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1 Introduction

In this section, we describe the motivation and a survey of related works. The concept of fuzzy
sets was proposed by Zadeh in 1965 [26]. Fuzzy set theory is a useful tool to describe situations in
which the data are imprecise or vague. After the introduction of the notion of hypergroups as a
generalization of groups by Marty [19] in 1934, many papers and books concerning hyperstructure
theory have appeared in literature [, 5, [, 8, 9, 10, 15, 16, 17, 23]. One important class of
hyperrings is called the Krasner hyperring [14]. In [20], a generalization of the Krasner hyperrings,
which is a subclass of (m, n)-hyperrings, was defined by Mirvakili and Davvaz. It is called Krasner
(m,n)-hyperring. Many other interesting papers have been written on Krasner (m,n)-hyperring

2,8, 4, 13, 20, 21, 22, 24).
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Many researchers are interested in fuzzy hyperstructures because of nice connection between
fuzzy sets and hyperstructures [6, 12, 18, 25, 28, 29, B2]. The notion of interval valued («, /3)-
fuzzy subalgebraic hypersystems in an algebraic hypersystem, which is a generalization of a fuzzy
subalgebraic system, was defined in [30]. Dutta in [11] established the concept of interval valued
fuzzy prime and semiprime ideals of a hypersemiring.

In this paper, our aim is to consider the concept of quasicoincidence of a fuzzy interval valued
with an interval valued fuzzy set, which generalizes the concept of quasicoincidence of a fuzzy
point in a fuzzy set. This paper is organized as follows. In Section 2, we recall some terms and
definitions which we need to develop our paper. In Section 3, we analyze entropy of interval valued
(o, B)-fuzzy hyperideals in Krasner (m,n)-hyperrings. In Section 4, some fundamental aspects of
interval valued (€, € Vq)-fuzzy hyperideals have been investigated. Finally, in Section 5, we discuss
the notion of implication-based interval valued fuzzy hyperideals of Krasner (m,n)-hyperrings.

2 Preliminaries

In this section, we recall some basic notions and results of fuzzy algebra and Krasner (m,n)-
hyperrings which we shall use in this paper.

A fuzzy subset of G is a function p : G — L such that L is the unit interval [0,1] C R. The
set of all fuzzy subsets of G is denoted by LE . The set, {a € G | u(a) # 0} is called the support
of p and is denoted by supp(u).

Definition 2.1. [27] An interval number on [0, 1], denoted by %, is defined as the closed subinterval
of [0,1], where & = [x~, 2] satisfying 0 <z~ <zt < 1.

DJ0, 1] denotes the set of all interval numbers. The interval [z, z] can be simply identified by
the number z. Let %; = [z, ,2}],% = [y; ,y;] € D[0,1] for i € I. Then we define:

rmin{Z;,y;} = [min{x;,y; }, mm{azZ ,yj}],

rmax{Z;, y;} = [maz{x; ,y; }, m(w:{nlrz ,y;r}],

T’SUp Lfl = [VZEI xz_?\/zEI ZI]’
rinf I; = [/\ie[ Z; ’/\iel z ],

and put

(1) zy <azy ndx1<x2<:>x1<x2,

(2) 27 = 2, and ] = 2] <= T = 7o,

():%13;% ndi‘l#f2<:>.i‘1<i'2,

(4) k& = [ka™,kat] for 0 < k < 1.
Clearly, (DJ[0,1], <, A, V) forms a complete lattice with the least element 0 = [0, 0] and the greatest
element 1 = [1,1].

Recall from [27] that an interval valued fuzzy subset A on X is the set

A = {(z, [y (2), iy (x)])]z € X},
such that fi; and fi{ are two fuzzy subsets of X with fi;(z) < ifi(z) for all z € X. We put
fia(z) = [iy(z), il (x)]. Then we have A = {(z, fia(z))|z € X} such that fia: X — D[0,1].
An interval valued fuzzy set A of a Krasner (m,n)-hyperring R of the form

i) = { {5

otherwise.
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is called a fuzzy interval value with support x and interval value § and is denoted by F'(x;§). A
fuzzy interval value F'(x;§) is said to belong to (resp. be quasi-coincident with) an interval valued
fuzzy set A, written as F(z;5) € A (resp. F(x;8)qA) if fia(x) > § (resp. fia(z)+ 35> [1,1]). We
write F'(x;8) € Vq (resp. F(x;5) € Aq) A if F(z;5) € A or (resp. and) F(x;8)gA. If € Vg does
not hold, then we write € Vgq.

Suppose that G is a nonempty set. P*(G) denotes the set of all the nonempty subsets of G.
The map f : G" — P*(G) is called an n-ary hyperoperation and the algebraic system (G, f)
is called an n-ary hypergroupoid. For non-empty subsets Gi,...,G, of G we define f(G}) =
f(G1,...,Gr) = U{f(a}) | a; € G;,i = 1,...,n}. The sequence a;, a1, ...,a; will be denoted by
ag. For j < i, ag is the empty symbol. Using this notation, f(ai,...,as, bit1, ..., b5, ¢jt1, ..., cn) Will

be written as f(af, bl |, cjy1). The expression will be written in the form f(at,b0=9), ¢jy1), when
bit1=..=bj=0.Ifforevery 1 <i < j <nandall aj,as,...,a2,—1 € G,

o . _ i1 i—1 _
Flay ™ flaf ™), a5 ) = flal L flaf ), 6l ),

then the n-ary hyperoperation f is called associative. An n-ary hypergroupoid with the associative
n-ary hyperoperation is called an n-ary semihypergroup. ‘

An n-ary hypergroupoid (G, f) in which the equation y € f (le_l, a;, r{, ;) has a solution a; € G
for every ;vlfl,x?ﬂ,y € G and 1 < i < n, is called an n-ary quasihypergroup, when (G, f) is an
n-ary semihypergroup, (G, f) is called an n-ary hypergroup.

An n-ary hypergroupoid (G, f) is commutative if for all o € S, the group of all permutations
of {1,2,3,...,n}, and for every 27 € G we have f(z1,...,2n) = f(T5(1), s To(n)). If 2T € G then
we denote xjg?)) as the (T4(1), -+ To(n))-

Assume that f is an n-ary hyperoperation and ¢t = I(n — 1) + 1, then ¢-ary hyperoperation fo

is defined as f(l) (xll(n_l)H) = f(f(.., f(f(:c?),xiﬂ_ll), )y a:l(giz)l():_ll)ﬂ).

Definition 2.2. [20] Let (G, f) be an n-ary hypergroup and H be a non-empty subset of G. H is
an n-ary subhypergroup of (G, f), if f(a}) C H for a} € H, and the equation b € f(b’fl,xi,b?“)
has a solution x; € H for every b1, b€ H and 1 <i < n. An element e € G is said to be a
scalar neutral element if a = f(e(i_l), a, e("_i)), for every 1 < i <n and for every a € G.

An element 0 of an n-ary semihypergroup (G, g) is a zero element if g(0,a%) = g(az,0,a) =

.. =g(a%,0) =0 for all ay € G.

Definition 2.3. [15] Let (G, f) be an n-ary hypergroup. (G, f) is called a canonical n-ary hyper-
group if

(1) there exists a unique e € G, such that f(a,e" V) =a for alla € G

(2) for all a € G there exists a unique a~' € G, such that e € f(a,a~",e"=2);

(3) if a € f(a}), then for all i, we have a; € f(a,a™ !, ...,a;_ll,a;_ll, e ant).

We say that e is the scalar identity of (G, f) and a™" is the inverse of a. Notice that the inverse
of e is e.

Definition 2.4. [20] A Krasner (m,n)-hyperring is an algebraic hyperstructure (R, f,g), or simply
R, which satisfies the following axioms:

(1) (R, f) is a canonical m-ary hypergroup;

2) (R, g) is a n-ary semigroup;

(
(3) the n-ary operation g is distributive with respect to the m-ary hyperoperation f , i.e., for
1

xi_ 7x?+1?a71n € R7 and 1 < i < n, g($§_17f(a7171)7$?+1) = f(g(x§_17a17x?+1)7 ...,g(l‘i_l,am,$?+1));

(4) 0 is a zero element of the n-ary operation g, i.e., for ay € R, g(0,a%) = g(az,0,a%) = ... =
g(a3,0) = 0.
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A non-empty subset S of R is called a subhyperring of R if (S, f,g) is a Krasner (m,n)-
hyperring. Let I be a non-empty subset of R, we say that I is a hyperideal of (R, f, g) if (, f) is
an m-ary subhypergroup of (R, f) and g(alfl, I,a} ) C 1, for every af € Rand 1 <i<n.

Definition 2.5. [8] A Fuzzy subset A of a Krasner (m,n)-hyperring R is said to be a fuzzy
hyperideal of R if the following conditions hold:

(i) min{A(a1), ..., Alan)} < inf{f(c)| c € f(a")} for all a7 € R;

(ii) A(a) < A(—a), for alla € R;

(iii) maz{A(a1),..., Alan)} < A(g(al)), for all a} € R.

It was shown (Theorem 5.6 in [8]) that a fuzzy subset A of a Krasner (m,n)-hyperring R is a
fuzzy hyperideal if and only if every its non-empty level subset is a hyperideal of R.

3 Interval valued («, §)-fuzzy hyperideals

In this section, we introduce the notion of n-ary interval valued (a, 8)-fuzzy hyperideal in a Krasner
(m,n)-hyperring R where «, 8 € {€,q, € Vq, € A\q}.

Definition 3.1. An interval valued fuzzy set A of a Krasner (m,n)-hyperring R is said to be n-ary
interval valued (o, B)-fuzzy hyperideal of R where o, 8 € {€,q, € Vq, € Aq} if for all sT*,t}, s € (0,1]
and af*, b1, b € R, the following conditions hold:

(1) F(a1;81)0A, ..., F(am; $m)aA impliy that F(a;rmin{si,...,5n})BA, for all a € f(a]"),
(2) F(b;3)aA implies that F(—b;5)BA,
(3) F(bi;s1)aA, ..., F(by; $p)aA imply that F(g(b7); 5)BA,

Notice that a =€ Aq in Definition Ell should not be considered. Let fi4(a) < [0.5,0.5] for an
interval valued fuzzy set A of R and for all @ € R. Assume that F(a;8) € AgA for a € R and
s € (0,1]. This means fig(a) > 5§ and fig(a)+ § > [1,1]. Then we have

[1,1] < fraa) + 5 < frala) + fra(a) = 2fia(a),
and so fi4(a) > [0.5,0.5]. This follows that {F(a;3) | F(a;5) € AgA} = 2.

Example 3.2. Consider the (2,2)-hyperring (R = {z,y,z,w},H,-) such that the hyperoperation
"H” and operation” -7 are defined as:

EE‘z Y z

w |y 2w
P P S 17 S IS O AEEEE
y | {v}  Azyr {w} {2} y|zyyy
z | {z} {w} A=z, z} {y} z| x z z 2z
w | {w} {z} Ay} Az,w} wlr w w w

Let

. [0.2,0.3] ifa=x,
fia(a) = )
[0.6,0.7 ifa=1y,zw.
Then it is easy to check that A is a 2-ary interval valued (€, € Aq)-fuzzy hyperideal of R.

Theorem 3.3. Let A be an n-ary interval valued (€, €)-fuzzy hyperideal of a Krasner (m,n)-
hyperring R. Then A is an n-ary interval valued (€, € Vq)-fuzzy hyperideal of R.
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Proof. The proof is straightforward. O

Theorem 3.4. Let A be an n-ary interval valued (€ Vq, € Vq)-fuzzy hyperideal of a Krasner
(m, n)-hyperring R. Then A is an n-ary interval valued (€, € Vq)-fuzzy hyperideal of R.

Proof. Let A be an n-ary interval valued (€ Vg, € Vq)-fuzzy hyperideal of R. Let F(aq;81) €
A, .. F(am;8n) € Aforall s7* € (0,1] and a]* € R. Therefore F(a;;51) € VgA, ..., F(am;Sm) €
VqA. Since A be an n-ary interval valued (€ Vg, € Vq)-fuzzy hyperideal of R, then for all a €
f(a), F(a;rmin{s1,...,5m}) € VgA. The proofs of the other cases are similar. O

Theorem 3.5. Let I be a hyperideal of a Krasner (m,n)-hyperring R. Then the characteristic
function x1 of I is an n-ary interval valued (€, €)-fuzzy hyperideal of R.

Proof. Let I be a hyperideal of a Krasner (m, n)-hyperring R. Let F(a1;51) € X1, -+, F(am; 8m) €
x1 for all s7* € (0,1] and af* € R. Then for 1 < i < m, xr(a;) > & > [0,0]. Then we get
xr(a;) = [1,1] for all 1 <4 < m. This means a; € xs for all 1 < i < m. Therefore a € x; for all
a € f(ay). Thus xr(a) = [1,1] > rmin{51,..., 5y} which implies F'(a;rmin{s1,...,5n}) € X1
The proofs of the other conditions are similar. O

Let A be an interval valued fuzzy set. The set F(A;5) = {a € R | fia(a) > §} is called
the interval valued level subset of A. We say that an interval valued fuzzy set A of a Krasner
(m,n)-hyperring R is proper if |[Im.A| > 2. If two interval valued fuzzy sets have the same family
of interval valued level subsets, then they are said to be equivalent.

Theorem 3.6. Let R be a Krasner (m,n)-hyperring containing some proper hyperideals and let
A be an proper interval valued (€, €)-fuzzy hyperideal of R with [ImA| > 3. Then A = A; U A3
such that Ay and As are non-equivalent interval valued (€, €)-fuzzy hyperideals of R.

Proof. The proof is similar to the proof of Theorem 3.7 in [31]. O

4 n-ary interval valued (€, € Vq)-fuzzy hyperideals

In this section, we first generalize the notion of fuzzy hyperideals to the notion of interval valued
fuzzy hyperideals in a Krasner (m, n)-hyperring. Then we study some fundamental aspects of the
interval valued (€, € Vq)-fuzzy hyperideals in a Krasner (m,n)-hyperring.

Definition 4.1. Let A be an interval valued fuzzy set of a Krasner (m,n)-hyperring R. A refers
to an n-ary interval valued fuzzy hyperideal if for all al*,b7,b € R, the following conditions hold:

(i) rmin{fia(ar), ..., palam)} <rinf{pala) [ a € f(al")},
(ii) fra(b) < fa(=b)
(iil) rmaz{pa(br), ..., falbn)} < f1a(g(b7)).
The following is a direct consequence and can be proved easily and so the proof is omited.

Theorem 4.2. Let A be an interval valued fuzzy set of a Krasner (m,n)-hyperring R. Then
A is an n-ary interval valued fuzzy hyperideal of R if and only if for each [0,0] < § < [1,1],
F(A;38)(# @) is a hyperideal of R.
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Proof. = Let A be an n-ary interval valued fuzzy hyperideal of R and a* € F(A4;35). Then we get
rmin{fia(ai), ..., ia(am)} > 8. Therefore rinf{fia(a) | a € f(al*)} > § which means a € F(A;3)
for all @ € f(af"). Thus f(a]*) C F(A;5). Also, since fia(b) < fia(—b), we have —b € F(A;3)
for b € F(A;5). Now, assume that b7 € R and b; € F(A;3) for some 1 < i < n. Therefore
fia(b;) > 5. Hence 5 < rmax{fia(bi),...,aa(bn)} < fa(g(d?)). Thus g(b7 ", F(A;3),b7,) C
F(A;3). Consequently, F'(A;3§) is a hyperideal of R.

<= Since fia(a;) > rmin{fa(ai),...,fpalam)} = 8o for all a* € R, we get a; € F(A;3p).
By the assumption, we have f(a}") C F(A;30) which implies fig(a) > 5o for all a € f(a]?).
Therefore we conclude that § < rmin{fia(a1),...,fpa(am)} < rinf{ia(a) | a € f(a*)}. The
other conditions can be proved easily. O

Definition 4.3. Let A be an interval valued fuzzy set of a Krasner (m,n)-hyperring R. A is called
an n-ary interval valued (€, € Vq)-fuzzy hyperideal of R if for all s7*,t7,t € (0,1] and ai*,b},b € R

(i1) F(a1;81) € A, ..., F(am;3m) € A imply F(a;rmin{s1,...,5n}) € VqA, for all a € f(al"),
(ii1) F(b;t) € A implies F(—b;t) € VgA
(iiil) F(by;t1) € A,..., F(by;ty) € A imply F(g(b});rmaz{ty,... ,t,}) € VgA

It is clear that every n-ary interval valued fuzzy hyperideal of a Krasner (m,n)-hyperring is
an n-ary interval valued (€, € Vq)-fuzzy hyperideal of R. The following example shows that the
inverse is not true, in general.

Example 4.4. The set R = {0,1,2,3} with following 2-hyperoperation is a canonical 2-ary hyper-
group:

@0 1 2 3
00 1 2 3
11 A 3 B
2 | 2 3 0 1
3|3 B 1 A

in which A ={0,1} and B = {2,3}. Define a 4-ary operation g on R as follows:

g(al

) - 2 ifal,ag,ag,a4 €B
0 otherwise.

It follows that (R, ®,g) is a Krasner (2,4)-hyperring. Now, we define ia(0) = g4(1) = [0.8,0.9],
ia(2) =10.7,0.8] and fia(3) = [0.6,0.7]. Then it is easy to check that A is an interval valued
(€,€ V,q)-)-fuzzy hyperideal of R.

In the following theorem, we present an equivalent condition for n-ary interval valued (€, € Vq)-
fuzzy hyperideals.

Theorem 4.5. Let A be an interval valued fuzzy set of a Krasner (m,n)-hyperring R. Then A is
an n-ary interval valued (€, € Vq)-fuzzy hyperideal of R if and only if for all a*,b7,b € R,

(2) rmin{fialar).....fia(an), [0.5,0.5]} < rinf{jia(a) | a € f(af")},
(ii2) rmin{fia(b),[0.5.0.5]} < jia(—b),

(ii12) rmaz{fa®r),. ... fia(bn),[0.5,05]} < fialg(By)).
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Proof. We need to show that the conditions of Definition @ are equivalent to the conditions (i2),
(ii2) and (iii2), respectively.
il) = (i2): Let ai* € R. Then There exist two cases to be considered:

(
(1) Tmin{ﬂfl(al)a s 7[%4((1771)} < [0'57 0‘5]’
)

(2)  rmin{pa(ar),...,ias(amn)} >[0.5,0.5].

Case (1): Let fia(a) < rmin{fia(ar),...,fa(anm),[0.5,0.5]}, for some a € f(a]"). Therefore
fala) <rmin{fia(ai),...,pa(am)}. Takes € (0,1] that fa(a) < § < rmin{fia(ai),...,falam)}
This implies that for all 1 < i <m, F(a;;5) € A but F(a;§)€ VgA, a contradiction.
Case (2): Suppose that there exists a € f(a}*) with fia(a) < [0.5,0.5]. Then we conclude that
F(a;;]0.5,0.5]) € Aforall1 <i < masrmin{ia(ai),...,fas(amn)} > [0.5,0.5]. In the other hand,
F(a;[0.5.0.5])€ VgA, a contradiction.

(#i1) = (442): Let b € R. Then we have the following two cases:

(1) fa(b) <[0.5,0.5],
() jia(b) > [0.5,0.5].

Case (1): Let us consider jig(b) = 3§ < [0.5,0.5] and jiag(—b) = £ < jia(b). We take r such
that t < # < 5 and £ + 7 < [0.5,0,5]. Thus we get F(b;7) € A but F(—b;7)€ VgA. This is a
contradiction.

Case (2): Suppose that i4(b) > [0.5,0.5] and rmin{f4(b),[0.5.0.5]} > fia(—b). Therefore we
obtain F'(b;[0.5,0.5]) € A but F(—b;[0.5,0.5])€ Vg.A, a contradiction.

(7911) = (i7i2) By using an argument similar to that in the proof of (i1) = (i2) one can
easily complete the proof.

(12) = (i1) Let F(a1;51) € A, ..., F(am;8m) € Afor a* € R and s{* € (0,1]. This means
that for all 1 < i < m we get fig(a;) § On the other hand, we have rmin{si,..., §m,[0.5,0.5]} <
rmin{fia(a), ..., fpalam),[0.5,0.5]} < fia(a) for each a € f(a]"). Now, if rmin{s1,...,5,} >
[0.5,0.5], then we have fi4(a) > [0.5, 0.5] and so fig(a) +rmin{sy,..., 8.} > [1,1]. Otherwise, we
get fia(a) > rmin{si,..., 8y} and then F(a;rmin{si,...,5,}) € V¢A for each a € f(a]").

(112) = (ii1) Suppose that F(b;5) € A for some b € R and s € (0,1]. This means fi4(b) >
5. Thus, rmin{s,[0.5,0.5])} < rmin{f4(b),[0.5,0.5])} < fGa(=b). Now, if § < [0.5,0.5], then
fa(—b) > § and if § > [0.5,0.5], then we get i4(—b) > [0.5,0.5].

(7912) = (4i71) This can be proved in a very similar manner to the way in which (:2) = (il)
was proved. O

>
}

Theorem 4.6. Let I be a subset of a Krasner (m,n)-hyperring R. I is a hyperideal of R if and
only if x1 s an n-ary interval valued (€, € Vq)-fuzzy hyperideal of R.

Proof. = Let I be a hyperideal of R. By Theorem @, we conclude that x; is an n-ary interval

valued (€, €)-fuzzy hyperideal of R. Thus x7 is an n-ary interval valued (€, € Vq)-fuzzy hyperideal

of R, by Theorem

<= Suppose that y; is an n-ary interval valued (€, € V¢)-fuzzy hyperideal of R. Let af* € I. This

means F'(a;;[1,1]) € x for all 1 <i <m. Thus F(a;[1,1]) = F(a;rmin{[1,1],...,[1,1]}) € Vgxr,
—_——

m
for all a € f(al"). Therefore fir(a) > [0,0] for all a € f(a]*) which implies f(a]*) C I. Assume
that a € I. Therefore F(a;[1,1]) € x; which means F(—a;[1,1]) € Vgxs. Hence x7(—a) > [0,0].
Consequently, we get —a € I. Now we suppose that b} € R and b; € I for some 1 < i < n. Then
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we get F'(b;[1,1]) € x7. From rmaz{x;(b1),...,X1(bi-1), X[(b )y X1(bit1), -, x1(bn),[0.5,0.5]} <
Xr(g(d})), it follows that F(g(b7);[1,1]) € x7. Thus g(b ', b;,b% ) € I. Hence I is a hyperideal
of R. t

In the following theorem, we examine n-ary interval valued (€, € Vq)-fuzzy hyperideals by level
subsets.

Theorem 4.7. If A is an n-ary interval valued (€, € Vq)-fuzzy hyperideal of a Krasner (m,n)-
hyperring R, then F(A;3) is an empty set or a hyperideal of R for every [0,0] < § < [0.5,0.5].

Proof. Suppose that A is an n-ary interval valued (€, € Vq)-fuzzy hyperideal of R and [0,0] <
§ < [0.5,0.5]. Let a* € F(A;5). This means that fi4(a;) > § for all 1 < ¢ < m and so
§ = rmin{s,[0.5,0.5]} < rmin{ia(ai),...,fGa(am),[0.5,0.5]} < rinf{fia(a)|a € f(a*)}. Thus
f(a") C F(A;3). Let b € F(A;3). Then fi4(b) > 3. Now we get fia(—b) > rmin{i(b),[0.5,0.5]} =
rmin{s,[0.5,0.5]} = § which implies —b € F(A;§). Moreover, let b € R such that b; € F(A;3).
Then fia(g(b7)) = rmaz{fia(br), ..., fa(bi-1), fa(b), fa(biy1), .., fa(bn),[0.5,0.5]} > 5. Hence
we conclude that g(b}) € F(A;§). Consequently, F(A; §) is a hyperideal of R. O

In the next theorem, the subsets are discussed where [0.5,0.5] < § < [1,1].

Theorem 4.8. Let A be an interval valued fuzzy set of a Krasner (m,n)-hyperring R. Then
F(A;38)(# @) is a hyperideal of R for every [0.5,0.5] < § < [1,1] if and only if for all aT*,b7,b € R,

(1) rmin{fia(ar), ..., fa(am)} < rinf{rmaz{ia(a),[0.5,0.5]} | a € f(a]")},
(2) pa(b) < rmax{ia(=b),[0.5.0.5]},
(

3) rmaz{pa(bi),. .., palbe)} < rmaz{fia(g(by)),[0.5,0.5]}.

Proof. = Suppose that F(A;35)(# @) is a hyperideal of R for every [0.5,0.5] < 5 < [1,1].

(1) Let rmax{fia(a),[0.5,0.5]} < rmin{ia(ai),...,fda(am)} = § for some af* € R such that
a € f(a"). This implies that [0.5,0.5] < § < [1,1] and a* € F(A; ). Since F(A;3§) is a hyperideal
of R and a* € F(A;35), we get f(a]*) C F(A;§). This means that fi4(a) > § for each a € f(al"), a
contradiction. Thus rmin{fia(ai),...,kalan)} < rinf{rmax{fi(a),[0.5,0.5]} | a € f(a]")} for
all a7 € R.

(2) Suppose that § = fa(b) > rmax{fis(—b),[0.5.0.5]}, for some b € R. This implies that
[0.5,0.5] < § < [1,1] and b € F(A;8). Since F(A;3) is a hyperideal of R and b € F(A4;3),
we conclude that —b € F(A;§) which means fiq(—b) > 5, a contradiction. Hence fi4(b) <
rmaz{fia(—b),[0.5.0.5]} for b € R.

(3) By a similar argument to that of (1), we can prove

rmaz{fia(br), ..., palbn)} < rmax{fia(g(by)),[0.5,0.5]},

for b € R.

<= Let a]" € F(A; ) with [0.5,0.5] < § <[1,1]. Then [0.5,0.5] < § < rmin{fia(ai),...,fa(am)} <
rinf{rmaz{ia(a),[0.5,0.5]} | a € f(a]")} and so § < rinf{ia(a) | a € f(aT")}. Thus f(a}*) C
F(A;5). Also, let b € F(A;5). Then we get [0.5,0.5] < § < fia(b) < rmax{iia(—b),[0.5.0.5]}.
Therefore § < fia(—b) which means —b € F(A;5). Now, let b7 € R and b; € F(A;35). Then we
obtain

[0.5,0.5] < 8 < rmax{fia(b1),. .., ialbi-1), fA(bi), fa(bit1), - fralbn)}
< Tma’x{/lA(g( 717‘))7 [05705]}
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Hence § < fi4(g(b})) and so g(b}) € F(A;S). Consequently, F'(A;3) is a hyperideal of R for
every [0.5,0.5] < § < [1 1]. O

Definition 4.9. Let A be an interval valued fuzzy set of a Krasner (m,n)-hyperring R and
s1,82 € [0,1] with 51 < 8. A refers to an n-ary interval valued fuzzy hyperideal with thresholds
(51,52) of R if for all a}*,b},b € R, A satisfies the following conditions:

(1) rmin{fia(ar), ..., fialam), 52} < rinf{rmaz{fa(a), 51} | a € f(ai")},
(2) Tmin{ﬂA(b)v 52} < T‘mCLSC{,[L_A(—b), gl};
(3) rmaz{fia(br), ..., faby), 52} < rmaz{fa(g(by)), 51}

Suppose that A is an n-ary interval valued fuzzy hyperideal with thresholds of a Krasner
(m, n)-hyperring R. Let us consider §; = [0,0] and 52 = [1,1]. Then A is an ordinary interval
valued fuzzy hyperideal. Moreover, if we consider §; = [0,0] and 52 = [0.5,0.5], then A is an n-ary
interval valued (€, € Vq)-fuzzy hyperideal.

Theorem 4.10. Let A be an interval valued fuzzy set of a Krasner (m,n)-hyperring R. Then A
is an n-ary interval valued fuzzy hyperideal with thresholds (51,52) of R if and only if F(A;S) is
a hyperideal of R for every 51 < § < 33.

Proof. = Let a" € F(A;5). Thereby we have fia(a;) > § for all 1 < ¢ < m. Then we
deduce 51 < § <rmin{s, 52} < rmin{pia(ar),...,ida(am), 52} and so rinf{rmaz{fia(a),51} | a €
f(af™)} > 5. This means that rmaz{fia(a),51} > s for all a € f(a}"). Then we get fia(a) > §
which implies a € F(A;§). Therefore f(al*) C F(A;3). Also, we assume that b € F'(A;5). Then
rmax{fia(—b),51} > rmin{pia(b),52} > § > §;. Thereby we have fi4(—b) > § which means
—b € F(A;3). Now, we consider b € R and b; € F(A;3). Then fia(b;) > 5. Hence we obtain
rmax{fa(bi),...,fa(bn),S2} > rmax{s, 52} > § > §;. Then we get rmax{i(g(b})),51} > 5.
Therefore fi4(g(b})) > 5 which means g(b}) € F(A;5). Thus F(A;3) is a hyperideal of R for every
51 < 5 < 89.

<= Let rmaz{fia(a),51} < rmin{fia(ai),...,fGa(am),S2} = § for some a € f(a]*) such that
ai* € R. This means §; < § < § and a* € F(A;8). Then f(a]*) C F(A;S), as F(A;3) is a
hyperideal of R. Therefore we get fia(a) > s for all a € f(a"), a contradiction. Then for all
al* € R, rmin{fia(ai),..., fpalam), 52} < rmaz{fia(a),51}. Also, put § = rmax{fia(—b),51} for
some b € R. Suppose that rmin{fi4(b),S2} > §. Hence b € F(A;3) which implies —b € F(A;3)
and so fig(—b) > 3, a contradiction. Thus rmin{i (), S2} < rmax{is(—b), 1} for b € R. Now,
put § = rmax{fia(b1),...,f1a(bn),S2} for some b} € R. We assume that rmaz{p4(g(b})), 51} < 3.
Then we get 51 < § < 53 and g(b}) € F(A;3). Therefore fi4(g(b})) > §, a contradiction. So
rmax{fa(bi),...,0a(bn), 52} < rmaz{pa(g(b})), 51}, for every b} € R. Consequently, A is an
n-ary interval valued fuzzy hyperideal with thresholds (51, §2) of R. O

5 Implication-based interval valued fuzzy hyperideals of a Kras-
ner (m,n)-hyperring

Logic is a study of language in arguments and persuasion. We can use it to judge the correctness
of a chain of reasoning in a mathematical proof. Fuzzy logic is a generalization of set theoretic
variables in terms of the linguistic variable truth. By using extension principal some operators like
V, A\, —, — can be applied in fuzzy logic. In the fuzzy logic, [P] denotes the truth value of fuzzy



22 M. Anbarloei

proposition P. In the following, a correspondence between set-theoretical notions and fuzzy logic
is shown.

[a € A] = A(a);

[a ¢ Al =1— A(a);

[PV Q] = maz{[P], [Q]};

[P A Q] = min{[P],[Q]};

[Va P(a)] = inf[P(a)];

[P — Q] = min{1,1 - [P] +[Q]};

= P if and only if [P] = 1 for all valuations.

Various implication operators can been defined. In the following, we give a selection of the most

important multi-valued implications, where o« means the degree of membership of the premise, 3
the respective values for the consequence and I the resulting degree of truth for the implication.

Name Definition of Implication operators
Early Zadeh Ly (e, B) = max{l — a,min{c, 5}},
FLukasiewicz I.(o, ) = min{1,1 — a + 5},
Kleene-Dienes Iy(c, 8) = max{1 — «, B},
.. ] 1 a < f,
Contraposition of Godel Lg(a, B) = { l—a a>p
I a<p,
Standard Star (Godel) Iy(or, B) = { 5 >4
1 a<p,
Goguen Iyg(cr, B) = { g o> B
. 1 a<p,
Gaines-Rescher Iyr(o, B) = { 0 asp

In the following definition, we considered the definition of implicative operator in the Y ukasiewicz

system of continuous-valued logic.

Definition 5.1. Let A be an interval valued fuzzy set of a Krasner (m,n)-hyperring R. A refers
to an n-ary interval valued fuzzifying hyperideal of R if it satisfies:

(1)  E[rmin{la; € A],...,[am € A]} — [Va € f(a]"), a € A]], for all a]* € R,
(2) E[be A — [-be A]], for each b e R,
(3)  E [rmax{[by € A],...,[bn € A} — [g(b}) € A]], for all b} € R.

It is clear that an interval valued fuzzifying hyperideal is an ordinary n-ary interval valued
fuzzy hyperideal. We have the notion of interval valued t-tautology. In fact, |=7 P if and only if
[P] > t for all valuations (see [31]). Now, we give the following definition.

Definition 5.2. Let A be an interval valued fuzzy set of a Krasner (m,n)-hyperring R and

t € (0,1]. Then A is said to be an n-ary t-implication-based interval valued fuzzy hyperideal of R
if the following conditions hold:

(1) g lrmin{lar € A], ... [am € A} — Va € f(aT"), a € A]|, for all af* € R,
(2) Ej[be Al — [-be A]], for each b € R,
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(3)  =p [rmaz{[b1 € Al,...,[bn € A} — [g(b}) € A]], for all b} € R.

Corollary 5.3. Let A be an interval valued fuzzy set of a Krasner (m,n)-hyperring R and I be
an implicative operator. Then A is an n-ary t-implication-based interval valued fuzzy hyperideal
of R for some t € (0,1] if and only if

(1) for any a" € R, I(rmin{fa(ar), ..., pa(am), rinf{rmaz{fi(a),5:} | a € f(a7")} >,
(2) foranybe R, I(fia(b), pa(=b)) >,
(3) for any bt € R, I(rmaz{fia(by), ..., aa(by), falg(d?))} > ¢

Theorem 5.4. (1) Suppose that I = I,.. Then A is an n-ary [0.5,0.5]-implication-based interval
valued fuzzy hyperideal of R if and only if A is an n-ary interval valued fuzzy hyperideal with
thresholds (5§ = [0,0],7 = [1,1]) of R.

(2) Suppose that I = I,. Then A is an n-ary [0.5,0.5]-implication-based interval valued fuzzy
hyperideal of R if and only if A is an m-ary interval valued fuzzy hyperideal with thresholds
(§ =10,0],7 =[0.5,0.5]) of R.

(3) Suppose that I = I.4,. Then A is an n-ary [0.5,0.5]-implication-based interval valued
fuzzy hyperideal of R if and only if A is an n-ary interval valued fuzzy hyperideal with thresholds
(§ =10.5,0.5],7 =[1,1]) of R.

Proof. These can be proved by using definitions. O

Corollary 5.5. (1) Let I = Iy.. Then A is an n-ary [0.5,0.5]-implication-based interval valued
fuzzy hyperideal of R if and only if A is an ordinary n-ary interval valued fuzzy hyperideal of R.
(2) Let I =1,. Then A is an n-ary [0.5,0.5]-implication-based interval valued fuzzy hyperideal
of R if and only if A is an n-ary interval valued (€, € Vq)-fuzzy hyperideal of R.
(3) Let I = I.y. Then A is an n-ary [0.5,0.5]-implication-based interval valued fuzzy hyperideal
of R if and only if A is an n-ary interval valued (€, € Vq)-fuzzy hyperideal of R.

6 Conclusion

Since hyperstructure theory was introduced by Marty in 1934, the idea has been investigated by
many researches in the following decades. In this paper, we introduced and characterized the
interval valued (a, B)-fuzzy hyperideals of a Krasner (m,n)-hyperring, in which special attention
was concentrated on the interval valued (€, € Vq)-fuzzy hyperideals. The consequences given in this
paper can hopefully provide more realization into and a full cognition of algebraic hyperstructures
and fuzzy set theory.
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