georgescu, Leuştean and Preoteasa in [13], following after the notions of pseudo-MV algebras in [12] and pseudo-BL algebras ([10]). Pseudo-hoop algebras are weaker structures. Pseudo-MV algebras and pseudo-BL algebras are particular cases of pseudo-hoop algebras. In recent years, the study of hoop algebras and pseudo-hoop algebras has made great progress. And the main focus has been on filters in [2, 6, 9, 15].

Ideal theory plays a fundamental role in many algebraic structures, such as lattices, rings and pseudo-MV algebras. Georgescu and Iorgulescu in [12] introduced the notion of ideals in pseudo-MV algebras, which was shown effective in studying structure properties of pseudo-MV algebras. In addition, Dvurečenskij in [11] studied states on pseudo-MV algebras by exploiting ideals. In recent years, the notion of ideals has been introduced as a dual notion of filters in some algebraic structures using multiplication operations. Lele and Nganou in [14] presented the notion of ideals.
in BL-algebras and defined quotient algebraic structures by ideals. Using ideals, they proved that an ideal of a BL-algebra is prime if and only if the quotient algebraic structure is a linear MV-algebra. Also, Rachůnek and Šalounová in [16] introduced ideals of general residuated lattices. It was proved that a congruence can be defined by an ideal in some cases, and the corresponding quotient structure is involutive. In [1], Kologani and Borzooei introduced the notions of ideals, implicative (maximal, prime) ideals of hoop algebras and studied the relationships between these ideals.

In (pseudo-) MV-algebras, filters and ideals are dual. However, in pseudo-hoop algebras, we mainly study filters. As pseudo-hoop algebras may not have lattice structures, not all pseudo-hoop algebras are general residuated lattices. Since pseudo-MV algebras are particular cases of general residuated lattices, the notion of ideals in pseudo-hoop algebras can not be similar to that in pseudo-MV algebras. Therefore, we want to introduce the notion of ideals in pseudo-hoop algebras, as a dual notion of filters in \([\text{pseudo-MV algebras}].\) Another inspiration is the notion of ideals in hoop algebras defined in [2]. Since pseudo-hoop algebras are non-commutative generalizations of hoop algebras, we shall generalize the notion of ideals in hoop algebras to the case of pseudo-hoop algebras. Also, by Theorem 1.5 and Theorem 6.3, it is noticeable that ideals and filters behave differently in pseudo-hoop algebras. Therefore, it is meaningful to investigate ideals in pseudo-hoop algebras.

The paper is constructed as follows. In Section 2, we recall some definitions and results on pseudo-hoop algebras which are useful. In Section 3, we define the notions of left, right and both-sided ideals of pseudo-hoop algebras. In Section 4, we analyse congruences induced by ideals and construct the quotient pseudo-hoop algebras via ideals. In addition, we get an isomorphism theorem. In Section 5, we introduce the notion of prime ideals in pseudo-hoop algebras and give some equivalent conditions of prime ideals. In Section 6, we analyse the relationship between ideals and filters. Also, we introduce the notion of \(\circ\)-prime ideals in pseudo-hoop algebras. The relationship between \(\circ\)-prime ideals and maximal filters is discussed.

2 Preliminaries

In this section, we recall some definitions and results to be used in this paper.

Definition 2.1. [13] A pseudo-hoop algebra is an algebra \((A, \circ, \rightarrow, \rightsquigarrow, 1)\) of the type \((2, 2, 2, 0)\) that for all \(u, v, w \in A\), it is satisfying in the following conditions:

1. (ph1) \(u \circ 1 = 1 \circ u = u\);
2. (ph2) \(u \rightarrow u = u \rightsquigarrow u = 1\);
3. (ph3) \((u \circ v) \rightarrow w = u \rightarrow (v \rightarrow w)\);
4. (ph4) \((u \circ v) \rightsquigarrow w = v \rightsquigarrow (u \rightsquigarrow w)\);
5. (ph5) \((u \rightarrow v) \circ u = (v \rightarrow u) \circ v = u \circ (u \rightsquigarrow v) = v \circ (v \rightsquigarrow u)\).

We define \(u^0 = 1\) and \(u^n = u^{n-1} \circ u\) for any \(n \in \mathbb{N}_+\) on \(A\). The relation \(\leq\) defined by \(u \leq v \iff u \rightarrow v = 1 \iff u \rightsquigarrow v = 1\) is a partial order on \(A\). If \(\circ\) is commutative or equivalently \(\rightarrow = \rightsquigarrow\), \(A\) is called to be a hoop algebra. Also, \(A\) is called bounded if \(u \geq 0\) for any \(u \in A\). In this case, we define \(u^0 = v \rightarrow 0\) and \(u^\sim = u \rightsquigarrow 0\) on \(A\). If \(u^\sim\) = \(u^\sim\) for all \(u \in A\), then the bounded pseudo-hoop algebra is called good (see [8]). In a bounded pseudo-hoop algebra \(A\), if \(u^\sim = u^\sim\) for all \(u \in A\), then \(A\) is called satisfying the \((pDN)\) condition (see [8]). A good pseudo-hoop algebra \(A\) is called normal if it satisfies \((u \circ v)^\sim = u^\sim \circ v^\sim\) for all \(u, v \in A\).

We summarize some properties of pseudo-hoop algebras that we will use later. For more details, see [8] and [13].
Proposition 2.2. \[13\] Let \((A, \odot, \rightarrow, \rightsquigarrow, 1)\) be a pseudo-hoop algebra. Then for all \(u, v, w \in A\), the following conditions hold:

1. \(u \odot v \leq w\) iff \(u \leq v \rightarrow w\) iff \(v \leq u \rightsquigarrow w\);
2. \((A, \odot, 1)\) is a monoid;
3. if \(u \leq v\), then \(u \odot w \leq v \odot w\) and \(w \odot u \leq w \odot v\);
4. \(u \odot v = (u \rightarrow v) \odot u = (v \rightarrow u) \odot v = u \odot (u \rightsquigarrow v) \odot (v \rightsquigarrow u)\);
5. if \(u \leq v\), then \(v \rightarrow w \leq u \rightarrow w\) and \(v \rightsquigarrow w \leq u \rightsquigarrow w\);
6. if \(u \leq v\), then \(w \rightarrow u \leq w \rightarrow v\) and \(w \rightsquigarrow u \leq w \rightsquigarrow v\);
7. \((v \rightarrow w) \odot (u \rightarrow v) \leq u \rightarrow w\), \((u \rightsquigarrow v) \odot (v \rightsquigarrow w) \leq u \rightsquigarrow w\).

Proposition 2.3. \[8\] Let \(A\) be a bounded pseudo-hoop algebra. Then for all \(u, v, w \in A\) the following statements hold:

1. \(u \odot 0 = 0 = 0 \odot u\);
2. \(u \odot \rightsquigarrow u = 0\);
3. \(u \odot v = 0\) iff \(u \leq v \rightsquigarrow v \leq u \rightsquigarrow v\);
4. \(u \leq u \rightsquigarrow v\), \(u \leq u \rightsquigarrow v\);
5. \(u \rightsquigarrow v = u \rightsquigarrow u = u \rightsquigarrow v\);
6. if \(A\) is good, then \((u \rightarrow v) \rightsquigarrow v = u \rightsquigarrow v \rightarrow v \rightsquigarrow v \equiv (u \rightsquigarrow v) \rightsquigarrow v \equiv u \rightsquigarrow v \rightsquigarrow v \equiv v \rightsquigarrow v\);
7. if \(A\) is good, then \(v \rightarrow u = u \rightarrow u \rightarrow u \rightarrow u \rightarrow u \rightarrow v \rightarrow v \rightarrow v\).

A pseudo-hoop algebra \(A\) is said to satisfy the pre-linear condition if we have \((x \rightarrow y) \odot (y \rightarrow x) = (x \rightsquigarrow y) \odot (y \rightsquigarrow x) = 1\) for any \(x, y \in A\). By \[8\], Proposition 3.4, \((A, \odot, \rightarrow, \rightsquigarrow, 0, 1)\) is a bounded pseudo-hoop algebra with pre-linear condition if and only if \((A, \wedge, \vee, \odot, \rightarrow, \rightsquigarrow, 0, 1)\) is a pseudo-\(\mathcal{BL}\) algebra.

A filter \(F\) of a pseudo-hoop algebra \(A\) is a nonempty subset of \(A\) which satisfies \((F1): u, v \in F\) implies \(u \odot v \in F\) and \((F2): \) for any \(u, v \in A\), if \(u \leq v\) and \(u \in F\), then \(v \in F\) (see \[13\]). In a pseudo-hoop algebra, \(A\), filters are coincided with deductive systems. A filter \(F\) of \(A\) satisfying \(F \neq A\) is called proper. If \(F\) is a proper filter of \(A\) and there is no proper filter containing \(F\), \(F\) is called maximal. A filter \(F\) of \(A\) is normal if \(u \rightarrow v \in F\) iff \(u \rightsquigarrow v \in F\) for any \(u, v \in A\). Let \(X\) be a subset of \(A\). We use \([X]\) to denote the filter of \(A\) generated by \(X\).

Proposition 2.4. \[13\] Let \(A\) be a pseudo-hoop algebra, \(W\) a normal filter of \(A\) and \(u \in A\). Then

\[
(W \cup \{u\}) = \{a \in A | w \odot u^n \leq a, \text{ for some } n \in \mathbb{N}, w \in W\} = \{a \in A | w^n \odot u \leq a, \text{ for some } n \in \mathbb{N}, w \in W\}.
\]

Let \(A_1\) and \(A_2\) be pseudo-hoop algebras. In \[8\], a map \(f : A_1 \rightarrow A_2\) is called a pseudo-hoop homomorphism if \(f\) preserves the operations \(\odot, \rightarrow\) and \(\rightsquigarrow\). The pseudo-hoop homomorphism \(f : A_1 \rightarrow A_2\) is called a bounded pseudo-hoop homomorphism if \(A_1, A_2\) are bounded and \(f(0) = 0\).

3 Ideals

In this section, we shall introduce two kinds of binary operations (left and right additions) and the notion of ideals in pseudo-hoop algebras. We give some equivalent characterizations of ideals of good pseudo-hoop algebras.

Definition 3.1. Let \((A, \odot, \rightarrow, \rightsquigarrow, 1)\) be a bounded pseudo-hoop algebra. We define left addition \(\odot\) and right addition \(\odot\) as follows: for any \(x, y \in A\),

\[
x \odot y = y \rightsquigarrow x \quad \text{and} \quad x \odot y = x \rightarrow y.
\]
Example 3.2. Let $A = \{0, a, b, c, d, 1\}$. Define the operations \rightarrow, \rightsquigarrow and \odot on A as follows:

<table>
<thead>
<tr>
<th>$\rightarrow \rightsquigarrow$</th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>a</td>
<td>c</td>
<td>1</td>
<td>b</td>
<td>c</td>
<td>b</td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td>d</td>
<td>a</td>
<td>1</td>
<td>b</td>
<td>a</td>
<td>1</td>
</tr>
<tr>
<td>c</td>
<td>a</td>
<td>a</td>
<td>1</td>
<td>1</td>
<td>a</td>
<td>1</td>
</tr>
<tr>
<td>d</td>
<td>b</td>
<td>1</td>
<td>1</td>
<td>b</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>\odot</th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>0</td>
<td>a</td>
<td>d</td>
<td>0</td>
<td>d</td>
</tr>
<tr>
<td>b</td>
<td>0</td>
<td>d</td>
<td>c</td>
<td>c</td>
<td>0</td>
<td>b</td>
</tr>
<tr>
<td>c</td>
<td>0</td>
<td>c</td>
<td>c</td>
<td>0</td>
<td>c</td>
<td>c</td>
</tr>
<tr>
<td>d</td>
<td>0</td>
<td>d</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>d</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>1</td>
</tr>
</tbody>
</table>

Then $(A, \odot, \rightarrow, \rightsquigarrow, 1)$ is a bounded hoop algebra. It is easy to see that $b \odot c = c^{-} \rightsquigarrow b = a \rightsquigarrow b = b$ and $c \odot a = c^{-} \rightarrow a = a \rightarrow a = 1$.

Proposition 3.3. Let A be a pseudo-hoop algebra. For all $x, y, m, n \in A$, if $x \leq y$ and $m \leq n$, then $x \odot m \leq y \odot n$ and $x \odot m \leq y \odot n$.

Proof. If $x \leq y$ and $m \leq n$, then $y^{-} \leq x^{-}$, $n^{-} \leq m^{-}$. By Proposition (5) and (6), we have $x \odot m = m^{-} \rightsquigarrow x \leq n^{-} \rightsquigarrow y = y \odot n$. Similarly, we have $x \odot m \leq y \odot n$.

Proposition 3.4. Let A be a pseudo-hoop algebra. If A is normal, then left addition \odot and right addition \odot are associative.

Proof. For all $x, y, z \in A$, we obtain

\[
\begin{align*}
x \odot (y \odot z) &= x^{-} \rightarrow (y^{-} \rightarrow z) \\
&= (x^{-} \odot y^{-}) \rightarrow z \\
&= (x^{-} \odot y^{-})^{-} \rightarrow z \\
&= (x^{-} \rightarrow y^{-})^{-} \rightarrow z \\
&= (x \odot y) \odot z.
\end{align*}
\]

Similarly, we can prove $(x \odot y) \odot z = x \odot (y \odot z)$.

Definition 3.5. Let I be a nonempty subset of a bounded pseudo-hoop algebra A. Then I is called a left ideal of A if it satisfies:

(LI1) $x, y \in I$ implies $x \odot y \in I$;
(LI2) for any $x, y \in A$, $x \leq y$ and $y \in I$ imply $x \in I$.

Similarly, I is called a right ideal of A if it satisfies:

(RI1) $x, y \in I$ implies $x \odot y \in I$;
(RI2) for any $x, y \in A$, $x \leq y$ and $y \in I$ imply $x \in I$.

If I is both a left ideal and a right ideal of A, we call I to be an ideal of A.

For any ideal I of A, we have $0 \in I$. For all $x \in A$, we have $x \in I$ iff $x^{-} \in I$ iff $x^{-} \in I$. An ideal I of A is called proper if $I \neq A$. An ideal I of A is called normal if $x^{-} \odot y \in I$ iff $y \odot x^{-} \in I$ for all $x, y \in A$. The intersection of any family of ideals of a bounded pseudo-hoop algebra A is also an ideal of A. For any subset $H \subseteq A$, the smallest ideal of A containing H is said to be the ideal generated by H, and it is denoted by $\langle H \rangle$.

42 F. Xie, H. Liu
Example 3.6. Let A be a pseudo-hoop algebra as in Example 2. Then $I_{1} = \{0\}, I_{2} = \{0, c\}, I_{3} = \{0, a, d\}$ and $I_{4} = A$ are all ideals of A.

Example 3.7. Let u be an element of an arbitrary ℓ-group $G = (G, +, -, 0, \lor, \land)$ and $u \geq 0$. Define the operations \to, \sim and \circ on $G[u] = [0, u]$ as follows:

$$x \circ y = (x - u + y) \lor 0, \quad x \to y = (y - x + u) \land u, \quad \text{and} \quad x \sim y = (u - x + y) \land u.$$

By Proposition 5.1, $G[u]$ is a bounded pseudo-hoop algebra. Let W be a normal convex ℓ-subgroup of G and $F = \{x \in G[u] : u - x \in W\}$. We define $I_{0} = \{x \in G[u] : x \notin F\}$ and $I'_{0} = \{x \in G[u] : x^- \notin F\}$. Then I_{0} and I'_{0} are ideals of $G[u]$.

We shall show that I_{0} is an ideal of $G[u]$. Let $x, y \in G[u]$. Then $x \to 0 = (0 - x + u) \land u = -x + u, x \sim 0 = (u - x + 0) \land u = u - x,$

$$x \circ y = x^- \to y = (y - (u - x) + u) \land u = (y + x - u + u) \land u = (y + x) \land u,$$

and $x \circ y = y^- \sim x = (u - (y + u) + x) \land u = (y + x) \land u$. Also, we have $x \circ y = x \circ y$.

By Proposition 5.2, F is a normal filter of $G[u]$. Suppose $x, y \in G[u]$ such that $x \leq y$ and $y \in I_{0}$. Then $y^- \leq x^-$ and $y^- \in F$. Using (F2), we obtain $x^- \in F$, i.e. $x \in I_{0}$. Suppose $x, y \in I_{0}$, i.e. $x^-, y^- \in F$. We have $x^- \circ y^- \in F$, by (F1). Since

$$x^- \circ y^- = (x^- - u + y^-) \lor 0 = [(-x + u) - u + (-y + u)] \lor 0 = (-x - y + u) \lor 0,$$

and

$$(x \circ y)^- = ((y + x) \land u)^- = -((y + x) \land u) + u = (-x - y + u) \lor (-u + u) = (-x - y + u) \lor 0,$$

we obtain $(x \circ y)^- = (x \circ y)^- = x^- \circ y^- \in F$. Hence, $x \circ y, x \circ y \in I_{0}$. Thus, I_{0} is an ideal of $G[u]$.

Similarly, we can show that I'_{0} is an ideal of $G[u]$.

Theorem 3.8. Let I be a nonempty subset of a good pseudo-hoop algebra A containing 0. The following conditions are equivalent:

1. I is an ideal of A;
2. for any $x, y \in A$, $x^- \circ y \in I$ and $x \in I$ imply $y \in I$;
3. for any $x, y \in A$, $y \circ x^- \in I$ and $x \in I$ imply $y \in I$.

Proof. $(1) \Rightarrow (2)$ Suppose I is an ideal of A. If $x, y \in A$ such that $x, x^- \circ y \in I$, then $(x^- \circ y) \circ x \in I$. Since $x^- \circ y \leq x^- \circ y$, we obtain $y \leq x^- \Rightarrow (x^- \circ y) = (x^- \circ y) \circ x$ by Proposition 2.2(1). Using (2), we have $y \in I$.

$(2) \Rightarrow (1)$ Let $x, y \in A$ such that $y \in I$ and $x \leq y$. Then $y^- \leq x^-$. Thus, $y^- \circ x \leq x^- \circ x = 0$. So $y^- \circ x = 0 \in I$. By (2), we obtain $x \in I$. Therefore, condition (12) holds. Let $x, y \in I$. Since $y^- \circ (x \circ y) = y^- \circ (y^- \sim x) \leq x \in I$, we have $y^- \circ (x \circ y) \in I$. Therefore, $x \circ y \in I$. In addition, we have $x \in I$ and $x^- \circ x^- = 0 \in I$. It follows that $x^- \in I$. Since $x^- = x^-$, we have $y^- \circ (x \circ y) = y^- \circ (x^- \sim y) \leq x^- \in I$ by Proposition 2.2(7). Using (12), we obtain $y^- \circ (x \circ y) \in I$. Thus, $x \circ y \in I$. Therefore, I is an ideal of A.

This proves that $(1) \iff (2)$. Similarly, we can prove that $(2) \iff (3)$. \qed

Remark 3.9. Let I be a nonempty subset of a bounded pseudo-hoop algebra A containing 0, where A does not have to be good. By the previous proof, if I is an ideal of A, then conditions (2) and (3) hold. Also, I is a left (right) ideal of A if and only if condition (2) ((3)) holds.
Theorem 3.10. Let I be a nonempty subset of a good pseudo-hoop algebra A containing 0. The following conditions are equivalent:
(1) I is an ideal of A;
(2) for $x, y \in A$, $(x^- \to y^-)^\sim \in I$ and $x \in I$ imply $y \in I$;
(3) for $x, y \in A$, $(x^- \leadsto y^-)^\sim \in I$ and $x \in I$ imply $y \in I$.

Proof. $(1) \Rightarrow (2)$ Suppose I is an ideal of A. Let $x, y \in A$ such that $(x^- \to y^-)^\sim \in I$ and $x \in I$. Then $x^- \circ y^- \leq (x^- \circ y^-)^\sim = (x^- \to y^-)^\sim = (x^- \to y^-)^\sim \in I$. Using (2), we obtain $x^- \circ y^- \in I$. Thus $y^- \in I$ by Theorem 3.8. Since $y \leq y^\sim$, we obtain $y \in I$.

$(2) \Rightarrow (1)$ Suppose that the condition (2) holds. Let $x \in I$. Then $(x^- \to x^-)^\sim = (x^- \to x^-)^\sim = 0 \in I$. It follows that $x^\sim \in I$ by (2). Hence, we show that $x \in I$ implies $x^\sim \in I$. Let $x^\circ y, x \in I$. Then $(x^\circ y)^\sim \in I$, and so $(x^- \to y^-)^\sim \in I$. Thus, $y \in I$ by (2). Therefore, I is an ideal of A by Theorem 3.8.

This proves that $(1) \Leftrightarrow (2)$. Similarly, we can prove that $(1) \Leftrightarrow (3)$. \qed

Proposition 3.11. Let H be a subset of a bounded pseudo-hoop algebra A.
(1) If H is empty, then $\langle H \rangle = \{0\}$.
(2) If H is not empty and A is normal, then
\[
\langle H \rangle = \{h \in A : h \leq x_1 \circ x_2 \circ x_3 \circ \ldots \circ x_n, \text{ for some } x_1, x_2, \ldots, x_n \in H\}
\]
\[
= \{h \in A : h \leq x_1 \circ x_2 \circ x_3 \circ \ldots \circ x_n, \text{ for some } x_1, x_2, \ldots, x_n \in H\}.
\]

Proof. (1) It is obvious.

(2) If A is normal, \circ and \circ are associative. Let
\[
B = \{h \in A : h \leq x_1 \circ x_2 \circ x_3 \circ \ldots \circ x_n, \text{ for some } x_1, x_2, \ldots, x_n \in H\}.
\]

Let $a, b \in A$ such that $a \in B$ and $a^- \circ b \in B$. We obtain $a \leq x_1 \circ x_2 \circ x_3 \circ \ldots \circ x_n$ and $a^- \circ b \leq y_1 \circ y_2 \circ y_3 \circ \ldots \circ y_m$, for some $x_1, x_2, \ldots, x_n, y_1, y_2, \ldots, y_m \in H$. Since $b \leq a^- \leadsto (a^- \circ b) = (a^- \circ b) \circ a \leq y_1 \circ y_2 \circ y_3 \circ \ldots \circ y_m \circ x_1 \circ x_2 \circ x_3 \circ \ldots \circ x_n,$

we have $b \in B$. By the notion of normal pseudo-hoop algebras, we know that A is good. Thus, B is an ideal of A by Theorem 3.8.

Suppose D is an ideal of A containing H. For any $b \in B$, we have $b \leq x_1 \circ x_2 \circ x_3 \circ \ldots \circ x_n$ for some $x_1, x_2, \ldots, x_n \in H$. Since $H \subseteq D$, we obtain $x_1 \circ x_2 \circ x_3 \circ \ldots \circ x_n \in D$. Then $b \in D$.

Thus, $D \subseteq B$. Therefore, $B = \langle H \rangle$.

Similarly, $\langle H \rangle = \{h \in A : h \leq x_1 \circ x_2 \circ x_3 \circ \ldots \circ x_n, \text{ for some } x_1, x_2, \ldots, x_n \in H\}$. \qed

4 Ideals and congruences

In this section, we define congruences on pseudo-hoop algebras induced by ideals. We construct the quotient pseudo-hoop algebras via ideals and prove that there is a one-to-one correspondence between the set of all normal ideals of a pseudo-hoop algebra A with condition (pDN) and the set of all congruences relation on A. Also, we obtain an isomorphism theorem.

Definition 4.1. Let $(A, \circ, \to, \leadsto)$ be a pseudo-hoop algebra and \sim an equivalence relation on A.

The equivalence relation \sim is called a left congruence relation if $x \sim y$ implies $(a \circ x) \sim (a \circ y)$, $(a \to x) \sim (a \to y)$ and $(a \leadsto x) \sim (a \leadsto y)$ for any $x, y, a \in A$.

The equivalence relation \sim is called a right congruence relation if $x \sim y$ implies $(x \circ a) \sim (y \circ a)$, $(x \rightarrow a) \sim (y \rightarrow a)$ and $(x \leftarrow a) \sim (y \leftarrow a)$ for any $x, y, a \in A$.

The equivalence relation \sim is called a congruence relation if $x_1 \sim y_1$ and $x_2 \sim y_2$ imply $(x_1 \circ x_2) \sim (y_1 \circ y_2)$, $(x_1 \rightarrow x_2) \sim (y_1 \rightarrow y_2)$ and $(x_1 \leftarrow x_2) \sim (y_1 \leftarrow y_2)$.

Example 4.2. Let A be a hoop algebra of Example 3.2. It is easy to check that

$$\rho = \{(0,0), (0,a), (0,d), (a,0), (a,a), (a,d), (d,0), (d,d), (b,b), (b,c), (b,1), (c,b), (c,c), (c,1), (1,b), (1,c), (1,1)\}$$

is a congruence relation on A.

Proposition 4.3. A relation on a pseudo-hoop algebra $(A, \odot, \rightarrow, \sim)$ is a congruence relation if and only if it is both a left and a right congruence relation.

Proof. The proof is obvious.\hfill \Box

If I is an ideal of a bounded pseudo-hoop algebra A, then define \sim_I on A as follows:

$$\forall x, y \in A, \ x \sim_I y \text{ iff } x^- \odot y \in I, y^- \odot x \in I, x \odot y^- \in I, y \odot x^- \in I.$$

Proposition 4.4. Let A be a bounded pseudo-hoop algebra and I an ideal of A. Then \sim_I is an equivalence relation on A.

Proof. It is clear that \sim_I is symmetric. And we know that \sim_I is reflexive by Proposition 4.2(2). We only need to show that \sim_I is transitive. If $x \sim_I y$ and $y \sim_I z$, then

$$(z^- \odot y)^- \odot (z^- \odot x) = ((z^- \rightarrow y^-) \odot z^-) \odot x \leq y^- \odot x \in I.$$

So $(z^- \odot y) \sim (z^- \odot x) \in I$. Since $z^- \odot y \in I$, we get $z^- \odot x \in I$ by Theorem 4.8 and Remark 4.9. Similarly, $x^- \odot z \in I$.

Since $(x \odot z^-) \odot (y \odot z^-) = x \odot (z^- \odot (z^- \sim y^-)) \leq x \odot y^- \in I$, we get $x \odot z^- \in I$. Similarly, $z \odot x^- \in I$. Therefore, $x \sim_I z$. \hfill \Box

Theorem 4.5. Let A be a good pseudo-hoop algebra and I a normal ideal of A. Then \sim_I is a congruence relation on A.

Proof. Let $x, y \in A$. By Propositions 4.8 and 4.9, we only need to show that $x \sim_I y$ implies $(x \odot a) \sim_I (y \odot a)$, $(a \odot x) \sim_I (a \odot y)$, $(x \rightarrow a) \sim_I (y \rightarrow a)$, $(a \rightarrow x) \sim_I (a \rightarrow y)$, $(x \leftarrow a) \sim_I (y \leftarrow a)$ and $(a \leftarrow x) \sim_I (a \leftarrow y)$ for any $a \in A$.

Suppose $x \sim_I y$. Then $x^- \odot y \in I$, $y^- \odot x \in I$, $x \odot y^- \in I$ and $y \odot x^- \in I$. Since

$$(x \odot a) \odot (y \odot a)^- = x \odot (a \odot (a \sim y^-)) \leq x \odot y^- \in I,$$

we obtain $(x \odot a) \odot (y \odot a) \in I$. Since I is normal, we have $(y \odot a) \in I$. Similarly, we have $(y \odot a) \odot (x \odot a) \in I$ and $(x \odot a) \odot (y \odot a) \in I$. So $(x \odot a) \sim_I (y \odot a)$.

Similarly, $x \sim_I y$ implies $(a \odot x) \sim_I (a \odot y)$ for any $a \in A$. Moreover, by

$$(x^- \odot y^-) \odot (x^- \odot y^-) = ((x^- \rightarrow y^-) \odot x^-) \odot y^- \leq y^- \odot y^- = 0 \in I,$$

we obtain $(x^- \odot y^-) \odot (x^- \odot y^-) \in I$. Thus, $x^- \odot y^- \in I$ by Theorem 4.8. Similarly, we have $y^- \odot x^- \in I$. Since I is normal, we obtain $y^- \odot x^- \in I$ and $x^- \odot y^- \in I$. Hence, $x^- \sim_I y^-$. Similarly, $x \sim_I y$ implies $x^- \sim_I y^-$.\hfill \Box
If $x \sim_I y$, for any $a \in A$, then $(x \odot a^-)^- \sim_I (y \odot a^-)^-$, and so $(x \rightarrow a^-)^- \sim_I (y \rightarrow a^-)^-$. Since A is good, we obtain $(x \rightarrow a^-) \sim_I (y \rightarrow a^-)$. For any $b \in A$, we have $b^- \odot b^- = 0 \in I$ and $b \odot b^- = b^- \sim_I b$. Thus, $x^- \sim_I x \sim_I y \sim_I y^-$. Then $(x^- \rightarrow a^-) \sim_I (y^- \rightarrow a^-)$ for any $a \in A$. By Proposition 4.6, we have $(x \rightarrow a^-) \sim_I (y \rightarrow a^-)$. Hence, $(x \rightarrow a) \sim_I (y \rightarrow a)$. Similarly, we can show $(x \sim a) \sim_I (y \sim a)$ for any $a \in A$.

If $x \sim_I y$, for any $a \in A$, then $(a \odot x^-)^- \sim_I (a \odot y^-)^-$, and so $(a \rightarrow x^-)^- \sim_I (a \rightarrow y^-)^-$. Since $a \sim_I a^-\sim_I a^-\sim_I a^-$, we obtain $(a \rightarrow x^-) \sim_I (a^- \rightarrow x^-)$ and $(a \rightarrow y^-) \sim_I (a^- \rightarrow y^-)$ by the above proof. Thus, $(a^- \rightarrow x^-) \sim_I (a^- \rightarrow y^-)$ by transitivity. Hence $(a \rightarrow x)^- \sim_I (a \rightarrow y)^-$ by Proposition 4.6. Therefore, $(a \rightarrow x) \sim_I (a \rightarrow y)$. Analogously, we have $(a \sim x) \sim_I (a \sim y)$. □

Let A be a good pseudo-hoop algebra and I a normal ideal of A. We define $A/I = \{ [a]: a \in A \}$ where $[a] = \{ x \in A : x \sim_I a \}$. For any $x, y \in A$, we define the operations \odot, \rightarrow and \sim on A/I by:

$$[x] \odot [y] = [x \odot y], [x] \rightarrow [y] = [x \rightarrow y] \text{ and } [x] \sim [y] = [x \sim y].$$

It is easy to know that $(A/I, \odot, \rightarrow, \sim, [1])$ is a bounded pseudo-hoop algebra with condition (pDN).

Proposition 4.6. Let A be a good pseudo-hoop algebra.

1. If \sim is a congruence relation on A, then $B = \{ x \in A : x \sim 0 \}$ is a normal ideal of A. Also, \sim_B is a congruence relation on A. If A satisfies the condition (pDN), then \sim_B coincides with \sim.

2. If I is a normal ideal of A, then \sim_I is a congruence relation on A. Also, $[0] = \{ x \in A : x \sim_I 0 \}$ is a normal ideal of A and coincides with I.

3. If A satisfies the condition (pDN), then there is a one-to-one correspondence between the set of congruence relations on A and the set of normal ideals of A.

Proof.

1. By reflexivity, we have $0 \in B$. So $B \neq \emptyset$. Let $x, y \in B$. Then $(y^- \sim x) \sim (0^- \sim x)$, i.e. $(x \odot y) \sim x$. Since $x \sim 0$, we obtain $x \odot y \in B$. Similarly, $x \odot y \in B$. Suppose $x, y \in A$ such that $x \leq y$ and $y \in B$. Then $(x \odot y^-) \sim (x \odot 0^-) = x$. Since $x \leq y \leq y^-$, we have $x \odot y^- = 0$ by Proposition 4.6. Thus, $x \sim 0$. Hence, B is an ideal of A.

Suppose $x, y \in A$ such that $x^- \odot y \in B$. Then $y \sim x^- = (x^- \odot y)^- \sim (y \odot 1)$, and so $(y \wedge x^-) \sim y$. Therefore, $(y \odot x^-) \sim ((y \wedge x^-) \odot x^-)$. Since A is good, we obtain

$$(y \wedge x^-) \odot x^- = (x^- \rightarrow y) \odot x^- \sim x^- \sim (x^- \rightarrow y) \odot (x^- \rightarrow x^-) = 0.$$

Then $y \odot x^- \in B$. Similarly, $y \odot x^- \in B$ implies $x^- \odot y \in B$. Therefore, B is normal.

By Theorem 1.8, \sim_B is a congruence on A. Suppose A satisfies condition (pDN). If $x \sim y$, we have $(x^- \odot y^-) \sim (y^- \odot y^-) = 0$, $(y^- \odot x^- \sim (x^- \odot x^-) = 0$, $(y \odot x^-) \sim (y \odot y^-) = 0$ and $(x \odot y^-) \sim (x \odot x^-) = 0$. So $x \sim_B y$. Conversely, if $x \sim_B y$, then $(y \odot x^-) \sim 0$. Thus $((y \odot x^-) \odot y) \sim (0^- \odot y)$, and so $(y \wedge x^-) \sim y$. Using condition (pDN), we have $(y \wedge x) \sim y$. Similarly, $(y \wedge x) \sim x$. Hence, $x \sim y$. Therefore \sim_B coincides with \sim.

2. By Theorem 1.8, \sim_I is a congruence relation on A. Then $[0]$ is a normal ideal of A by (1). So we only need to show that $[0]$ coincides with I. For any $x \in I$, we have $x^- \odot 0 = 0 \in I$, $0^- \odot x = x \in I$, $x \odot x^- = e \in I$ and $0 \odot x^- = 0 \in I$. So $x \sim_I 0$, i.e. $x \in [0]$. Therefore, $I \subseteq [0]$. Conversely, if $x \in [0]$, then $x \odot 0^- \in I$. Thus $x = x \odot 0^- \in I$. Hence, $I = [0]$.

3. It is obvious by (1) and (2). □

Proposition 4.7. Let X, Y be two bounded pseudo-hoop algebras and $f : X \rightarrow Y$ a bounded pseudo-hoop homomorphism. We have the following results:
(1) If I is an (normal) ideal of Y, then $f^{-1}(I)$ is an (normal) ideal of X.
(2) If $f : X \to Y$ is a bounded pseudo-hoop isomorphism and J is an (normal) ideal of X, then $f(J)$ is a (normal) ideal of Y.

Proof. (1) Let I be an ideal of Y. Since $0 \notin f^{-1}(I)$, we have $f^{-1}(I) \neq \emptyset$. Let $x, y \in X$ such that $x \leq y$ and $y \in f^{-1}(I)$. Then $f(y) \in I$ and $f(x) \to f(y) = f(x) \to y = f(1) = 1$, i.e. $f(x) \leq f(y)$. Using (I2), we have $f(x) \in I$, i.e. $x \in f^{-1}(I)$. Suppose $x, y \in f^{-1}(I)$. Since $f(x \otimes y) = f(x) \otimes f(y)$ and $f(x), f(y) \in I$, we obtain $f(x \otimes y) \in I$, i.e. $x \otimes y \in f^{-1}(I)$. Similarly, $x \otimes y \in f^{-1}(I)$. Hence, $f^{-1}(I)$ is an ideal of X.

Let I be a normal ideal of Y. Then $x^{-} \otimes y \in f^{-1}(I)$ iff $f(x^{-} \otimes y) \in I$ iff $f(y) \circ f(x^{-}) \in I$ iff $y \circ x^{-} \in f^{-1}(I)$ for any $x, y \in X$. Therefore, $f^{-1}(I)$ is a normal ideal of X.

(2) Let J be an ideal of X. Suppose $x, y \in Y$ such that $x \leq y$ and $y \in f(J)$. Then there is $v \in J$ such that $f(v) = y$. Since f is surjective, there is $u \in X$ such that $f(u) = x$. Since $f(u \to v) = x \to y = f(1)$ and f is injective, we have $u \to v = 1$, i.e. $u \leq v \in J$. Thus, $u \in J$. So $x \in f(J)$. Let $x, y \in f(J)$. Then there exist $u, v \in J$ such that $f(u) = x$ and $f(v) = y$. Since $u \otimes v, u \otimes v \in J$, we have $f(u) \circ f(v) = f(u \otimes v) \in f(J)$ and $f(u) \otimes f(v) = f(u \otimes v) \in f(J)$. Therefore, $f(J)$ is an ideal of Y.

Let J be a normal ideal of X. Then $f(u^{-} \circ f(v) \in f(J)$ iff $u^{-} \circ v \in J$ iff $u \circ u^{-} \in J$ iff $f(v) \circ f(u^{-}) \in f(J)$ for any $u, v \in X$. Thus, $f(J)$ is a normal ideal of Y. □

Let $f : X \to Y$ be a bounded pseudo-hoop homomorphism. Denote $\{x \in X : f(x) = 0\} = f^{-1}(0)$ by $\ker f$. Then $\ker f$ is an ideal of X.

Proposition 4.8. Let X, Y be two bounded pseudo-hoop algebras and $f : X \to Y$ a bounded pseudo-hoop homomorphism. If Y is good, then $\{0\}$ is a normal ideal of Y and $\ker f$ is a normal ideal of X.

Proof. It is clear that $\{0\}$ is an ideal of Y. Since Y is good, we obtain $x^{-} \otimes y = 0$ iff $y \leq x^{-}$ iff $y \leq x^{-}$ iff $y \circ x^{-} = 0$ for any $x, y \in Y$. Therefore, $\{0\}$ is normal. Hence, $\ker f$ is a normal ideal of X by Proposition 4.7(1). □

Let W be a nonempty subset of a bounded pseudo-hoop algebra X. We define

$$W^{-} = \{x^{-} : x \in W\} \quad \text{and} \quad W^{\sim} = \{x^{\sim} : x \in W\}.$$

Let X, Y be two good pseudo-hoop algebras and $f : X \to Y$ a bounded pseudo-hoop homomorphism. Since X is good and $\ker f$ is a normal ideal of X, we know that $X/\ker f$ is a bounded pseudo-hoop algebra. Then we have the following result.

Proposition 4.9. Let X, Y be two good pseudo-hoop algebras and $f : X \to Y$ a bounded pseudo-hoop homomorphism. If X is normal, then $X/\ker f \cong (Im f)^{-}$ and $X/\ker f \cong (Im f)^{\sim}$.

Proof. Define $\varphi : X/\ker f \to (Im f)^{-}$ by $\varphi([x]) = f(x)^{\sim} = f(x)^{-}$ for all $x \in X$. Then $\varphi([x]) \in (Im f)^{-}$. Since X is normal, for any $x, y \in X$ we have

$$f(x)^{-} \circ f(y)^{-} = f(x^{\sim} \circ y^{\sim}) = f((x^{-} \circ y^{-})^{\sim}) \in (Im f)^{-}.$$

By Proposition 4.3(6), for any $x, y \in X$ we obtain

$$f(x)^{-} \to f(y)^{-} = f(x^{\sim} \to y^{\sim}) = f((x^{-} \to y^{-})^{\sim}) \in (Im f)^{-}.$$
Similarly, \(f(x)^{-} \sim f(y)^{-} \in (Imf)^{-} \). Thus, the operations \(\odot, \to \) and \(\sim \) are closed on \((Imf)^{-} \). Also, \(1 = f(0)^{-} \in (Imf)^{-} \) and \(0 = f(1)^{-} \in (Imf)^{-} \). Therefore, \((Imf)^{-} \) is a bounded pseudo-hoop algebra. It is clear that \(\varphi([0]) = 0 \). Since \(X \) is good, for any \(x, y \in X \) we have

\[
\varphi([x] \to [y]) = \varphi([x \to y]) = f((x \to y)^{-}) = f(x^{-} \to y^{-}) = \varphi([x]) \to \varphi([y]).
\]

Similarly, we have \(\varphi([x] \sim [y]) = \varphi([x]) \sim \varphi([y]) \). Since \(X \) is normal, we obtain

\[
\varphi([x] \odot [y]) = \varphi([x \odot y]) = f((x \odot y)^{-}) = f(x^{-} \odot y^{-}) = f(x^{-} \odot f(y)^{-}) = \varphi([x]) \odot \varphi([y]).
\]

Therefore, \(\varphi \) is a bounded pseudo-hoop homomorphism.

Since \(kerf \) is normal, we get \([x] = [y] \) if \(x \sim_{kerf} y \) iff \(f(x^{-} \odot y) = f(y^{-} \odot x) = 0 \) iff \(f(x)^{-} \odot f(y) = f(y)^{-} \odot f(x) = 0 \) iff \(f(x)^{-} \leq f(y)^{-} \) and \(f(y)^{-} \leq f(x)^{-} \) iff \(f(x)^{-} = f(y)^{-} \) iff \(\varphi([x]) = \varphi([y]) \) for any \(x, y \in X \). Thus, \(\varphi \) is injective. Since \(f(a)^{-} = f(a^{-}) = \varphi([a^{-}]) \) for any \(a \in X \), we have \(\varphi \) is surjective. Hence, \(\varphi \) is isomorphic. Therefore, \(X/kerf \cong (Imf)^{-} \). Similarly, \(X/kerf \cong (Imf)^{-} \).

\[\square\]

5 Prime ideals

In this section, we introduce the concept of prime ideals in pseudo-hoop algebras and obtain several equivalent conditions of prime ideals.

Definition 5.1. Let \((A, \odot, \to, \sim, 1)\) be a bounded pseudo-hoop algebra and \(P\) an ideal of \(A\). Then \(P\) is called a prime ideal if \(P \neq A\) and \(x \wedge y \in P\) implies \(x \in P\) or \(y \in P\) for any \(x, y \in A\).

Example 5.2. Let \((A, \odot, \to, \sim, 1)\) be a bounded hoop algebra as in Example 3.2. Then \(I_2 = \{0, c\}\) and \(I_3 = \{0, a, d\}\) are all prime ideals of \(A\). Since \(a \wedge c = 0\) and \(a, c \notin \{0\}\), \(I_1 = \{0\}\) is not prime.

Proposition 5.3. Let \(X, Y\) be two bounded pseudo-hoop algebras and \(f : X \to Y\) be a bounded pseudo-hoop homomorphism. Then the following statements hold:

1. If \(I\) is a prime ideal of \(Y\) and \(f^{-1}(I) \neq X\), then \(f^{-1}(I)\) is a prime ideal of \(X\).
2. If \(f : X \to Y\) is a bounded pseudo-hoop isomorphism and \(J\) is a prime ideal of \(X\), then \(f(J)\) is a prime ideal of \(Y\).

Proof. (1) It is obvious that \(f^{-1}(I)\) is a proper ideal of \(X\). For any \(x, y \in X\), if \(x \wedge y \in f^{-1}(I)\), then \(f(x) \wedge f(y) = f(x \wedge y) \in I\). Since \(I\) is prime, we obtain \(f(x) \in I\) or \(f(y) \in I\). Thus, \(x \in f^{-1}(I)\) or \(y \in f^{-1}(I)\). Hence, \(f^{-1}(I)\) is prime.

(2) By Proposition 3.2(2), \(f(J)\) is an ideal of \(Y\). Since \(J \neq X\) and \(f\) is bijective, we have \(f(J) \neq Y\). Let \(x, y \in Y\) such that \(x \wedge y \in f(J)\). Since \(f\) is surjective, there exist \(u, v \in X\) such that \(f(u) = x\) and \(f(v) = y\). Then \(f(u \wedge v) = f(u) \wedge f(v) = x \wedge y \in f(J)\). Thus, \(u \wedge v \in J\). Since \(J\) is prime, we have \(u \in J\) or \(v \in J\). Hence, \(x \in f(J)\) or \(y \in f(J)\). Therefore, \(f(J)\) is prime. \(\square\)

Theorem 5.4. Let \(A\) be a bounded pseudo-hoop algebra with the pre-linear condition and \(P\) be an ideal of \(A\). Then the following conditions are equivalent:

1. \(P\) is prime;
2. If \(x \wedge y = 0\), then \(x \in P\) or \(y \in P\);
3. For any \(x, y \in A\), \((x \to y)^{-} \in P\) or \((y \to x)^{-} \in P\);
4. For any \(x, y \in A\), \((x \sim y)^{-} \in P\) or \((y \sim x)^{-} \in P\).
Proof. (1) ⇒ (2) It is obvious by (1).
 (2) ⇒ (3) Since \(A \) is a lattice, for any \(x, y \in A \) we have
 \[
 (x \rightarrow y)^\sim \wedge (y \rightarrow x)^\sim = ((x \rightarrow y) \vee (y \rightarrow x))^\sim = 1^\sim = 0.
 \]
 It follows that \((x \rightarrow y)^\sim \in \mathcal{P} \) or \((y \rightarrow x)^\sim \in \mathcal{P} \) by (2).
 (3) ⇒ (1) Suppose \(x \wedge y \in \mathcal{P} \) and \((x \rightarrow y)^\sim \in \mathcal{P} \). We obtain \((x \wedge y) \circ (x \rightarrow y)^\sim \in \mathcal{P} \) by (RI1). Since \((x \wedge y)^\sim = ((x \rightarrow y) \circ x)^\sim = x \rightarrow (x \rightarrow y)^\sim \), we get
 \[
 x \leq (x \wedge y)^\sim \rightarrow (x \rightarrow y)^\sim = (x \wedge y) \circ (x \rightarrow y)^\sim \in \mathcal{P}.
 \]
 So \(x \in \mathcal{P} \). Similarly, if \(x \wedge y \in \mathcal{P} \) and \((y \rightarrow x)^\sim \in \mathcal{P} \), then \(y \in \mathcal{P} \).
 (2) ⇒ (4) The proof is similar to (2) ⇒ (3).
 (4) ⇒ (1) The proof is similar to (3) ⇒ (1). \(\square \)

Corollary 5.5. Let \(A \) be a bounded pseudo-hoop algebra with the pre-linear condition. If \(\mathcal{P} \) is a prime ideal of \(A \), then every proper ideal of \(A \) containing \(\mathcal{P} \) is also prime.

Proof. By Theorem 5.4(3) or (4). \(\square \)

Corollary 5.6. Let \(A \) be a bounded pseudo-hoop algebra with the pre-linear condition. Then every proper ideal of \(A \) is prime if and only if the ideal \(\{0\} \) of \(A \) is prime.

Proposition 5.7. Let \(A \) be a good pseudo-hoop algebra and \(\mathcal{P} \) be a normal ideal of \(A \). If \(A \) satisfies the pre-linear condition, then \(\mathcal{P} \) is prime if and only if \(\mathcal{P} / \mathcal{P} \mathcal{P} \) is a pseudo-hoop chain.

Proof. It is enough to prove \([x] \leq [y] \Leftrightarrow (x \rightarrow y)^\sim \in \mathcal{P} \) for \(x, y \in A \). Suppose \([x] \leq [y] \), then \([x \rightarrow y] = [1] \), i.e. \((x \rightarrow y)^\sim \circ [1] = [1] \). Therefore, \(1 \circ (x \rightarrow y)^\sim = (x \rightarrow y)^\sim \in \mathcal{P} \). Conversely, suppose \((x \rightarrow y)^\sim \in \mathcal{P} \). We have \(1 \circ (x \rightarrow y)^\sim = (x \rightarrow y)^\sim \in \mathcal{P} \) and \((x \rightarrow y) \circ 1^\sim = 0 \in \mathcal{P} \). Since \(\mathcal{P} \) is normal, we obtain \((x \rightarrow y)^\sim \circ [1] = [1] \), i.e. \([x] \leq [y] \). So \(\mathcal{P} \) is prime if and only if \((x \rightarrow y)^\sim \in \mathcal{P} \) or \((y \rightarrow x)^\sim \in \mathcal{P} \) for any \(x, y \in A \) if and only if \([x] \leq [y] \) or \([y] \leq [x] \) for any \([x], [y] \in \mathcal{P} \) if and only if \(\mathcal{P} / \mathcal{P} \mathcal{P} \) is a pseudo-hoop chain. \(\square \)

6 Ideals and filters

In this section, we shall investigate the relationship between ideals and filters in pseudo-hoop algebras. First, some results are obtained by using the set of complement elements of pseudo-hoop algebras. In addition, the notion of \(\circ \)-prime ideals in pseudo-hoop algebras is given and the relationship between \(\circ \)-prime ideals and maximal filters is discussed.

Definition 6.1. Let \((A, \circ, \rightarrow,
\end{proof}
Example 6.2. Let $A = \{0, a, b, c, d, e, f, 1\}$. Define \to, \sim and \ominus as follows:

$$
\begin{array}{cccccccc}
\to & = & \sim & \ominus \\
0 & = & 0 & 0 & 0 & 0 & 0 & 0 \\
n & = & d & 1 & 1 & 1 & d & 1 & 1 \\
b & = & d & f & 1 & 1 & d & f & 1 \\
c & = & c & c & c & c & 1 & 1 & 1 \\
d & = & 0 & c & c & d & 1 & 1 & 1 \\
e & = & f & 0 & b & c & d & f & 1 \\
f & = & 0 & b & c & d & f & 1 & 1 \\
1 & = & 0 & a & b & c & d & e & f
\end{array}
$$

Then $(A, \ominus, \to, \sim, 1)$ is a bounded hoop algebra. Let $F_1 = \{d, e, f, 1\}$ and $F_2 = \{c, 1\}$. Then $M(F_1) = N(F_1) = \{0, a, b, c\}$ and $M(F_2) = N(F_2) = \{0, d\}$.

It is easy to check that F_1 and F_2 are filters of A. Also, $J_1 = \{0, a, b, c\}$ is an ideal of A. Since $b \leq c \in F_1^0$ and $b \notin F_1^0$, $F_1^0 = F_1^0 = \{c, 0\}$ is not an ideal of A. Since $e \geq d \in J_1^0$ and $e \notin J_1^0$, $J_1^0 = J_1^0 = \{1, d\}$ is not a filter of A.

The above example shows that ideals and filters are not dual under complement. Then we have the following results.

Theorem 6.3. Let F be a filter of a good pseudo-hoop algebra A. Then $M(F)$ is an ideal generated by F^\sim and $N(F)$ is an ideal generated by F^\sim.

Proof. Suppose $x, y \in A$ such that $x^\sim \ominus y \in M(F)$ and $x \in M(F)$. Then $(x^\sim \ominus y)^\sim = x^\sim \to y^\sim \in F$ and $x^\sim \in F$. Since F is a filter of A, we have $y^\sim \in F$, and so $y \in M(F)$. Thus, $M(F)$ is an ideal of A by Theorem 6.6. For any $x \in F^\sim$, there exists $y \in F$ such that $x = y^\sim$. Since $y \leq y^\sim = x^\sim$, we have $x^\sim \in F$, i.e. $x \in M(F)$. Hence, $F^\sim \subseteq M(F)$. Suppose I is an ideal of A containing F^\sim. If $x \in M(F)$, i.e. $x^\sim \in F$, then $x^\sim \in F^\sim \subseteq I$. Since $x \leq x^\sim$, we have $x \in I$. Thus, $M(F) \subseteq I$. Therefore, $M(F)$ is an ideal generated by F^\sim. Similarly, $N(F)$ is an ideal generated by F^\sim. □

Theorem 6.4. Let A be a bounded pseudo-hoop algebra and I an ideal of A. If A is good, then $M(I)$ and $N(I)$ are filters of A such that $I^\sim \subseteq M(I)$ and $I^\sim \subseteq N(I)$.

Proof. If $x \leq y$ and $x \in M(I)$, then $y^\sim \leq x^\sim$ and $x^\sim \in I$. Using (I2), we obtain $y^\sim \in I$, i.e. $y \in M(I)$. For any $x, y \in M(I)$, we have $x^\sim, y^\sim \in I$, and so by Proposition 6.4(7),

$$(x \ominus y)^\sim = x \to y^\sim = x^\sim \to y^\sim = x^\sim \ominus y^\sim \in I.$$

That is $x \ominus y \in M(I)$. Hence, $M(I)$ is a filter of A. Suppose $x \in I^\sim$. There exists $y \in I$ such that $x = y^\sim$. Since $y \in I \Rightarrow y^\sim \in I$, we have $x^\sim = y^\sim \in I$, i.e. $x \in M(I)$. Hence, $I^\sim \subseteq M(I)$.

Similarly, we can show that $N(I)$ is a filter of A and $I^\sim \subseteq N(I)$. □

Theorem 6.5. If I is an ideal of a bounded pseudo-hoop algebra A, then $I = M(N(I)) = N(M(I))$.

Proof. For any $x \in A$, we obtain $x \in I$ iff $x^\sim \in I$ iff $x^\sim \in N(I)$ iff $x \in M(N(I))$. So $I = M(N(I))$. Analogously, we can show $I = N(M(I))$. □

Theorem 6.6. If F is a filter of a bounded pseudo-hoop algebra A, then $F \subseteq M(N(F))$ and $F \subseteq N(M(F))$.

Proof.

\textit{Case 1:} F is an ideal of A. Then $F \subseteq M(N(F))$.

\textit{Case 2:} F is a filter of A. Then $F \subseteq N(M(F))$.

Thus, $F \subseteq M(N(F)) \cap N(M(F))$. Therefore, $F \subseteq M(N(F))$ and $F \subseteq N(M(F))$. □
Proof. Let $x \in F$. Since $x \leq x^\sim$ and F is a filter of A, we have $x^\sim \in F$. Then $x \in M(N(F))$. Thus, $F \subseteq M(N(F))$. Similarly, $F \subseteq N(M(F))$. \hfill \Box

Remark 6.7. In Theorem 6.13, we do not necessarily have $F = M(N(F))$ and $F = N(M(F))$. For instance, we have $M(N(F_1)) = \{d, e, f, 1\} = F_1$ and $M(N(F_2)) = \{a, b, c, e, f, 1\} \supseteq F_2$ in Example 6.2. Also, the converse of Theorem 6.13 is not true in general. Let $D = \{c\}$. Then $N(M(D)) = M(N(D)) = \{a, b, c\} \supseteq D$. But D is not a filter of A.

In order to further discuss the relationship between ideals and filters of a pseudo-hoop algebra, we introduce the notion of \textit{⊙}-prime ideals in pseudo-hoop algebras.

Definition 6.8. Let $(A, \odot, \to, \sim, 1)$ be a bounded pseudo-hoop algebra and P an ideal of A. Then P is called a \odot-prime ideal of A if $P \neq A$ and $x \odot y \in P$ implies $x \in P$ or $y \in P$ for any $x, y \in A$.

Example 6.9. Let A be the pseudo hoop algebra as in Example 6.2. Then it is easy to show that $I_3 = \{0, a, d\}$ is a \odot-prime ideal of A.

Proposition 6.10. Let A be a bounded pseudo-hoop algebra. Then every \odot-prime ideal of A is a prime ideal of A. The converse may not hold.

Proof. Let P be a \odot-prime ideal of A. If P is not prime, there exist $x, y \in A$ such that $x \wedge y \in P$, but $x, y \notin P$. We obtain $x \odot y \in P$ by $x \odot y \leq x \wedge y$. Then $x \in P$ or $y \in P$, which is a contradiction. Therefore, P is a prime ideal of A.

In Example 6.2, $I_2 = \{0, c\}$ is a prime ideal of A. Since $b \odot d = 0 \in I_2$ and $b, d \notin I_2$, we get I_2 is not a \odot-prime ideal of A. Therefore, the converse may not hold. \hfill \Box

Proposition 6.11. Let A be a bounded pseudo-hoop algebra and P an ideal of A. Then P is a \odot-prime ideal of A if and only if P is a prime ideal of A and $x \odot y \in P$ implies $x \wedge y \in P$ for any $x, y \in P$.

Proof. Let P be a \odot-prime ideal of A. Then P is a prime ideal of A by Proposition 6.10. Suppose $x \odot y \in P$. We obtain $x \in P$ or $y \in P$ by Definition 6.8. Since $x \wedge y \leq x, y$, we obtain $x \wedge y \in P$. Therefore, $x \odot y \in P$ implies $x \wedge y \in P$ for any $x, y \in P$.

Conversely, if $x \odot y \in P$, then $x \wedge y \in P$. By the notion of prime ideals, we know that $x \in P$ or $y \in P$. Therefore, P is a \odot-prime ideal of A. \hfill \Box

Let X be a subset of a pseudo-hoop algebra A. We denote $A - X$ by \overline{X}. The following results study the relationship between ideals and filters in pseudo-hoop algebras.

Theorem 6.12. Let A be a bounded pseudo-hoop algebra and P an ideal of A. If P is a \odot-prime ideal of A, then \overline{P} is a maximal filter of A.

Proof. Suppose P is a \odot-prime ideal of A. Since $P \neq A$, we obtain $\overline{P} \neq \emptyset$. Since $0 \in P$, i.e. $0 \notin \overline{P}$, we have $\overline{P} \neq A$. Let $x, y \in \overline{P}$. If $x \odot y \in P$, then $x \in P$ or $y \in P$, which is a contradiction. Thus, $x \odot y \in \overline{P}$. Suppose $x, y \in A$ such that $x \leq y$ and $x \in \overline{P}$. It follows that $y \in \overline{P}$, i.e. $y \notin P$. If not, since P is an ideal of A and $x \leq y$, we have $x \in P$, which is a contradiction. Therefore, \overline{P} is a filter of A.

Let Q be a filter of A strictly containing \overline{P}. Then there exists $a \in A$ such that $a \notin Q$ and $a \notin \overline{P}$. So $a \in P \cap Q$. It follows that $a^\sim, a^\sim \notin P$. If not, then $a^\sim \odot a = a^\sim \sim a^\sim = 1 \in P$ and $a \odot a^\sim = a^\sim \to a^\sim = 1 \in P$, which is a contradiction. So $a^\sim \notin \overline{P} \subseteq Q$. Using (F1), we have $0 = a \odot a^\sim \in Q$. Then $Q = A$. Hence, \overline{P} is a maximal filter of A. \hfill \Box
Remark 6.13. By the previous proof, if \(P \) is a proper ideal of \(A \) and \(a \in P \), then \(a^- \not\in P \).

Theorem 6.14. Let \(A \) be a bounded pseudo-hoop algebra and \(P \) be an ideal of \(A \). If \(\overline{P} \) is a normal and maximal filter of \(A \), then \(P \) is a \(\circ \)-prime ideal of \(A \).

Proof. Let \(\overline{P} \) be a normal and maximal filter of \(A \). Then \(P \neq \emptyset \). Since \(1 \in \overline{P} \), i.e. \(1 \not\in P \), we have \(P \neq A \). Suppose \(x, y \in A \) such that \(x \circ y \in P \), i.e. \(x \circ y \not\in \overline{P} \). Therefore, \(\overline{P} \) is strictly contained in \(\{ P \cup \{ x \circ y \} \} \). So \(\overline{P} \cup \{ x \circ y \} = A \). By Proposition 2.4, there exists \(n \in \mathbb{N} \) and \(h \in \overline{P} \) such that \(h \circ (x \circ y)^n \leq 0 \). That is \(h \leq ((x \circ y)^n)^- \). So \(((x \circ y)^n)^- \in P \). Suppose \(x, y \not\in P \). Since \(\overline{P} \) is a filter of \(A \), we obtain \((x \circ y)^n \in \overline{P} \). It follows that \(0 = ((x \circ y)^n)^- \circ (x \circ y)^n \in \overline{P} \). Using (F2), we have \(\overline{P} = A \), which is a contradiction. Therefore, \(x \circ y \in P \) implies \(x \in P \) or \(y \in P \). Thus, \(P \) is a \(\circ \)-prime ideal of \(A \). \(\square \)

7 Conclusions

We defined ideals in pseudo-hoop algebras using two kinds of addition operations. We gave some equivalent characterizations of ideals of good pseudo-hoop algebras. Also, the congruence relation on a pseudo-hoop algebra is induced by ideals are defined. Using ideals, we constructed the quotient pseudo-hoop algebras and got an isomorphism theorem. We proved that if a pseudo-hoop algebra \(A \) satisfies condition (pDN), then there is a one-to-one correspondence between the set of all congruence relation on \(A \) and the set of all normal ideals of \(A \). The notion of prime ideals in pseudo-hoop algebras is introduced. We showed that the normal ideal of a good pseudo-hoop algebra with the pre-linear condition is prime if and only if the corresponding quotient pseudo-hoop algebra is a pseudo-hoop chain. In addition, we discussed the relationship between ideals and filters in pseudo-hoop algebras. We found that ideals and filters behave differently in pseudo-hoop algebras. Also, we discussed the relationship between \(\circ \)-prime ideals and maximal filters.

For future works, we will study other types of ideals in pseudo-hoop algebras and discuss the relationships between these ideals. The notion of implicative ideals of hoop algebras was studied in [1]. We shall investigate the notion of implicative ideals in pseudo-hoop algebras. Similarly to the notion of nodal filters in hoop algebras in [15], we shall define the notion of nodal ideals in pseudo-hoop algebras. In this paper, we can observe that the operators \(M \) and \(N \) defined in Definition 6.11 transform filters into ideals and vice versa. We shall further study other properties of \(M \) and \(N \). In addition, stabilizers in hoop algebras were introduced in [3]. We shall study stabilizers in pseudo-hoop algebras. Furthermore, we shall discuss the relationship between ideals and stabilizers in pseudo-hoop algebras.

Acknowledgement

We are very grateful to the editor and reviewers for their valuable comments and suggestions for improvements in this paper.

References

