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Abstract

I am working on algebraic hyperstructures from 1995.
During the last twenty years, I together with my stu-
dents and co-authors studied and developed the theory
of algebraic hyperstructures in many directions. In par-
ticular, we tried to find real examples of hyperstructures
in nature. In this paper we review some parts of these
works such as (1) Fundamental relations on hyperstruc-
tures; (2) Fuzzy sets and hyperstructures; (3) Rough sets
and hyperstructures; (4) Topology and hyperstructures;
(5) Number theory and hyperstructures; (6) n-ary hy-
pergroups and there extension to hyperrings and hyper-
modules; (7) Applications of hyperstructures in biology,
physics and chemistry.
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A Title

1 Fundamental relations on hyperstructures

The main tools connecting the class of hyperstructures with the classical algebraic structures are
the fundamental relations. The fundamental relation has an important role in the study of algebraic
hyperstructures and especially of hypergroups. For all n > 1, the relation βn on a semihypergroup
(H, ◦) is defined as follows: xβny if there exists a1, . . . , an in H such that {x, y} ⊆

∏n
i=1 ai, and

we set β =
∪

n≥1 βn, where β1 = {(x, x) | x ∈ H} is the diagonal relation on H. This relation was
introduced by Koskas [53] and studied mainly by Corsini [19], Davvaz [23], Davvaz and Leoreanu-
Fotea [36], Freni [44], Vougiouklis [71], and many others. Clearly, the relation β is reflexive and
symmetric. Denote by β∗ the transitive closure of β. If (H, ◦) is a (semi)hypergroup, then the
relation β∗ is the smallest equivalence relation on H such that the quotient H/β∗ is a (semi)group.
Freni in [44] proved that if (H, ◦) is a hypergroup, then the relation β is an equivalence relation
on H. It is a natural question that how we can change the definition of β to obtain an abelian
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group, a cyclic group, a solvable group or a nilpotent group. In order to see the answers of these
question we refer the readers to [4, 5, 45, 52, 62].

Several kinds of hyperrings are introduced and analyzed in [36] such as Krasner hyperrings,
multiplicative hyperrings, general hyperrings. A multivalued system (R,+, ·) is a (general) hyper-
ring if (1) (R,+) is a hypergroup; (2) (R, ·) is a semihypergroup; (3) (·) is (strong) distributive with
respect to (+), i.e., for all x, y, z in R we have x · (y+ z) = x · y+x · z and (x+ y) · z = x · z+ y · z.
The above definition contains the class of multiplicative hyperrings and additive hyperrings as
well. In a hyperring, Vougiouklis introduced the equivalence relation γ∗, which is similar to the
relation β∗. Let (R,+, ·) be a hyperring. The relation γ is defined as follows: aγb if and only if
{a, b} ⊆ u, where u is a finite sum of finite products of elements of R. As usual, we denote the
transitive closure of γ by γ∗. Let (R,+, ·) be a hyperring. Then, the relation γ∗ is the smallest
equivalence relation in R such that the quotient R/γ∗ is a ring. The structure R/γ∗ is called the
fundamental ring [70]. The commutativity, as well as the existence of the unit, it is not assumed
in the fundamental ring. In [41], Davvaz and Vougiouklis defined a new fundamental relation to
obtain an ordinary commutative ring from a hyperring. They introduced the following definition.
If R is a hyperring, then we set α0 = {(x, x) | x ∈ R} and, for every integer n ≥ 1, αn is the
relation defined as follows:

xαny ⇔ ∃(k1, k2, . . . , kn) ∈ Nn, ∃σ ∈ Sn and [∃(xi1, . . . , xiki) ∈ Rki , ∃σi ∈ Ski ,
(i = 1, . . . , n)] such that

x ∈
n∑

i=1
(
ki∏
j=1

xij) and y ∈
n∑

i=1
Aσ(i),

where Ai =
∏ki

j=1 xiσi(j). Obviously, for every n ≥ 1, the relation αn is symmetric, and the relation
α =

∪
n≥0 αn is reflexive and symmetric. If α∗ is the transitive closure of α, then the quotient

R/α∗ is a commutative ring [41]. Then, this relation is investigated in [59]. Also, a similar
relation is defined on hypermodules to obtain an ordinary module [13, 14, 58]. The largest class
of hyperstructures called Hv-structures. These structures introduced by Vougiouklis in 1990 in
the 4th AHA congress held in Greece. In Hv-groups, Hv-rings and Hv-modules, the fundamental
relations are defined and they connect the algebraic hyperstructure theory with the classical one.
There is a rich monograph about Hv-structures that published by Davvaz and Vougiouklis in 2019
[42].

2 Fuzzy sets and hyperstructures

In 1971, Rosenfeld introduced the fuzzy sets in the context of group theory and formulated the
concept of a fuzzy subgroup of a group. There is a considerable amount of work on the association
between fuzzy sets and hyperstructures. This work can be classified into three groups. A first
group of works studies crisp hyperoperations defined through fuzzy sets. This study was initiated
by Corsini and others. A second group of works concerns the fuzzy hyperalgebras. This is a direct
extension of the concept of fuzzy algebras. This idea was applied by Zahedi and his group on
polygroups. A third group deals also with fuzzy hyperstructures, but with a completely different
approach. This was studied by Corsini, Zahedi and others. The basic idea is the following one: a
crisp hyperoperation assigns to every pair of elements a crisp set; a fuzzy hyperoperation assigns to
every pair of elements a fuzzy set. In 1999, Davvaz introduced the notion of fuzzy subhypergroup
(Hv-subgroup, resp.) of a hypergroup (Hv-group, resp.) [20]. Let (H, ·) be a hypergroup (Hv-
group) and let µ be a fuzzy subset ofH. Then, µ is said to be a fuzzy subhypergroup (Hv-subgroup,
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resp.) of H if the following axioms hold: (1) min{µ(x), µ(y)} ≤ infα∈x·y{µ(α)}, for all x, y ∈ H;
(2) For all x, a ∈ H there exists y ∈ H such that x ∈ a · y and min{µ(a), µ(x)} ≤ µ(y); (3) For all
x, a ∈ H there exists z ∈ H such that x ∈ z · a and min{µ(a), µ(x)} ≤ µ(z). Then, he gave the
relation between a fuzzy subhypergroup and level subhypergroup. This relation is expressed in
terms of a necessary and sufficient condition. After this definitions many authors developed fuzzy
hyperstructures based on this view point. We refer the readers to [27], for a deep study on fuzzy
hyperstructures.

3 Rough sets and hyperstructures

The concept of rough set was originally proposed by Pawlak in [63]. Since then the subject has
been investigated in many papers. Some authors studied algebraic properties of rough sets. Let U
be a universe of objects and ρ be an equivalence relation on U . Given an arbitrary set A ⊆ U , a
concept in U , it may be impossible to describe A precisely using the equivalence classes of ρ. That
is, the available information is not sufficient to give a precise representation of A. In this case,
one may characterize A by a pair of lower and upper approximations app(A) :=

∪
[a]ρ⊆A[a]ρ and

app(A) :=
∪

[a]ρ∩A̸=∅[a]ρ, where [a]ρ = {b | aρb} is the equivalence class containing a. The lower

approximation app(A) is the union of all the elementary sets which are subsets of A. The upper
approximation app(A) is the union of all the elementary sets which have a non-empty intersection
with A. An element in the lower approximation necessarily belongs to A, while an element in the
upper approximation possibly belong to A. We can express lower and upper approximations as
follows: app(A) = {a ∈ U | [a]ρ ⊆ A} and app(A) = {a ∈ U | [a]ρ ∩ A ̸= ∅}. If X ⊆ U is given
by a predicate P and x ∈ U , then (1) x ∈ app(X) means that x certainly has property P ; (2)
x ∈ app(X) means that x possibly has property P ; (3) x ∈ U\app(X) means that x definitely does
not have property P .

In [21], the author applied the concept of rough sets to algebraic hyperstructures. Let R be
a hyperring (Hv-ring, resp.). For a subset A ⊆ R we define two approximations of A relative
to the fundamental relation γ∗ as follows: γ∗(A) = {x ∈ R | γ∗(x) ⊆ A} and γ∗(A) = {x ∈
R | γ∗(x) ∩ A ̸= ∅}. The set γ∗(A) is called the γ∗-lower approximation of A, and the set γ∗(A)
is called the γ∗-upper approximation of A. It is easy to see that (1) γ∗(A) ⊆ A ⊆ γ∗(A), (2)

γ∗(γ∗(A)) = γ∗(A) and γ∗(γ∗(A)) = γ∗(A). The difference γ̂∗(A) = γ∗(A) − γ∗(A) is called the

γ∗-boundary region of A. In the case when γ̂∗(A) = ∅ the set A is said to be γ∗-exact; otherwise
A is γ∗-rough. If A and B are non-empty subsets of R, then (1) γ∗(A) + γ∗(B) ⊆ γ∗(A+B); (2)
γ∗(A) ·γ∗(B)) ⊆ γ∗(A ·B). The lower and upper approximations can be presented in an equivalent
form as shown below. Let A be a non-empty subsets of R. Then γ∗(A) = {γ∗(x) ∈ R/γ∗ | γ∗(x) ⊆
A and γ∗(A) = {γ∗(x) ∈ R/γ∗ | γ∗(x) ∩ A ̸= ∅}. Now, we consider these sets as subsets of the
fundamental ring R/γ∗ of an Hv-ring R, and we recall some results from [21]. Let A and B are
non-empty subsets of R, then the following hold:

(1) γ∗(A ∪B) = γ∗(A) ∪ γ∗(B); (4) A ⊆ B implies γ∗(A) ⊆ γ∗(B);

(2) γ∗(A ∩B) = γ∗(A) ∩ γ∗(B); (5) γ∗(A) ∪ γ∗(B) ⊆ γ∗(A ∪B);

(3) A ⊆ B implies γ∗(A) ⊆ γ∗(B); (6) γ∗(A ∩B) ⊆ γ∗(A) ∩ γ∗(B).

If A is an Hv-subgroup of (R,+), then γ∗(A) is a subgroup of (R/γ∗,⊕). If A and B are
non-empty subsets of R, then γ∗(A)⊕ γ∗(B) ⊆ γ∗(A+B).
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If A is a non-empty subset of R and B is an Hv-ideal of R, then

γ∗(A)⊙ γ∗(B) ⊆ γ∗(B).

If A and B are Hv-ideals of R, then γ∗(A)⊙ γ∗(B) ⊆ γ∗(A) ∩ γ∗(B).
If A is an Hv-ideal of R, then γ∗(A) is an ideal of R/γ∗. Let A, B and C be Hv-ideals of R.

The sequence of strong homomorphisms A
f→ B

g→ C is said to be exact if g ◦ f(x) ∈ ωR, for all

x ∈ A. Let A
f→ B

g→ C be an exact sequence of Hv-ideals of R. Then the sequence

γ∗(A)
F→ γ∗(B)

G→ γ∗(C)

is an exact sequence of ideals of R/γ∗, where F (γ∗(a)) = γ∗(f(a)) and G(γ∗(b)) = γ∗(g(b)), for all
a ∈ A and b ∈ B. For more study about this subject we refer to [22, 25, 68, 69].

4 Topology and hyperstructures

In [12], Ameri studied the concept of a (pseudo, strong pseudo) topological hypergroup and then he
gave some related results. In [47], Heidari et al. introduce the concept of topological hypergroups
as a generalization of topological groups. Let (H, τ) be a topological space. In order to construct
a topological hypergroup we need a topology on P∗(H). Let (H, τ) be a topological space. Then,
the family U consisting of all sets SV = {U ∈ P∗(H) | U ⊆ V,U ∈ τ} is a base for a topology on
P∗(H). This topology is denoted by τ∗ [49]. Let (H, τ) be a topological space. Then, we consider
the product topology on H × H and the topology τ∗ on P∗(H). Let (H, ◦) be a hypergroup
and (H, τ) be a topological space. Then, the system (H, ◦, τ) is called a topological hypergroup
[47] if (1) the mapping (x, y) 7→ x ◦ y, from H × H to P∗(H) is continuous; (2) the mapping
(x, y) 7→ x/y, from H × H to P∗(H) is continuous, where x/y = {z ∈ H | x ∈ z ◦ y}; (3) the
mapping (x, y) 7→ y\x, from H × H to P∗(H) is continuous, where y/x = {z ∈ H | x ∈ y ◦ z}.
Now, we recall some results from [47]. Let (H, ◦) be a hypergroup and τ be a topology on H.
Then, the following assertions hold: (1) The mapping (x, y) 7→ x ◦ y is continuous if and only if
for every x, y ∈ H and U ∈ τ such that x ◦ y ⊆ U , there exist V,W ∈ τ such that x ∈ V , y ∈ W
and V ◦W ⊆ U ; (2) The mapping (x, y) 7→ x/y is continuous if and only if for every x, y ∈ H
and U ∈ τ such that x/y ⊆ U , there exist V,W ∈ τ such that x ∈ V , y ∈ W and V/W ⊆ U .
Evidently, every topological group is a topological hypergroup. Suppose that X is a topological
space. Let x and y be points in X. We say that x and y can be separated by open subsets if there
exist open subsets U and V of X containing x and y, respectively, such that U and V are disjoint.
A Hausdorff space is a topological space in which points can be separated by open subsets. Note
that some properties in topological groups do not hold in topological hypergroups. For instance, if
G is a topological group and U is an open subset of G, then aU is open in G for all a ∈ G. Let X
be a topological space and ∼ be an equivalence relation on X. For every x ∈ X, denote by [x] its
equivalence class. The quotient space of X modulo ∼ is given by the set X/ ∼= {[x] | x ∈ X}. We
have the projection map p : X → X/ ∼, x 7→ [x] and we equip X/ ∼ by the topology: U ⊆ X/ ∼
is open if and only if p−1(U) is an open subset of X. Let A be a subset of the topological space
X and ∼ be an equivalence relation on X. Then, the saturation of A with respect to ∼ is the
set Â = {x ∈ X | ∃a ∈ A, x ∼ a}. If Â = A, then A is called saturated. Let (H, ◦, τ) be a
topological hypergroup such that every open subset of H is a complete part. Then, (H/β∗,⊗, τ) is
a topological group. Let (G, ·) be a topological group and H be a non-normal subgroup of it. Let
β∗ be the fundamental relation of the hypergroup (G/H, ◦). Then, there exists a normal subgroup
N of G such that the topological groups (G/H)/β∗ and G/N are topological isomorphic.
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Then, in [48], Heidari et al. introduced the concept of topological polygroups. By considering
the relative topology on subpolygroups they proved some properties of them. Also, the topolog-
ical isomorphism theorems of topological polygroups are proved. Salehi Shadkami et all in [65]
presented some facts about complete parts in polygroups and they used these facts to obtain some
new results in topological polygroups. They defined the concept of cp-resolvable topological poly-
groups. A non-empty subset X of a topological polygroup is called cp-resolvable if there exist
disjoint dense subsets A and B such that at least one of them is a complete part. Then, they
investigated a few properties of cp-resolvable topological polygroups. Also, in [66], they estab-
lished various relations between complete parts and open sets. They studied the properties of
big subsets in a topological polygroup. Al Tahan et al. [11], showed that there is no relation (in
general) between pseudotopolgical and strongly pseudotopolgical hypergroupoids. In particular,
they presented a topological hypergroupoid that does not depend on the pseodocontinuity nor on
strongly pseodocontinuity of the hyperoperation. To study fuzzy topological hypergroups, we refer
to [1, 2, 3, 26].

5 Number theory and hyperstructures

In [17], Asghari and Davvaz introduced a hyperoperation associated to the set of all arithmetic
functions and analyzed the properties of this hyperoperation. In [6], Al Tahan and Davvaz defined
a new hyperoperation associated to the set G of all arithmetic functions. Here, we review some
definitions and results from [6]. An arithmetic function is a function in which its domain of
definition is the set of natural numbers and its codomain is the set of complex numbers. An
arithmetic function f is said to be additive if wheneverm and n are coprime, f(mn) = f(m)+f(n).
An arithmetic function f is said to be multiplicative if whenever m and n are coprime, f(mn) =
f(m)f(n). If f is an additive function and g is a multiplicative function then f(1) = 0 and
g(1) = 1. Denote by AF (G) the set of all additive functions of G and by ℘∗(G) the set of all non
empty subsets of G. Now, we define a hyperoperation ∗ on G. Define a hyperoperation on G as
follows: ∗ : G×G→ ℘∗(G), (α, β) 7→ α ∗ β such that

(α ∗ β)(n) =
{
α(d) + β(

n

d
) : d | n

}
=

∪
d|n

α(d) + β(
n

d
).

Let α and β be two elements in G. If α(n) = β(n) for all natural numbers n, then α = β.
We observe that (G, ∗) is a commutative hypergroup and (AF (G), ∗) is a normal subhypergroup
of (G, ∗). Let G be the set of all arithmetic functions. Define a map ‘⋆’ on G ∗ G as follows:
⋆ : (G ∗G)× (G ∗G) → ℘∗(G), ((α1 ∗β1), (α2 ∗β2)) 7→ (α1 ∗β1) ⋆ (α2 ∗β2) such that for all natural
numbers m and n

((α1 ∗ β1) ⋆ (α2 ∗ β2))(m,n) =
∪

α∈(α1∗β1)(m),β∈(α2∗β2)(n)

α+ β.

Let G be the set of all arithmetic functions and m,n be natural numbers. Then

1. ((α1 ∗ β1) ⋆ (α2 ∗ β2))(m,n) = ((α2 ∗ β2) ⋆ (α1 ∗ β1))(n,m) for all α1, α2, β1 and β2 ∈ G.

2. (G ∗G, ⋆) is associative.

Let α and β ∈ G. Then α ∗ β is a multiplicative function in G ∗ G if for all coprime natural
numbers m and n the following condition holds: (α ∗β)(mn) = (α ∗β)(m) ⋆ (α ∗β)(n). We denote
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by AF (G ∗ G) the set of all additive functions in G ∗ G. Let α, β ∈ G and m, n be two natural
numbers. Then, we have ∪

d|m,D|n

α(d) + β(D) =
∪
d|m

α(d) ⋆
∪
D|n

β(D).

If α and β ∈ AF (G) then α ∗ β ∈ AF (G ∗ G). We define a hyperstructure on G as follows:
◦ : G × G → ℘∗(G), with (α, β) 7→ α ◦ β such that (α ∗ β)(n) =

∪
d|n α(d)β(

n
d ). If α is a

multiplicative function that admits an inverse in (G, ◦), then α = ı. If α ∈ (G, ◦) such that
α−1 ∈ G, then α(1) ̸= 0 and α−1(1) = 1

α(1) . If α ∈ (G, ◦) such that α(1) = a ̸= 0 and α−1 ∈ G,
then

α(n) =

{
a, if n = 1
0, otherwise.

If α ∈ (G, ◦) with α(1) = a ̸= 0, then α−1 ∈ G if and only if

α(n) =

{
a, if n = 1
0, otherwise.

We define O∗ : N → C as O∗(n) = 0 for all n ∈ N. Note that O∗ ∈ AF (G). If α ∈ G then α ∈ α∗O∗.
An element λ is said to be identity in (G, ∗) if for all natural numbers n, α ∗λ(n) =

∪
d|n α(d). An

element α−1 is said to be an inverse of α in (G, ∗) if α ∗ α−1 = O∗. We see that (G, ∗) has unique
identity. If α is an element in (G, ∗) that admits an inverse α−1 in (G, ∗), then α−1 is unique. If
α ∈ AF (G) such that its inverse α−1 exists, then α−1 ∈ AF (G).

If α ∈ (G, ∗), then α−1 ∈ G if and only if α is a constant function. A set W associated to
the the hyperoperations + and · is said to be weak distributive if x · (y + z) ∩ x · y + x · z ̸= ∅
and (x + y) · z ∩ x · z + y · z ̸= ∅ whenever x, y and z are in W . A set W associated to the
the hyperoperations + and · is said to be weak hyperring if the following conditions are satisfied:
(W,+) is a hypergroup; (W, ·) is a semihypergroup; (W, ·) is weak distributive. We observe that
(G,+, ·) is a weak hyperring. Denote by (M,+, ·) the set of all constant arithmetic functions under
the hyperoperations of G and by (N,+, ·) the largest distributive set contained in (G,+, ·). IfM is
the set of all constant arithmetic functions in G, then (M,+, ·) is a Krasner hyperring. Moreover,
(M,+) is a join space with scalar identity. If α ∈ N with α(1) ̸= 0, then α(n) = α(1), for all
n ∈ N. If α ∈ N with α(1) = 0, then α(n) = 0, for all n ∈ N. If α ∈ N , then α is a constant
function. The largest hyperring contained in (G,+, ·) is (M,+, ·). Finally, there is no hyperfield
contained in (G,+, ·). Also, in [7], Al Tahan and Davvaz determined fundamental groups and
fundamental rings of hyperstructures of arithmetic functions. In addition, they investigated their
complete parts and strongly regular relations.

6 n-ary hypergroups and there extension to hyperrings and hy-
permodules

The notion of an n-ary group was introduced by Dornte which is a natural generalization of the
notion of a group. n-ary generalizations of algebraic structures is the most natural way for further
development and deeper understanding of their fundamental properties. Since then many papers
concerning various n-ary algebra have appeared in the literature. In [40], Davvaz and Vougiouklis
introduced the notion of n-ary hypergroups. Let H be a non-empty set and f be a mapping
f : H×H → ℘∗(H), where ℘∗(H) is the set of all non-empty subsets ofH. Then f is called a binary
hyperoperation onH. We denote byHn the cartesian productH×. . .×H whereH appears n times.
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An element ofHn will be denoted by (x1, . . . , xn) where xi ∈ H for any i with 1 ≤ i ≤ n. In general,
a mapping f : Hn → ℘∗(H) is called an n-ary hyperoperation. Let f be an n-ary hyperoperation on
H and A1, . . . , An subsets ofH. We define f(A1, . . . , An) =

∪
{f(x1, . . . , xn)| xi ∈ Ai, i = 1, . . . , n}.

We use the following abbreviated notation: the sequence xi, xi+1, . . . , xj will be denoted by xji .

For j < i, xji is the empty set. In this convention f(x1, . . . , xi, yi+1, . . . , yj , zj+1, . . . , zn) is written

as f(xi1, y
j
i+1, z

n
j+1). A non-empty set H with an n-ary hyperoperation f : Hn → ℘∗(H) is called

an n-ary hypergroupoid and is denoted by (H, f). An n-ary hypergroupoid (H, f) will be called
an n-ary semihypergroup if and only if the following associative axiom holds:

f(xi−1
1 , f(xn+i−1

i ), x2n−1
n+i ) = f(xj−1

1 , f(xn+j−1
j ), x2n−1

n+j )

for every i, j ∈ {1, 2, . . . , n} and x1, x2, . . . , x2n−1 ∈ H. If for all (a1, a2, . . . , an) ∈ Hn, the set
f(a1, a2, . . . , an) is singleton, then f is called an n-ary operation and (H, f) is called an n-ary
groupoid (resp. n-ary semigroup). If m = k(n− 1)+ 1, then the m-ary hyperoperation g given by

g(x
k(n−1)+1
1 ) = f(f(. . . , f(f︸ ︷︷ ︸

k

(xn1 ), x
2n−1
n+1 ), . . .), x

k(n−1)+1
(k−1)(n−1)+2)is denoted by f(k). In certain situations, when the arity of g

does not play a crucial role, or when it will differ depending on additional assumptions, we write
f(.), to mean f(k) for some k = 1, 2, . . .. An n-ary semihypergroup (H, f) in which the equation

b ∈ f(ai−1
1 , xi, a

n
i+1) (1)

has solution xi ∈ H for every a1, . . . , ai−1, ai+1, . . . , an, b ∈ H and 1 ≤ i ≤ n, is called an n-
ary hypergroup. If f is n-ary operation then (1) is as follows: b = f(ai−1

1 , xi, a
n
i+1). In this case

(H, f) is an n-ary group. The important question is the solvability of (1). Let (H, f) be an n-ary
semihypergroup. Then (H, f) is an n-ary hypergroup if and only if (1) is solvable at the place
i = 1 and i = n or at least one place 1 < i < n. The reproduction axiom can be formulated for
n-ary hypergroups as follows: f(H i−1, x,Hn−i) = H, for all x ∈ H and i = 1, . . . , n. Let (H, f) be
an n-ary hypergroup, an−1

2 ∈ H be fixed and let x ⊙ y = f(x, an−1
2 , y). Then the hypergroupoid

(H,⊙) is a hypergroup and it is called a retract of the n-ary hypergroup (H, f). Let (H, f) be an
n-ary hypergroup. If the value of f(x1, x2, . . . , xn) is independent on the permutation of elements
x1, x2, . . . , xn, then (H, f) is called a commutative n-ary hypergroup. The element a ∈ H is called a
scalar if |f(xi1, a, xni+2)| = 1, for all x1, . . . , xi, xi+2, . . . , xn ∈ H. Element e of an n-ary hypergroup
(H, f) is called neutral (identity) element if f(e, . . . , e︸ ︷︷ ︸

i−1

, x, e, . . . , e︸ ︷︷ ︸
n−i

) includes x, for all x ∈ H and all

1 ≤ i ≤ n. If (H, f) is a commutative n-ary hypergroup and a ∈ H is a scalar element such that
f(a, e, . . . , e) = a for some e ∈ H, then e is a neutral element. If the set of all neutral elements
of a given commutative n-ary hypergroup is non-empty, then it is an n-ary group. Let (H, f) be
an n-ary hypergroup and B be a non-empty subset of H. Then B is an n-ary subhypergroup
of H if the following conditions hold: (1) B is closed under the n-ary hyperoperation f , i.e., for
every (x1, . . . , xn) ∈ Bn implies that f(x1, . . . , xn) ⊆ B; (2) Equation b ∈ f(bi−1

1 , xi, b
n
i+1) has the

solution xi ∈ B for every b1, . . . , bi−1, bi+1, . . . , bn, b ∈ B and 1 ≤ i ≤ n.
Let (H, f) be an n-ary hypergroup. An equivalence relation θ on H is called compatible if

a1θb1, . . . , anθbn, then for all a ∈ f(a1, . . . , an) there exists b ∈ f(b1, . . . , bn) such that aθb. An
equivalence relation θ is called strongly compatible if a1θb1, . . . , anθbn implies that aθb for all
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a ∈ f(a1, . . . , an) and b ∈ f(b1, . . . , bn). If (H, f) is an n-ary hypergroup and θ a compatible
relation on H, then (H/θ, f |θ) is an n-ary hypergroup where

f |θ(θ(a1), . . . , θ(an)) = {θ(a) | a ∈ f(a1, . . . , an)}.

The natural map π : H → H/θ where π(x) = θ(x) is an onto homomorphism. Let (A, f) and (B, g)
be two n-ary hypergroups and let φ : A→ B be a homomorphism. Then the kernel of φ, written
kerφ, is defined by kerφ = {(a, b) ∈ A2 | φ(a) = φ(b)}. It is easy to see that kerφ is a compatible
relation. Let (A, f) and (B, g) be two n-ary hypergroups and let φ : A→ B be a homomorphism.
Then there exists a compatible relation θ on A and a monomorphism ψ : A/θ → B such that
ψ ◦ π = φ. If ρ and θ are compatible relations on an n-ary hypergroup (H, f) such that ρ ⊆ θ,
then there exists a compatible relation µ on (H/ρ, f/ρ) such that (H/ρ)/µ is isomorphic to H/θ.
The diagonal relation △ on H is the set {(a, a) | a ∈ H} and the full relation H2 is denoted by
∇. The set of all equivalence relations on a set H, with ⊆ as the partial ordering, is a complete
lattice. Let θ1 and θ2 are two equivalence relations on H. It is clear that θ1 ∧ θ2 = θ1 ∩ θ2. Also,
we have θ1 ∨ θ2 = θ1 ∪ (θ1 ◦ θ2) ∪ (θ1 ◦ θ2 ◦ θ1) ∪ (θ1 ◦ θ2 ◦ θ1 ◦ θ2) ∪ . . .. Let (A1, f1) and (A2, f2)
be two n-ary hypergroups. Define the direct hyperproduct (A1 × A2, f1 × f2) to be the n-ary
hypergroup whose universe is the set A1 × A2 and such that for ai ∈ A1, a

′
i ∈ A2, 1 ≤ i ≤ n,

(f1 × f2)((a1, a
′
1), . . . , (an, a

′
n)) = {(a, a′) | a ∈ f1(a1, . . . , an), a

′ ∈ f2(a
′
1, . . . , a

′
n)}. The mapping

πi : A1 × A2 → Ai, i = 1, 2, defined by πi((a1, a2)) = ai, is called the projection map on the ith
coordinate of A1 × A2. For i = 1, 2, the mapping πi : A1 × A2 → Ai is an onto homomorphism.
Furthermore, we have (1) kerπ1∩kerπ2 = △; (2) kerπ1 and kerπ2 permute; (3) kerπ1∧kerπ2 = ∇,
where kerπi = {((a1, a2), (b1, b2)) | πi(a1, a2) = πi(b1, b2)}, (i = 1, 2). Note that ((a1, a2), (b1, b2)) ∈
kerπi ⇔ πi((a1, a2)) = πi((b1, b2)) ⇔ ai = bi. Thus kerπ1 ∩ kerπ2 = △. Also, if (a1, a2), (b1, b2)
are any two elements of A1 × A2, then (a1, a2) kerπ1 (a1, b2) and (a1, b2) kerπ2 (b1, b2), and so
∇ = kerπ1◦kerπ2. But, then kerπ1 and kerπ2 permute, and their join is ∇. Let (H, f) be an n-ary
hypergroup. A compatible relation θ on H is a factor compatible relation if there is a compatible
relation θ∗ on H such that θ∩ θ∗ = △, θ∧ θ∗ = ∇ and θ permutes with θ∗. The pair θ, θ∗ is called
a pair of factor compatible relations on H. If θ, θ∗ is a pair of factor compatible relations on H,
then H ∼= H/θ×H/θ∗ under the map ψ(a) = (θ(a), θ∗(a)). If (H, f) is an n-ary hypergroup, then
β̂ denotes the transitive closure of the relation β =

∪
k≥1 βk, where β1 is the diagonal relation, i.e.,

β1 = {(x, x)| x ∈ H} and for every integer k > 1, βk is the relation defined as follows: xβky if and
only if {x, y} ⊆ f(·), where f(·) means that f(k) for some k = 1, 2, . . .. When xβ1y (i.e., x = y) then
we write {x, y} ⊆ f(0), we define β∗ as the smallest equivalence relation such that the quotient
(H/β∗, f/β∗) is an n-ary group, where H/β∗ is the set of all equivalence classes. The fundamental
relation β∗ is the transitive closure of the relation β, i.e., (β∗ = β̂). For more details about n-ary
hypergroups, we refer the reader to [35, 34, 54, 55, 56, 57, 64].

Mirvakili and davvaz in [60, 61] introduced the concept of (m,n)-hyperrings. Here, we present
some definitions and results. An (m,n)-hyperring is an algebraic hyperstructure (R, f, g), which
satisfies the following axioms:

(1) (R, f) is an m-ary hypergroup,

(2) (R, g) is an n-ary hypersemigroup,

(3) the n-ary hyperoperation g is distributive with respect to the m-ary hyperoperation f, i.e.,
for every ai−1

1 , ani+1, x
m
1 ∈ R, 1 ≤ i ≤ n,

g(ai−1
1 , f(xm1 ), ani+1) = f(g(ai−1

1 , x1, a
n
i+1), . . . , g(a

i−1
1 , xm, a

n
i+1)).
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(R, f, g) is called an n-ary hyperring if n = m. If (R, f) is an m-ary semihypergroup, then (R, f, g)
is called an (m,n)-semihyperring. In (m,n)-hyperring (R, f, g), if f is an m-ary operation then
(R, f, g) is called an (m,n)-multiplicative hyperring and if g be an n-ary operation then (R, f, g)
is called an additive (m,n)-hyperring. A multiplicative and additive (m,n)-hyperring is called
an (m,n)-ring. A non-empty subset S ⊆ R is called an (m,n)-subhyperring if (S, f, g) is an
(m,n)-hyperring. Let i ∈ {1, . . . , n}. A i-hyperideal I of R is an (m,n)-subhyperring of R
such that for every rn1 ∈ R, g(ri−1

1 , I, rni+1) ⊆ I. If I is an i-hyperideal and for every rn1 ∈ R,

g(ri−1
1 , I, rni+1) = I, then I called a strong i-hyperideal. A non-empty subset I of R is called (a)

an (strong) (m,n)-hyperideal if I is (a) an (strong) i-hyperideal of R for every i ∈ {1, . . . , n}.
For any (m,n)-hyperring (R, f, g) and I ⊆ R the following conditions are equivalent: (1) I is a
strong (m,n)-hyperideal of R; (2) I is a strong i-hyperideal of R for i = 1 and i = n; (3) I is a
strong i-hyperideal of R for some 1 < i < n. An element o is called a (scalar) zero of (R, f, g)
if it is a (scalar) identity of (R, f) and for every xn2 ∈ R we have (o = f(o, xn2 ) = f(x2, o, x

n
3 ) =

. . . = f(xn2 , o)) o ∈ f(o, xn2 ) ∩ f(x2, o, xn3 ) ∩ . . . ∩ f(xn2 , o). For any (m,n)-semihyperring (R, f, g)
and o ∈ R the following conditions are equivalent: (1) o is a scalar zero of R; (2) o is a scalar
i-zero for some 1 < i < n, i.e, for every xn1 ∈ R, g(xi−1

1 , o, xni+1) = o; (3) o is a scalar i-zero for

i = 1 and i = n, i.e, g(o, xn2 ) = o = g(xn−1
1 , o), for all xn1 ∈ R., Let (R1, f1, g1) and (R2, f2, g2)

be two (m,n)-hyperrings. A homomorphism from R1 to R2 is a mapping ϕ : R1 → R2 such that
ϕ(f1(a

m
1 )) = f2(ϕ(a1), . . . , ϕ(am)) and ϕ(g1(b

n
1 )) = g2(ϕ(b1), . . . , ϕ(bn)) hold, for all an1 , b

m
1 ∈ R1.

If ϕ is injective, then is called embedding. The map ϕ is an isomorphism if ϕ is injective and
onto. We say that R1 is isomorphic to R2, denote R1

∼= R2, if there is an isomorphism from R1

to R2. Let ϕ : R1 → R2 be a homomorphism and S1 be an (m,n)-subhyperring of R1 and S2
be an (m,n)-subhyperring of R2, then ϕ(S1) is an (m,n)-subhyperring of R2 and if ϕ−1(S2) is
non-empty, then ϕ−1(S2) is an (m,n)-subhyperring of R1. Let ϕ : R1 → R2 be a homomorphism,
then the kernel ϕ, is defined by kerϕ = {(a, b) ∈ R1 × R1 | ϕ(a) = ϕ(b)}. If b, c ∈ R then we say
that an (m,n)-hyperringoid (R, f, g) is a (b, c)-derived from a hyperringoid (R,+, ·) and denote
this fact by (R, f, g) = derbc(R,+, ·) if two m-ary hyperoperation and n-ary hyperoperation f and
g respectively, have the form

f(xm1 ) =

m∑
i=1

xi + b, for all xm1 ∈ R,

and

g(xn1 ) =

n∏
j=1

yj · c, for all yn1 ∈ R.

In this case, when b is a zero scalar of (R,+) and c is an identity scalar of (R, ◦) we say that
(R, f, g) is derived ‘ from (R,+, ·) and denote this fact by (R, f, g) = der(R,+, ·). It is clear that if
b belongs to the center of a semihypergroup (R,+) and c belongs to the center of a semihypergroup
(R, ·) then two m-ary hyperoperation and n-ary hyperoperation f and g are associative and (R, f)
and (R, g) are m-ary semihypergroup and n-ary semihypergroup. Now, if b is zero scalar or f
define by f(xm1 ) =

∑m
i=1 xi then denote (R, f, g) = derc(R,+, ·) and say (R, f, g) is c-derived

from (R,+, ·). Now, if (R,+, ·) be a hyperring and c ∈ Z(R, ·) Then, the c-derived (R, f, g) is an
(m,n)-hyperring.

If (R, f, g) is an (m,n)-hyperring and the relation ρ be a strongly compatible relation on both
m-ary hypergroup (R, f) and n-ary semihypergroup (R, g), then the quotient (R/ρ, f/ρ, g/ρ) is an
(m,n)-ring.

Let (R, f, g) be an (m,n)-hyperring. For every k ∈ N∗ and ls1 ∈ N, where s = k(m− 1) + 1, we
define the relation γk;ls1 , as follows: x γk;ls1 y if and only if there exist xitii1 ∈ R, where ti = li(n−1)+1,
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i = 1, . . . , s such that {x, y} ⊆ f(k)(u1, . . . , us), where for every i = 1, . . . , s, ui = g(li)(x
iti
i1 ). Now,

set γk =
∪

ls1∈N
γk;ls1 and γ =

∪
k∈N∗ γk. Then, the relation γ is reflexive and symmetric. Let

γ∗ be the transitive closure of relation γ. It easy to see that βf ⊆ γ, β∗f ⊆ γ∗, βg ⊆ γ and
β∗g ⊆ γ∗. If (R, f, g) is an (m,n)-hyperring, then for every k ∈ N∗ we have γk ⊆ γk+1. If (R, f, g)
is an (m,n)-hyperring, then for every k ∈ N∗ we have γ∗k ⊆ γ∗k+1. The relation γ∗ is a strongly
compatible relation on both m-ary hypergroup (R, f) and n-ary semihypergroup (R, g). The
quotient (R/γ∗, f/γ∗, g/γ∗) is an (m,n)-ring. The relation γ∗ is the smallest equivalence relation
such that the quotient (R/γ∗, f/γ∗, g/γ∗) is an (m,n)-ring. For all additive (m,n)-hyperrings, we
have γ∗ = β∗f . For every additive (m,n)-hyperring, the relation γ is an equivalence relation, i.e.
γ = γ∗. If (R, f, g) is an (m,n)-hyperring, then

(1) (R/β∗f , f/β
∗
f , g/β

∗
f ) is an (m,n)-multiplicative hyperring;

(2) (R/β∗g , f/β
∗
g , g/β

∗
g ) is an additive (m,n)- hyperring.

If (R, f, g) is an (m,n)-hyperring, then R/γ∗ ∼= (R/β∗g )/β
∗
f/β∗

g
. Let (R1, f, g) and (R2, f, g) be two

(m,n)-hypersemirings. We define (f1, f2) : (A×B)m → ℘∗(A×B) by (f, g)((a1, b1), . . . , (an, bn)) =
{(a, b) | a ∈ f(a1, . . . , an), b ∈ g(b1, . . . , bn)}. Clearly (R1 × R2, (f1, f2), (g1, g2)) is an (m,n)-
semihyperring and we call this (m,n)-semihyperring the direct hyperproduct of R1 and R2. Let
(R1, f, g) and (R2, f, g) be two (m,n)-hypersemirings, a, c ∈ R1 and b, d ∈ R2 . If γ∗R1

, γ∗R2
and

γ∗R1×R2
are the γ∗-relations on R1, R2 and R1 ×R2 respectively. Then, (a, b) γ∗R1×R2

(c, d) implies
a γ∗R1

c and b γ∗R2
d. Let a, c ∈ R1 and b, d ∈ R2. If γ∗R1

, γ∗R2
and γ∗R1×R2

are γ∗-relations on
R1, R2 and R1 × R2 respectively: (a, b)γ∗R1×R2

(c, d) if and only if aγ∗R1
c and bγ∗R2

d. Then, we
have (R1 ×R2)/γ

∗
R1×R2

∼= R1/γ
∗
R1

× R2/γ
∗
R2
.. To extend the concept of n-ary hyperstructures to

hypermodules, we refer to [15, 16].

7 Applications of hyperstructures in biology, physics and chem-
istry

Mendel, the father of genetics took the first steps in defining “contrasting characters, genotypes
in F1 and F2 . . . and setting different laws”. The genotypes of F2 is dependent on the type of its
parents genotype and it follows certain roles. In [46], Ghadiri, Davvaz and Nekouian analyzed the
second generation genotypes of monohybrid and a dihybrid with a mathematical structure. They
used the concept of Hv-semigroup structure in the F2-genotypes with cross operation and proved
that this is an Hv-semigroup. They determined the kinds of number of the Hv-subsemigroups of
F2-genotypes. lso, in [30], inheritance issue based on genetic information is looked at carefully via
a new hyperalgebraic approach. Several examples are provided from different biology points of
view, and it is shown that the theory of hyperstructures exactly fits the inheritance issue. In [8],
Al Tahan and Davvaz presented examples of five different types of Non- Mendelian inheritance
and studied their relation with hyperstucture theory. They made some hypothetical crosses for
the n- hybrid case for both simple and incomplete inheritances and studied their relations with
hyperstructures. In [9], the authors considered n-ary hyperstructures associated to the genotypes
of the second generation F2 for n = 2, 3, 4. They defined a hyperoperation × (mating) on F2 and
proved that it is a cyclic Hv-semigroup under the defined hyperoperation. Then they defined a
ternary hyperstructure f associated to the genotypes of F2 and proved that (F2, f) is a ternary
Hv-semigroup. Finally, they defined a 4-ary hyperstructure g associated to the genotypes of F2

and proved that (F2, g) is a 4-ary Hv-semigroup.
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In 1996, R. M. Santilli and T. Vougiouklis [67] point out that in physics the most interesting
hyperstructures are the one called e-hyperstructures. e-hyperstructures are a special kind of hyper-
structures and they can be interpreted as a generalization of two important concepts for physics:
Isotopies and Genotopies. In [37], Davvaz, Santilli and Vougiouklis studied multi-valued hyper-
structures following the apparent existence in nature of a realization of two-valued hyperstructures
with hyperunits characterized by matter-antimatter systems and their extensions, where matter
is represented with conventional mathematics and antimatter is represented with isodual mathe-
matics, Also see [38]. In [39], the authors presented Ying’s twin universes, Santilli’s isodual theory
of antimatter, and Davviaz-Santilli-Vougiouklis two-valued hyperstructures representing matter
and antimatter in two distinct but co-existing space times. They identified a seemingly new map
for both matter and antimatter providing a mathematical prediction of Ying’s twin universes,
and introduced a four-fold hyperstructure representing matter-antimatter as well as Ying’s twin
universes, all co-existing in distinct space times. Another motivation for the study of hyperstruc-
tures comes from physical phenomenon as the nuclear fission. This motivation and the results
were presented by S. Hošková, J. Chvalina and P. Račková (see [50], HCR2). In [43], the authors
provided, for the first time, a physical example of hyperstructures associated with the elementary
particle physics, Leptons. They have considered this important group of the elementary particles
and shown that this set along with the interactions between its members can be described by the
algebraic hyperstructures. The Standard Model (SM) of particle physics is a gauge theory includ-
ing the Higgs boson, which plays a unique role in the SM. In the SM, all the elementary particles
are classified into three generations of matter, i.e., Hadrons, Leptons and Gauge Bosons. In [33],
Davvaz et al. showed that the leptons and gauge bosons along with the interactions between their
members construct a weak algebraic hyperstructure. This new sight to the elementary particles
would make a new arrangement to the elementary particles.

Another motivation for the study of hyperstructures comes from chemical reactions. In [24],
Davvaz presented an introduction to some of the results, methods and ideas about chemical ex-
amples of weak algebraic hyperstructures. Some of these examples include

(1) Weak algebraic hyperstructures associated with chain reactions [28];

(2) Weak algebraic hyperstructures associated with dismutation reactions [29];

(3) Weak algebraic hyperstructures associated with redox reactions [31].

Also, see [10, 18, 25, 32].
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