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Abstract

In this paper, the relations between separation axioms
and (quasi)topological MV-algebras are studied. It is
proved that T0-spaces and (T1) Hausdorff spaces are
equivalent in (quasi)topological MV-algebras. Also, some
topologies on MV-algebras are generated by ideals, filters
and prefilters. It is shown that the MV-algebras equipped
with these topologies are (para)topological MV-algebras
and (T0) normal spaces. In addition, some conditions
are derived for locally compact Hausdorff MV-algebras
to make them into normal paratopological MV-algebras.
Finally, quotient MV-algebras are studied to get a Haus-
dorff topological quotient MV-algebra.
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1 Introduction

Topology and algebra are two fundamental areas of mathematics that play complementary roles.
Topology studies continuity and convergence and provides a general framework to study the con-
cept of a limit. Algebra considers all kinds of operations and provides a basis for algorithms and
calculations. In recent decades, topology and algebra are widely used in the study of logic. The
combined investigation of logic and other mathematical branches, such as algebra, topology and
so on, promotes the development of logic and also enriches the content of these mathematical
branches.

In recent years, many mathematicians have endowed some of the algebraic structures associated
with logical systems with a topology. For instance, Roudabri and Torkzadeh [17] used the left
(right) stabilizers of a BCK-algebra and produced two bases for two different topologies. Ahn
and Kwon [1] studied topological properties in BCC-algebras. Borzooei et al. [4, 5] defined
semitopological and topological BL-algebras and explored separation axioms on (semi)topological
quotient BL-algebras. Yang et al. [20] (Zahiri and Borzooei [21]) constructed a topology on EQ-
algebras (BL-algebras) using a system of filters. Furthermore, Khanegir et al. [12] studied uniform
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topology on BL-algebras. The concept of linear topology on IL-algebras was introduced by Islam
et al. [11]. Chang [7] developed an algebraic version of  Lukasiewicz logic and provided an algebraic
proof of the completeness. The resulting algebraic system was known as an MV-algebra.

Undoubtedly, MV-algebras are among the most important structures associated with logical
systems. MV-algebras stand concerning to the  Lukasiewicz infinite-valued logic as Boolean algebras
stand concerning to classical 2-valued logic. Of course, MV-algebras have not stayed glued to
their origin in logic, and their applications have been shown in other areas of mathematics. For
example, Hoo [10] introduced linear and I-adic topologies on MV-algebras by ideals and studied
various properties of them. Weber [18] proved that the topology of a topological MV-algebra
is uniquely determined by its neighborhood system of 0. Later, Nganou [16] studied strongly
complete MV-algebras and gave a characterization of Stone topological MV-algebras. Najafi et
al. [15] introduced (semi, para, quasi)topological MV-algebras and investigated neighborhood
systems of 0 and 1 in topological MV-algebras. Further, they studied the continuity of auxiliary
operations in (quasi)topological MV-algebras. Recently, some researchers applied proper filters of
an MV-algebra to construct topological MV-algebras (see [3, 13, 14, 19]).

In this paper, we investigate the separation axioms on MV-algebras endowed with a topology. In
Section 3, we prove that any T0 quasitopological MV-algebra is a T1-space, and any T0 topological
MV-algebra is a Hausdorff space. In Section 4, we introduce some topologies on MV-algebras
by prefilters, filters and ideals to obtain (regular) normal (para)topological MV-algebras. Locally
compact Hausdorff MV-algebras are studied in Section 5. We provide some conditions under which
a topological quotient MV-algebra becomes a T1-space (Hausdorff space) in Section 6.

2 Preliminaries

In this section, we recall some definitions and results on topological spaces, MV-algebra theory,
and (semi, quasi)topological MV-algebras to make this paper self-contained and easy to read.

Definition 2.1. [6] Consider the topological space (A, τ). We have the following separation axioms:
(i) T0: For each x, y ∈ A and x ̸= y, there exists at least one in an open neighborhood excluding
the other.
(ii) T1: For each x, y ∈ A and x ̸= y, each has an open neighborhood not containing the other.
(iii) T2: For each x, y ∈ A and x ̸= y, both have disjoint open neighborhoods U and V such that
x ∈ U and y ∈ V.
(iv) Regular: For each x ∈ U ∈ τ , there exists an open set H such that x ∈ H ⊆ H ⊆ U.
(v) Normal: For each closed set S and each open set U containing S, there is an open set H such
that S ⊆ H ⊆ H ⊆ U.

A topological space satisfying Ti is called a Ti-space, for i = 0, 1, 2. A T2-space is also known
as a Hausdorff space. A topological space (A, τ) is said to be compact, if each open covering of
A is reducible to a finite open covering, locally compact, if for each x ∈ A there exists an open
neighborhood U of x and a compact subset K such that x ∈ U ⊆ K. Also (A, τ) is said to be
disconnected if there are two non-empty, disjoint, and open subsets U, V ⊆ A such that A = U ∪V ,
connected otherwise, and totally disconnected if each non-empty connected subset of A has only
one point.

Definition 2.2. [6] Let Ux denotes the totality of all neighborhoods of x in A. Then, a subfamily
Vx of Ux is said to form a fundamental system of neighborhoods of x, if for each Ux in Ux, there
exists Vx in Vx such that Vx ⊆ Ux.
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Definition 2.3. [2] The family ξ of non-empty subsets of a set X is called a prefilter on X if
X ∈ ξ and for elements A1, ..., Ak of ξ, there exists B ∈ ξ such that B ⊆ ∩k

i=1Ai.

Definition 2.4. [9] An MV-algebra is an algebra (A,⊕, ∗, 0) of type (2,1,0) such that for any
x, y ∈ A, the following conditions hold:
(MV1) (A,⊕, 0) is an abelian monoid,
(MV2) x⊕ 0∗ = 0∗,
(MV3) (x∗)∗ = x,
(MV4) (x∗ ⊕ y)∗ ⊕ y = (x⊕ y∗)∗ ⊕ x.

Definition 2.5. [9] Let A be an MV-algebra. For any x, y ∈ A the constant 1 and the operations
⊙,⊖,→ are defined as follows:
(MV5) 1 := 0∗,
(MV6) x⊙ y := (x∗ ⊕ y∗)∗,
(MV7) x⊖ y := x⊙ y∗,
(MV8) x → y := (x⊙ y∗)∗.

In any MV-algebra A, for any x, y ∈ A, x ≤ y if and only if x∗ ⊕ y = 1. The relation ≤ is
a partial order relation on A, which determines a structure of distributive lattice, where the join
x ∨ y = y ⊕ (x⊖ y), the meet x ∧ y = x⊙ (x∗ ⊕ y), 0 is the smallest element and 1 is the biggest
element [8]. By (MV6) and (MV7), for any x, y ∈ A, x ≤ y ⇐⇒ x⊖ y = 0.

Example 2.6. [7] Let S be a subset of the unit interval I = [0, 1]. If for any x, y ∈ S, x ⊕ y =
min(1, x + y) and x∗ = 1 − x, then (S,⊕, ∗, 0) is an MV-algebra. The following sets are examples
of this type of MV-algebras.
(i) S = {0, 1} which is called the trivial MV-algebra.
(ii) S = [0, 1] which is called the standard MV-algebra.
(iii) Sn = {m

n : m ∈ {0, 1, 2, ..., n}}, where n ∈ N.

Proposition 2.7. [7] Let A be an MV-algebra. The following properties hold for any x, y ∈ A :
(M1) (A,⊙, 1) is an abelian monoid,
(M2) x⊕ x∗ = 0∗ = 1,
(M3) x⊕ 0 = x⊙ 1 = x,
(M4) if x⊕ y = 0, then x = y = 0,
(M5) if x⊙ y = 1, then x = y = 1,
(M6) if x⊕ y∗ = y ⊕ x∗ = 1, then x = y,
(M7) if x⊖ y = y ⊖ x = 0, then x = y,
(M8) x⊙ 0 = x⊖ x = x⊙ x∗ = 0.

Definition 2.8. [9] Let A be an MV-algebra.
(i) A non-empty subset F of A is called a filter if F is closed with respect to ⊙ and x ≤ y, x ∈ F
imply y ∈ F.
(ii) A non-empty subset I of A is called an ideal if I is closed with respect to ⊕ and x ≤ y, y ∈ I
imply x ∈ I.

Proposition 2.9. [8] Let I be an ideal of MV-algebra A. Then the binary relation
I≡ on A defined

by x
I≡ y ⇔ x ⊖ y ∈ I and y ⊖ x ∈ I, is a congruence relation on A, i.e. it is an equivalence

relation on A such that for any a, b, c, d ∈ A if a
I≡ b and c

I≡ d, then a ⊕ c
I≡ b⊕ d and a∗

I≡ b∗.
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Also, let x
I = {y ∈ A : x

I≡ y} be an equivalence class of x and A
I =

{
x
I : x ∈ A

}
. Then A

I is an
MV-algebra under the following operations

x

I
⊕ y

I
=

x⊕ y

I
, (

x

I
)∗ =

x∗

I
.

Definition 2.10. [8] Let I be an ideal of MV-algebra A. (AI ,⊕, ∗, 0I ) is called the quotient MV-
algebra. Moreover, the correspondence x −→ x

I defines the homomorphism πI : A −→ A
I , which is

called the natural homomorphism from A onto A
I .

Definition 2.11. [15] Let A be an MV-algebra with a topology τ . Then (A, τ) is called a:
(i) semitopological MV-algebra, if ⊕ is semicontinuous, equivalently, if for any a, x ∈ A and any
open neighborhood U of a⊕ x, there exists an open neighborhood V of x such that a⊕ V ⊆ U,
(ii) paratopological MV-algebra, if the operation ⊕ is continuous, equivalently, if for any x, y ∈ A
and any open neighborhood W of x ⊕ y, there exist two open neighborhoods U and V of x and y,
respectively, such that U ⊕ V ⊆ W,
(iii) quasitopological MV-algebra, if the operation ⊕ is semicontinuous and the operation ∗ is
continuous,
(iv) topological MV-algebra, if the operations ⊕ and ∗ are continuous.

Proposition 2.12. [15] If (A, τ) is a topological MV-algebra, then the mapping ∗(x) = x∗ from A
into A is a homeomorphism.

Proposition 2.13. [15] Let (A, τ) be a topological MV-algebra and I be an ideal of A. If 0 is an
interior point of I, then I is an open set.

Example 2.14. [15] (i) Let S be the standard MV-algebra and τ be the subspace topology of R.
Then (S, τ) is a topological MV-algebra.
(ii) If S4 = {0, 14 ,

2
4 ,

3
4 , 1} and τ = {∅, {0}, {0, 14}, S4}, then (S4, τ) is a paratopological MV-algebra.

Notation: Let A be an MV-algebra and a ∈ A. We define the following maps from A into A.
(i) Ta(x) = a⊕ x,
(ii) La(x) = a⊖ x,
(iii) Ra(x) = x⊖ a,
(iv) Da(x) = x⊙ a.

From now on, in this paper, (A, τ) is a topological space where A is an MV-algebra.

3 Ti-(quasi)topological MV-algebras

In this section, we determine the conditions that (A, τ) is a Ti-space (i = 0, 1, 2). We prove that
in quasitopological MV-algebras, any T0-space is a T1-space and in topological MV-algebras, T0-
spaces and T2-spaces are equivalent. These results can be used to show that a topological space
(A, τ) is not a (quasi)topological MV-algebra.

Proposition 3.1. Let Ra, La or Da (Ta) be an open map for any a ∈ A. If there exists U ∈ τ
containing 1 (0), then (A, τ) is a T0-space.

Proof. Let x ̸= y and for any a ∈ A, Ra be an open map. If U is an open set containing 1, then
Rx∗(U) = U ⊖ x∗ and Ry∗(U) = U ⊖ y∗ are open sets. By (M3) and (MV3), we have

1 ⊖ x∗ = 1 ⊙ (x∗)∗ = x, 1 ⊖ y∗ = 1 ⊙ (y∗)∗ = y.
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Hence, x ∈ Rx∗(U) and y ∈ Ry∗(U). We claim that y ̸∈ U ⊖ x∗ or x ̸∈ U ⊖ y∗. Let y ∈ U ⊖ x∗ and
x ∈ U ⊖ y∗. Then for some a ∈ U, y = a⊖ x∗. By (M8),

y ⊙ x∗ = a⊙ x⊙ x∗ = a⊙ 0 = 0 =⇒ y ≤ x.

Similarly, x ∈ U ⊖ y∗ follows x ≤ y. Therefore, x = y which is a contradiction. Hence (A, τ) is a
T0-space. The proof is similar for other maps.

Lemma 3.2. [2] Let (X, ∗) be a monoid with identity 1, τ be a topology on X, and U = {U} be a
fundamental system of open neighborhoods of 1 in X. If (X, τ) is a T1-space, then

∩
U∈U

U = {1}.

Theorem 3.3. Let (A, τ) be a quasitopological MV-algebra. Then the following are equivalent.
(i) (A, τ) is a T0-space.
(ii) (A, τ) is a T1-space.
(iii)

∩
U∈U

U = {1}, where U is a fundamental system of open neighborhoods of 1.

(iv) For any x ̸= 1, there are open neighborhoods U and V of x and 1, respectively, such that 1 ̸∈ U
and x ̸∈ V.

Proof. (i) ⇒ (ii) Let (A, τ) be a T0-space and x ̸= y ∈ A. By (M7) x ⊖ y ̸= 0 or y ⊖ x ̸= 0.
If x ⊖ y ̸= 0, then there exists an open set U such that 0 ∈ U and x ⊖ y ̸∈ U or 0 ̸∈ U and
x ⊖ y ∈ U. Suppose that 0 ∈ U and x ⊖ y ̸∈ U. By (M8) x ⊖ x = y ⊖ y = 0 ∈ U. Since (A, τ) is a
quasitopological MV-algebra, the operation ⊖ is semicontinuous [15]. Therefore, there exist open
neighborhoods W and V of x and y, respectively, such that V ⊖ y ⊆ U and x⊖W ⊆ U . We claim
that x ̸∈ V and y ̸∈ W. If x ∈ V or y ∈ W , then x⊖ y ∈ U , which is a contradiction.
(ii) ⇒ (iii) The proof follows from Lemma 3.2.
(iii) ⇒ (iv) Let x ̸= 1. Then there exists an open neighborhood U of 1 such that x /∈ U. Since
x → x = 1 and (A, τ) is a quasitopological MV-algebra, there exists an open neighborhood V of x
such that V → x ⊆ U. We claim 1 ̸∈ V. If 1 ∈ V, then 1 → x = x ∈ U , which is a contradiction.
(iv) ⇒ (i) Let for any x ̸= 1, there exist open neighborhoods U and V of x and 1, respectively,
such that 1 ̸∈ U and x ̸∈ V. Suppose that x, y ∈ A and x ̸= y. Then x ⊕ y∗ ̸= 1 or y ⊕ x∗ ̸= 1.
Let x ⊕ y∗ ̸= 1 and U be an open neighborhood of x ⊕ y∗ such that 1 ̸∈ U. Since (A, τ) is a
quasitopological MV-algebra, there are two open neighborhoods V and W of x and y∗, respectively,
such that V ⊕ y∗ ⊆ U and x⊕W ⊆ U. We claim that x ̸∈ W ∗ and y ̸∈ V. If x ∈ W ∗ or y ∈ V, then
y ⊕ y∗ = x⊕ x∗ = 1 ∈ U , which is a contradiction. Hence (A, τ) is a T0-space.

Example 3.4. (i) Consider the MV-algebra S2 = {0, 12 , 1} with topology τ = {S2, ∅, {0}, {1}, {0, 1}}.
Although the operation ∗ is continuous, the operation ⊕ is not semicontinuous at (12 ,

1
2) which im-

plies (S2, τ) is not a quasitopological MV-algebra. This also follows from Theorem 3.3 because
(S2, τ) is a T0-space while it is not a T1-space.
(ii) Consider the MV-algebra S3 = {0, 13 ,

2
3 , 1} with topology τ = {S3, ∅, {1}, {0, 13 ,

2
3}}. The case

(iv) of Theorem 3.3 holds, but (S3, τ) is not a T0-space. The reason is that (S3, τ) is not a qua-
sitopological MV-algebra.

Theorem 3.5. Let (A, τ) be a topological MV-algebra. Then (A, τ) is a T0-space if and only if it
is a Hausdorff space.

Proof. Let (A, τ) be a topological MV-algebra and T0-space. Since (A, τ) is a quasitopological
MV-algebra, by Theorem 3.3, it suffices to show that if (A, τ) is a T1-space, then it is a Hausdorff
space. Let (A, τ) be a T1-space and x ̸= y. By (M6), for any x ̸= y ∈ A, x⊕ y∗ ̸= 1 or x∗ ⊕ y ̸= 1.
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If x ⊕ y∗ ̸= 1, then there exists an open set U such that x ⊕ y∗ ∈ U and 1 ̸∈ U . Since the
operations ⊕ and ∗ are continuous, there exist open sets W and V of x and y∗, respectively, such
that W ⊕ V ⊆ U . W and V ∗ are open neighborhoods of x and y, respectively. We claim that
W ∩V ∗ = ∅. If z ∈ W ∩V ∗, then z∗ ∈ V and so 1 = z⊕ z∗ ∈ W ⊕V ⊆ U. Since the map ∗ is open
by Proposition 2.12, W and V ∗ are disjoint open neighborhoods of x and y, respectively. Hence
(A, τ) is a Hausdorff space. The proof of the converse is straightforward.

Example 3.6. Let A = {0, a, b, 1}, where 0 < a, b < 1. Consider the operations ⊕ and ∗ as follows:

⊕ 0 a b 1

0 0 a b 1
a a a 1 1
b b 1 b 1
1 1 1 1 1

∗ 0 a b 1

1 b a 0

Then (A,⊕, ∗, 0) is an MV-algebra.
(i) If τ = {A, ∅, {a, 0}, {b, 1}}, then (A, τ) is a topological MV-algebra [15]. Since (A, τ) is not
a Hausdorff space, it is not a T0-space, by Theorem 3.5. Also, we have a fundamental system of
neighborhoods W of 1 such that

∩
W = {b, 1} ̸= {1}, as we expected by Theorem 3.3.

(ii) Let τ = {A, ∅, {a}, {b}, {b, 1}, {a, 0}, {a, b}, {a, b, 1}, {a, b, 0}}. (A, τ) is a T0-space but it is not
a Hausdorff space. Therefore, it is not a topological MV-algebra by Theorem 3.5.

Theorem 3.7. Let (A, τ) be a topological MV-algebra.
(i) (A, τ) is a Hausdorff space if and only if {1} is a closed set.
(ii) (A, τ) is a discrete space if and only if {0} is an open set.

Proof. (i) Let {1} be a closed set. We show that {a} is closed for any a ∈ A. Since the operation
⊖ is continuous [15], B = ⊖−1({1}) = {(1, 1)} is a closed set. The function ga : A −→ A × A
defined by b −→ (Ta∗(b), Ta(b∗)) is also continuous. Then g−1

a {(1, 1)} is a closed set. On the other
hand, by (M6) we have

g−1
a {(1, 1)} = {b : b⊕ a∗ = a⊕ b∗ = 1} = {a}.

Therefore, {a} is a closed set. Hence (A, τ) is a T1-space and so a Hausdorff space by Theorem
3.5. Since single sets are closed in Hausdorff spaces, the converse is clear.
(ii) The proof is similar to (i).

Example 3.8. Consider S3 = {0, 13 ,
2
3 , 1} with topology τ = {S3, ∅, {0, 13 ,

2
3}, {1, 13 ,

2
3}, {

1
3 ,

2
3}}.

Since {1} is a closed set and (S3, τ) is not a Hausdorff space, (S3, τ) is not a topological MV-
algebra by Theorem 3.7.

Proposition 3.9. Let (A, τ) be a topological MV-algebra.
(i) If F is a filter of A, then F is also a filter.
(ii) If I is an ideal of A, then I is also an ideal.

Proof. (i) Let (A, τ) be a topological MV-algebra and F be a filter of A. Since the operation ⊙
is continuous, F ⊙ F ⊆ F ⊙ F . Let x, y ∈ A and x ∈ F such that x 6 y. There exists a net
{xj : j ∈ J} in F which converges to x. By continuity of ∨, the net {xj ∨ y : j ∈ J} converges to
x ∨ y = y. This implies that there are two cases:
Case 1. There exists n ∈ N such that ∀j > n, xj ≤ y. Then y ∈ F ⊆ F .
Case 2. {xj : j ∈ J} converges to y. It follows that y ∈ F .
(ii) The proof is similar to (i).
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The following example shows that the converse of Proposition 3.9 is not true in general.

Example 3.10. Let (A, τ) be the topological MV-algebra in Example 3.6(i). Then {b} = {b, 1} is
a filter but {b} is not a filter. Also, {a} = {0, a} is an ideal while {a} is not an ideal.

Theorem 3.11. Let (A, τ) be a topological MV-algebra. If the only closed filters (ideals) of A are
{1} ({0}) and A, then the topology τ is one of the following types:
(i) Hausdorff and totally disconnected,
(ii) Hausdorff and connected,
(iii) indiscrete.

Proof. We prove this theorem in the case of filters. The proof for ideals is similar. Let C be the
connected component of 1. It follows that C is a closed filter of A [15]. Hence C = A or C = {1}. If
C = {1}, by Theorem 3.7, (A, τ) is a Hausdorff space. If x ∈ A, and Cx is the connected component
containing x, then Cx ⊕ x∗ is connected and contains 1. Hence, Cx ⊕ x∗ ⊆ C = {1}. Then, for any
y ∈ Cx, we have y⊕x∗ = 1, and so x 6 y. Since the operation ∗ is a homeomorphism, then x⊕Cx∗

is connected and contains 1. Therefore, y 6 x which implies that x = y and so Cx = {x}. Hence,
(A, τ) is a Hausdorff and totally disconnected space. Now, let C = A. By Proposition 3.9, {1} is
a closed filter. Hence {1} = {1} or {1} = A. In the first case, (A, τ) is a Hausdorff and connected
space by Theorem 3.7(i). In the second case, let U is an arbitrary non-empty open subset of A.
Thus U ∩ {1} ̸= ∅ and so 1 ∈ U. Moreover, let x ̸∈ U, for some x ∈ A. Since x ⊕ x∗ = 1 ∈ U,
there exist open neighborhoods V and W of x and x∗, respectively, such that V ⊕W ∗ ⊆ U. Then,
x = x ⊕ 0 ∈ U , which is a contradiction. Therefore, if x ∈ A, then x ∈ U which implies (A, τ) is
an indiscrete space.

Proposition 3.12. Let (A, τ) be a topological MV-algebra. Then (A, τ) is an Uryshon space if
and only if for any x ̸= 0, there exist two open neighborhoods U and V of x and 0, respectively,
such that U ∩ V = ∅.

Proof. If (A, τ) is an Uryshon space, then the proof is clear. Conversely, let for any x ̸= 0, there
exist two open neighborhoods U and V of x and 0, respectively, such that U ∩ V = ∅. If x ̸= y,
then x⊖y ̸= 0 or y⊖x ̸= 0. Let x⊖y ̸= 0. Hence there exist disjoint open neighborhoods U and V
of x⊖ y and 0, respectively, such that U ∩ V = ∅. Since (A, τ) is a topological MV-algebra, there
exist two open neighborhoods W1 and W2 of x and y, respectively, such that W1 ⊖W2 ⊆ U. We
prove that W 1 and W 2 are disjoint. Let z ∈ W 1 ∩W 2. Hence there exist two nets {xj : j ∈ J}
and {yj : j ∈ J} in W1 and W2, respectively, such that both converge to z. Since the operation
⊖ is continuous, the net {xj ⊖ yj : j ∈ J} converges to z ⊖ z = 0. Therefore, 0 ∈ W1 ⊖W2 ⊆ U ,
which is a contradiction.

4 Normal and regular MV-algebras

In this section, we construct some topologies on MV-algebras by prefilters, filters, and ideals. Then
we determine the conditions that the MV-algebras equipped with these topologies become regular
or normal spaces. By some examples, we show that these topologies exist and they are not trivial.

Theorem 4.1. Let F be a prefilter on the MV-algebra A such that
(i) 0 ∈

∩
F ,

(ii) if Rq ◦Rp(x) = 0 for p, q ∈ V ∈ F , then x ∈ V.
Then there exists a topology τ on A such that (A, τ) is a topological MV-algebra and normal space.
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Proof. For an arbitrary element a ∈ A and ∅ ̸= V ⊆ A, we define

V (a) = {x ∈ A : Ra(x) ∈ V, La(x) ∈ V }.

Clearly, if V ⊆ U ⊆ A, then V (a) ⊆ U(a). If we put τ = {U ⊆ A : ∀a ∈ U,∃V ∈ F s.t. V (a) ⊆ U},
then (A, τ) is a topological MV-algebra [15]. Now, we show that (A, τ) is a normal space. For this
purpose, we prove that for any x ∈ A and V ∈ F , V (x) is a closed set. If y ∈ V (x), then there
exists z ∈ V (x) ∩ V (y). Hence x, z ∈ V (x) ⊆ V and y, z ∈ V (y) ⊆ V. Since ((x ⊖ y) ⊖ x) ⊖ z = 0
and ((y ⊖ x) ⊖ y) ⊖ x = 0, then x⊖ y ∈ V and y ⊖ x ∈ V by (ii). It follows that y ∈ V (x) and so
V (x) = V (x). Let S be a closed set and U be an open set such that S ⊆ U. For x ∈ S, there exists
V ∈ F such that V (x) ⊆ U. By putting H(x) =

∪
x∈S,V ∈F V (x), it follows that H is a closed and

open set. Then S ⊆ H ⊆ H ⊆ U which implies (A, τ) is a normal space.

Example 4.2. Let A be the MV-algebra in Example 3.6. Put F = {{0, b}, {0}, {a, 0}, A}. One
can readily show that F is a prefilter. Consider the topology τ = {A, {0, b}, {1, a}, ∅}. By Theorem
4.1, (A, τ) is a topological MV-algebra and normal space. Also, (A, τ) is not an Uryshon space by
Proposition 3.12.

Theorem 4.3. Let I be a non-trivial ideal of the MV-algebra A. Then there exists a non-trivial
topology τ such that I is a clopen set and (A, τ) is a
(i) paratopological MV-algebra and T0-space,
(ii) regular space if and only if for any x ∈ U ∈ τ, I ⊕ x is a closed set,
(iii) normal space if and only if for any closed set S,

∪
x∈S

(I ⊕ x) is a closed set.

Proof. Let I be a non-trivial ideal of A. Put τ = {U ⊆ A : ∀x ∈ U, I ⊕ x ⊆ U}. It is easy to show
that τ is a topology on A. First, we prove that for any a ∈ A, a⊕ I is an open set. Let a ∈ A and
y ∈ a⊕ I. Then

I ⊕ y ⊆ I ⊕ (a⊕ I) = (I ⊕ I) ⊕ a ⊆ I ⊕ a.

Therefore, a ⊕ I is an open set and τ is a non-trivial topology on A. Since for x ∈ I, x ⊕ I ⊆ I,
then I is an open set. For x ∈ I, (I ⊕x)∩ I ̸= ∅. Therefore, there exists a ∈ I such that a⊕x ∈ I,
and so x ∈ I which implies that I is a closed set.
(i) Let x⊕ y ∈ A and U be an open neighborhood of x⊕ y. Hence x⊕ y⊕ I ⊆ U . Since x⊕ I and
y ⊕ I are open neighborhoods of x and y, respectively, such that

(x⊕ I) ⊕ (y ⊕ I) = (x⊕ y) ⊕ (I ⊕ I) ⊆ (x⊕ y) ⊕ I ⊆ U,

then (A, τ) is a paratopological MV-algebra. Now, we show that Ta is an open map. Let a ∈ A
and U ∈ τ . For y ∈ a⊕ U, there exists x ∈ U such that y = a⊕ x. Hence,

I ⊕ y = I ⊕ (a⊕ x) = a⊕ (I ⊕ x) ⊆ a⊕ U,

and so a⊕U is an open set. Since for any a ∈ A, Ta is an open map and I is an open set containing
0, (A, τ) is a T0-space by Proposition 3.1.
(ii) Let (A, τ) be a regular space and x ∈ U ∈ τ. Since I ⊕ x is an open neighborhood of x, there
exists an open set H such that x ∈ H ⊆ H ⊆ I ⊕x. Then, I ⊕x = H = H and so I ⊕x is a closed
set. Conversely, let x ∈ U ∈ τ. Since I ⊕ x is a closed set, then x ∈ I ⊕ x = I ⊕ x ⊆ U. Hence
(A, τ) is a regular space.
(iii) The proof is similar to (ii).



Hausdorff (quasi)topological MV-algebras 129

Theorem 4.4. Let F be a non-trivial filter of the MV-algebra A. Then there exists a non-trivial
topology τ such that the operation ⊙ is continuous, F is a clopen set and (A, τ) is a
(i) T0-space,
(ii) regular space if and only if for any x ∈ U ∈ τ, F ⊙ x is a closed set.
(iii) normal space if and only if for any closed set S,

∪
x∈S

(F ⊙ x) is a closed set.

Proof. The proof is similar to Theorem 4.3 by putting τ = {U ⊆ A : ∀x ∈ U, F ⊙ x ⊆ U}.

Example 4.5. Let A be the MV-algebra in Example 3.6.
(i) Consider the ideal I = {0, a}. According to Theorem 4.3, if we put

τ = {A, ∅, {0, a}, {1, b}, {a}, {1}, {a, b, 1}, {a, 1, 0}, {a, 1}},

then (A, τ) is a paratopological MV-algebra and T0-space. But (A, τ) is not a topological MV-
algebra by Theorem 3.5, since it is not a Huasdorff space.
(ii) Consider the filter F = {1, b}. We construct the topology τ as follows:

τ = {A, ∅, {0, a}, {1, b}, {b}, {0}, {a, b, 0}, {0, b, 1}, {b, 0}}.

By Theorem 4.4, the operation ⊙ is continuous and (A, τ) is a T0-space.

5 Locally compact Hausdorff MV-algebras

In this section, we investigate the conditions under which the locally compact Hausdorff MV-
algebras become paratopological MV-algebras and normal spaces.

Proposition 5.1. Let (A, τ) be a semitopological MV-algebra and locally compact Hausdorff space
such that for any b ∈ A, Tb is an open map and the operation ⊕ is continuous at (0, b). Then for
any x, y ∈ A, there exist open neighborhoods U and V of x and y, respectively, such that U ⊕ V is
compact.

Proof. Let x, y ∈ A and y ∈ W ∈ τ. Since 0⊕ y ∈ W, there exist open neighborhoods U0 and V of
0 and y, respectively, such that U0 ⊕ V ⊆ W. Put U = x⊕U0, then U is an open set and contains
x. Also, we have

U ⊕ V = (x⊕ U0) ⊕ V = x⊕ (U0 ⊕ V ) ⊆ x⊕W.

Since A is a locally compact Hausdorff space, W is compact. Hence x⊕W is a compact and closed

set, and so x⊕W ⊆ x⊕W = x⊕W. On the other hand,

x⊕W = Tx(W ) ⊆ Tx(W ) = x⊕W.

Therefore, x⊕W = x ⊕W, and so x⊕W is compact. Thus U ⊕ V is also a compact set, since
U ⊕ V ⊆ x⊕W .

Theorem 5.2. (A, τ) is a paratopological MV-algebra if the following conditions hold for any
x, y ∈ A:
(i) there are two open sets Ux and Vy of x and y, respectively, such that Ux ⊕ Vy is compact,
(ii) for any open set W of x⊕ y and any z ∈ A \W , there exist open sets Ux and Vy of x and y,
respectively, such that z /∈ Ux ⊕ Vy.
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Proof. Let x, y ∈ A and W be an open neighborhood of x ⊕ y. We must show that there exist
open sets U and V of x and y, respectively, such that U ⊕ V ⊆ W. By (i) there exist open sets
Ux and Vy such that x ∈ Ux, y ∈ Vy, and Ux ⊕ Vy is compact. Let Bx be the family of all open
neighborhoods of x contained in Ux and By be the family of all open neighborhoods of y contained
in Vy. For U ∈ Bx and V ∈ By, put FU,V = (A \ W ) ∩ U ⊕ V . Clearly, FU,V is closed. Now, let
η = {FU,V : U ∈ Bx, V ∈ By}. Obviously, any element of η is compact. We show that at least one
element of η is empty. Assume that all elements of η are non-empty. Since the elements of η are
closed and compact sets, by finite intersection property, there exists z ∈ ∩η. On the other hand,
by (ii) there exist U ∈ Bx and V ∈ By such that z /∈ U ⊕ V . Therefore, z /∈ FU,V ∈ η which is a
contradiction. Then, for some FU,V ∈ η, FU,V = ∅ and so U ⊕ V ⊆ W . It follows that (A, τ) is a
paratopological MV-algebra.

Example 5.3. Let A be the MV-algebra in Example 3.6. We consider the following topology on
A,

τ = {A, ∅, {0, b}, {1, a}, {b}, {1}, {a, b, 1}, {b, 1, 0}, {b, 1}}.

It is clear that the conditions of Theorem 5.2 hold. Thus (A, τ) is a paratopological MV-algebra.

Proposition 5.4. Let (A, τ) be a paratopological MV-algebra and locally compact Hausdorff space
such that for any a ∈ A, Ta is an open map. Then for any open set U and compact set C ⊆ U ,
there exists an open neighborhood V of 0 such that C ⊕ V is a compact subset of U.

Proof. Let U be an open set, C be a compact subset of U , and x ∈ C. Since ⊕ is continuous,
there exist open neighborhoods Vx and Wx of 0 such that x⊕ Vx ⊆ U and Wx ⊕Wx ⊆ Vx. Also,
{x⊕Wx : x ∈ C} is an open cover of C, since for any a ∈ A, Ta is an open map. This cover has a
finite subcover such as {xi ⊕Wxi : xi ∈ C, i = 1, 2, ...., n}. Put W = ∩n

i=1Wxi , then

C ⊕W ⊆ C ⊕Wx1 ⊆ (∪n
i=1(xi ⊕Wxi)) ⊕Wx1 ⊆ (∪n

i=1(xi ⊕Wxi)) ⊕Wxi ⊆ ∪n
i=1(xi ⊕ Vxi) ⊆ U.

Since (A, τ) is a locally compact space, there exists an open set V with compact closure containing
0 such that V ⊆ W. By continuity of Ta, C⊕V is a compact subset of A. Since (A, τ) is a Hausdorff

space, C ⊕ V is a closed subset of A. Thus, C ⊕ V ⊆ C ⊕ V = C ⊕ V . On the other hand,

C ⊕ V = ∪x∈CTx(V ) ⊆ ∪x∈CTx(V ) = C ⊕ V .

Hence C ⊕ V is a compact subset of U.

Theorem 5.5. Let (A, τ) be a paratopological MV-algebra and locally compact Hausdorff space. If
for any a ∈ A, Ta is an open map, then (A, τ) is a normal space.

Proof. Let F be a closed set and F ⊆ V ∈ τ . By Proposition 5.4, there exists an open neighborhood
U of 0 such that F ⊆ U ⊕ F ⊆ U ⊕ F ⊆ V, which implies that (A, τ) is a normal space.

The following examples show the necessity of the condition in Theorem 5.5 and indicate that
the converse of this theorem is not true in general.

Example 5.6. Consider the MV-algebra S2 with topology τ = {S2, ∅, {1
2}, {1, 12}, {1}}. Although

for any a ∈ S2, Ta is an open map and (S2, τ) is a compact space, it is not a normal space. The
reason is that (S2, τ) is not a paratopological MV-algebra and Hausdorff space.
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Example 5.7. Let S be the standard MV-algebra with subspace topology τ of R. (S, τ) is a paratopo-
logical MV-algebra and normal space. Also, (S, τ) is a compact Hausdorff space. But Ta is not an
open map for any a ∈ S (for example T 1

2
(12 , 1] = {1} is not an open set).

Lemma 5.8. [2] Let X and Y be locally compact Hausdorff spaces, f be a separately continuous
map of X × Y to a regular space Z and (x, y) ∈ X × Y. Let W be an open set of f(x, y) and U
be an open set of x, then there exist a non-empty open set U1 in X, and an open set V in Y such
that U1 ⊆ U, y ∈ V and f(U1 × V ) ⊆ W.

Theorem 5.9. Let (A, τ) be a locally compact Hausdorff space. If for any a ∈ A, Ta is an open
map and ⊕ is continuous at (0, a), then (A, τ) is a paratopological MV-algebra and normal space.

Proof. First, we prove that (A, τ) is a semitopological MV-algebra. Let x ⊕ y ∈ U ∈ τ. Since ⊕
is continuous at (0, x⊕ y), there exists an open neighborhood V of 0 such that V ⊕ (x⊕ y) ⊆ U.
Also, W = V ⊕ x is an open neighborhood of x and W ⊕ y ⊆ U. Hence A is a semitopological
MV-algebra. Now, we show that the conditions of Theorem 5.2 hold. Condition (i) holds by
Proposition 5.1. Let x ⊕ y ∈ W ∈ τ and z ∈ A \ W. Since A is locally compact, we can assume
z /∈ W. Since 0 ⊕ z = z ∈ A \W and ⊕ is continuous at (0, z), there exists an open neighborhood
G of 0 such that (G ⊕ z) ∩ W = ∅. Also, G ⊕ x is an open neighborhood of x. Then by Lemma
5.8, there exist two non-empty open sets U0 and V such that y ∈ V, U0 ⊆ G⊕x and U0 ⊕V ⊆ W.
Thus, there exists g ∈ G such that g ⊕ x ∈ U0. By continuity of Ta, there exists U ∈ τ containing
0 such that g ⊕ U ⊆ U0. Therefore,

(g ⊕ U) ⊕ V ⊆ U0 ⊕ V ⊆ W =⇒ g ⊕ U ⊕ V = Tg(U ⊕ V ) ⊆ g ⊕ (U ⊕ V ) ⊆ W.

We claim z /∈ U ⊕ V . Let z ∈ U ⊕ V , then

g ⊕ z ∈ g ⊕ U ⊕ V =⇒ g ⊕ z ∈ W ∩ (G⊕ z),

which is a contradiction. Hence condition (ii) also holds. Therefore, (A, τ) is a paratopological
MV-algebra and consequently, it is a normal space by Theorem 5.5.

6 Hausdorff topological quotient MV-algebras

Let I be an ideal of MV-algebra A. Let A
I be a quotient MV-algebra and πI : A −→ A

I be the
natural homomorphism. A topology is defined on A

I as follows: A subset U of A
I is open if π−1

I (U)
is an open subset of A. This topology on A

I denoted by τ̃ is called the quotient topology induced
by πI . It is well known that τ̃ is the largest topology on A

I making πI continuous. In this section,
the quotient MV-algebra A

I equipped with the topology τ̃ are studied.

Lemma 6.1. Let I be an ideal of MV-algebra A. Let τ be a topology on A and τ̃ be the quotient
topology on A

I .
(i) If V ∈ τ̃ , then there exists U ∈ τ such that πI(U) = V .
(ii) For each x ∈ A,

(
π−1
I ◦ πI

)
(xI ) = x

I . Also
(
π−1
I ◦ πI

)
(S) =

∪
x∈S

x
I , for each S ⊆ A.

(iii) If πI is an open set and (A, τ) is a topological MV-algebra, then (AI , τ̃) is also a topological
MV-algebra.

Proof. It is straightforward by definitions.
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Proposition 6.2. Let (A, τ) be a topological MV-algebra and I be an ideal of A.
(i) 0 is an interior point of I if and only if for each x ∈ A, x

I is an open subset of A.
(ii) I is a closed subset of A if and only if for each x ∈ A, x

I is a closed subset of A.

Proof. (i) Let 0 be an interior point of I. By Proposition 2.13, I is an open set of A. Since (A, τ)
is a topological MV-algebra, Lx and Rx are continuous for any x ∈ A, and so x

I = L−1
x (I)∩R−1

x (I)
is an open set. Conversely, if for any x ∈ A, x

I is an open set, then 0
I = I is an open set and so 0

is an interior point of I.
(ii) The proof is similar to (i).

Definition 6.3. [5] We say that (A, τ) satisfies the open condition if for any ideal I, πI is an open
map.

In the following example, we show that a natural homomorphism may not be an open map.

Example 6.4. Let A be the MV-algebra in Example 3.6.
(i) If τ = {A, ∅, {0, a}, {1, b}}, then (A, τ) satisfies the open condition.
(ii) τ = {A, ∅, {0}, {a, b, 1}} is a topology on A. If I = {0, a}, then πI({0}) = {0, a}. Hence πI is
not an open map.

Proposition 6.5. Let (A, τ) be a topological MV-algebra and I be an ideal of A.
(i) If πI(0) is an open subset of A

I , then πI is a closed map.
(ii) If 0 is an interior point of I, then πI is an open map.
(iii) If I is a closed subset of A and A

I is a finite quotient MV-algebra, then πI is a closed map.

Proof. (i) Let πI(0) be an open subset of A
I and U be a closed subset of A. We show that πI(U)

is also a closed set. Since πI is a continuous map, πI(U) = πI(U) ⊆ πI(U). Now, let y
I ∈ πI(U).

Then there exists a net {xj : j ∈ J} ⊆ U such that {xj

I : j ∈ J} converges to y
I . By continuity of

⊖, the nets
{

xj⊖y
I : j ∈ J

}
and

{
y⊖xj

I : j ∈ J
}

converge to 0
I . Then there exists j ∈ J such that

xj⊖y
I and

y⊖xj

I belong to πI(0). Consequently,
xj⊖y
I = 0

I =
y⊖xj

I . Hence
xj

I = y
I which implies that

y
I ∈ πI(U) and so πI(U) ⊆ πI(U). Therefore, πI(U) = πI(U).
(ii) Let 0 be an interior point of I. By Lemma 6.1 and Proposition 6.5,

(
π−1
I ◦ πI

)
(U) =

∪
x∈U

x
I is

an open set of A which implies πI(U) is an open set in A
I .

(iii) Let I be a closed set and U be a closed subset of A. Since A
I is finite, there are x1, . . . , xn ∈ A

such that (π−1
I ◦ πI)(U) =

∪n
j=1

xj

I , by Lemma 6.1. Also, by Proposition 6.5, (π−1
I ◦ πI)(U) is a

closed subset of A which implies πI(U) is closed.

Theorem 6.6. Let (A, τ) be a topological MV-algebra and I be an ideal of A.
(i) If 0 is an interior point of I, then (AI , τ̃) is a Hausdorff topological quotient MV-algebra.
(ii) I is a closed subset of A if and only if (AI , τ̃) is a T1-space.

Proof. (i) Let 0 be an interior point of I. By Proposition 6.2, for any x ∈ A, x
I is an open subset

of A. Then for any U ∈ τ, (π−1
I ◦ πI)(U) =

∪
x∈U

x
I is an open subset of A. Also, by Proposition 6.5,

πI is an open map. Therefore, by Lemma 6.1, (AI , τ̃) is a topological quotient MV-algebra. Also,
for any x ∈ A, πI(xI ) = {x

I } is an open subset of A
I . Hence A

I is a discrete space and so it is a
Hausdorff space.
(ii) Let I be a closed subset of A, then by Proposition 6.1, for any x ∈ A, (π−1

I ◦ πI)(xI ) = x
I is

a closed subset of A. Therefore, πI(xI ) = {x
I } is closed in A

I which implies that A
I is a T1-space.

Conversely, if A
I is a T1-space, then π−1

I ({0
I }) = I is a closed subset of A.
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Example 6.7. Let (A, τ) be the topological MV-algebra in Example 3.6(i).
(i) If I = {0, a}, then (AI , τ̃) is a Hausdorff topological quotient MV-algebra by Theorem 6.6.
(ii) If I = {0, b}, then (AI , τ̃) is not a T1-space by Theorem 6.6.

Proposition 6.8. Let (A, τ) be a topological MV-algebra and I be an ideal of A. Suppose W is a
fundamental system of neighborhoods of 0. If 0 is an interior point of I, then

∩
W∈W

πI(W ) = {0
I }

and
∩

W∈W
W ⊆ I.

Proof. Let 0 be an interior point of I. Then (AI , τ̃) is a Hausdorff topological quotient MV-algebra
by Theorem 6.6(i). Also, πI is an open map by Theorem 6.5(ii). Hence {πI(W ) : W ∈ W} is a
fundamental system of neighborhoods of 0

I . Let 0
I ̸= x

I ∈
∩

W∈W
πI(W ). Since (AI , τ̃) is a Hausdorff

topological quotient MV-algebra, then by Proposition 2.12, 1
I∗ ̸= x∗

I∗ ∈
∩

W ∗∈W∗ πI∗(W ∗) which is
a contradiction by Theorem 3.3. Therefore,

∩
W∈W πI(W ) = {0

I }. Now, Let x ∈
∩

W∈W
W. Then

πI(x) ∈
∩

W∈W
πI(W ) = {0

I }. Hence x
I = 0

I which implies that x ∈ I and so
∩

W∈W
W ⊆ I.

Theorem 6.9. Let (A, τ) be a topological MV-algebra and I be an ideal of A.
(i) If {0} is an open subset of A, then (AI , τ̃) is a Hausdorff topological quotient MV-algebra.
(ii) If {1} is a closed subset of A, then (AI , τ̃) is a T1-space.

Proof. (i) Let {0} be an open subset of A. By Theorem 3.7(ii), (A, τ) is a discrete space. Since
πI is a continuous map, (AI , τ̃) is a discrete space and so it is a Hausdorff topological quotient
MV-algebra.
(ii) Let {1} be a closed subset of A. By Theorem 3.7(i), (A, τ) is a T1-space. Since πI is a
continuous and surjective map, (AI , τ̃) is also a T1-space.

Proposition 6.10. Let (A, τ) be a topological MV-algebra which satisfies the open condition and
I be an ideal of A.
(i) (A

I
, τ̃) is a Hausdorff topological quotient MV-algebra.

(ii) If I is an maximal ideal of A, then I is dense in A or (AI , τ̃) is a Hausdorff topological quotient
MV-algebra.

Proof. (i) Since (A, τ) is a topological MV-algebra, I is an ideal of A by Proposition 3.9. Then
(A
I
, τ̃) is a T1-space by Theorem 6.6(ii). Since πI is an open map, (A

I
, τ̃) is a topological quotient

MV-algebra. Therefore, (A, τ) is a Hausdorff space by Theorem 3.5.
(ii) Let I be a maximal ideal of A, then I = A or I = I. If I = A, then I is dense in A. If I = I,
then (AI , τ̃) is a Hausdorff topological quotient MV-algebra by (i).

Conclusion

In this paper, we discussed the relations between Ti-spaces (i = 0, 1, 2) in (quasi)topological MV-
algebras. We applied prefilters, filters and ideals to construct some topologies on MV-algebras.
The conditions under which locally compact Hausdorff MV-algebras can be paratopological MV-
algebras and normal spaces were derived. Also, we explored the conditions for a quotient MV-
algebra to be a Hausdorff topological quotient MV-algebra. By using the ideas and results obtained
in this paper, the other concepts of topology can be studied on (quasi, para)topological MV-
algebras. Moreover, the obtained results can be applied to other algebraic structures in the future.
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