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Abstract

Krasner hyperrings are a generalization of rings. Indeed,
in a Krasner hyperring the addition is a hyperoperation,
while the multiplication is an ordinary operation. On the
other hand, a generalization of rough set theory is the
near set theory. Now, in this paper we are interested in
combining these concepts. We study and investigate the
notion of near Krasner hyperrings on a nearness approx-
imation space. Also, we define near subhyperring, near
hyperideal, near homomorphism and prove some results
and present several examples in this respect.
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1 Introduction
For the first time, the idea of rough sets was presented by Pawlak [19, 20], in 1982. The theory
of rough sets is an extension of set theory. The basis of this theory is an equivalence relation on
the universal set. Pawlak defined the lower and upper approximations of a subset by using an
equivalence relation. Many mathematicians extended and utilized the rough theory in algebraic
structure. For sample, the notion of rough subring and ideal investigated by Davvaz [6]. This topic
was studied and analyzed by several researchers. We refer the readers to [2, 5, 13]. A generalization
of rough set theory is the near set theory. This topic was studied by Peter in 2007 [21]. Peters
described an indiscernibility relation by utilizing the property of the objects to find the nearness
of objects. In 2012, Inan and Ozturk investigated the notion of near groups [9, 8]. In 2013, Ozturk
introduced nearness group of weak cosets [18]. In 2015, Inan and Ozturk investigated the nearness
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semigroups [10]. In 2019, Ozturk and Inan introduced nearness rings [16]. For the work done on
near sets, we point out to [1, 17].

The hyperstructures theory is presented by Marty in 1934 [14]. In this theory, the composition
of two members is a non-empty set. In the field of hypergroups, the first book was written by
Corsini in 1993 [3]. In [4], Corsini and Leoreanu showed that the theory of hyperstructures has
many applications in: geometry, hypergraghs, binary relations, codes, median algebras. In [12],
Krasner defined the idea of the hyperfields and hyperrings. A hyperfield and a hyperring are
a generalization of a field and a ring. The first kind of hyperrings was presented by Krasner
where addition is a hyperopration but product is a binary operation. In 1982, the second kind of
hyperrings was defined by Rota [24]. These hyperrings is called a multiplicative hyperring. The last
kind hyperring was created by Mittas where both are hyperoperation. Theses hyperrings is called
general hyperrings [15]. A monograph on hyperring theory is written by Davvaz and Leorenu-Fotea
[7]. Jun studied algebraic geometry over hyperrings [11]. The theory of hyperstructures has been
reviewed in [7, 25, 26, 27]

In this article, we first present and study the idea of near Krasner hyperring theory, which
extends the notion of a near ring. Then, we define near (prime) hyperideals and prove some
theorems and lemmas about them and present some examples. Also, we show that the intersection
of two near prime hyperideals of R is not a near prime hyperideal. Finally, in the last part, we
introduce the concept of near homomorphism and analyze several characterizations of them.

2 Preliminaries
In the section, we introduce the basic definitions and properties of near sets. For more results, we
refer to [18, 22, 23, 19].

Symbol Interpretation
R Set of real numbers
O Set of perceptual objects
M M ⊆ O, Sets of sample objects
m m ∈ O, Sample object
F A set of functions representing object features
B B ⊆ F
θ θ : O −→ Rn, Object description
n n is a description length,
θi θi ∈ B, where θi : O −→ R
θ(x) θ(x) =

(
θ1(x), ..., θn(x)

)
, description

Table 1: Description symbols

We denote NAS = (O,F ,∼Br , Nr, vNr) and is named nearness approximation space where O is a
set of percieved objects, F is a set of prob functions,

∼Br= {(m,n) ∈ O ×O : θi ∈ B, θi(m) = θi(n)},

is indiscernibility relation with Br ⊆ B ⊆ F , Nr(B) is a collection of partition. The subscript
r denotes the cardinally of the restricted subset Br, where we consider

(|B|
r

)
, i.e., |B| functions

i ∈ F taken r at a time to define the relation ∼Br . Also, Nr(B)∗M = {m ∈ O : [m]Br ⊆ M}
is called lower approximation and Nr(B)∗M = {m ∈ O : [m]Br ∩ M ̸= ∅} is said to be upper
approximation of M . We suppose that ℘(O) is power set of O, the function vNr is defined by
vNr : ℘(O)× ℘(O) → [0, 1].
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Proposition 2.1. Let (O,F ,∼Br , Nr, vNr) be a nearness approximation space and M,N ⊆ O.
Then the approximations have the following properties:

(1) Nr(B)∗M ⊆ M ⊆ Nr(B)∗M ,

(2) Nr(B)∗(M ∪N) = Nr(B)∗M ∪Nr(B)∗N ,

(3) Nr(B)∗(M ∩N) = Nr(B)∗M ∩Nr(B)∗N ,

(4) M ⊆ N implies Nr(B)∗M ⊆ Nr(B)∗N ,

(5) M ⊆ N implies Nr(B)∗M ⊆ Nr(B)∗N ,

(6) Nr(B)∗(M ∩N) ⊆ Nr(B)∗M ∩Nr(B)∗N ,

(7) Nr(B)∗M ∪Nr(B)∗N ⊆ Nr(B)∗(M ∪N).

Suppose that ∗ : H ×H → ℘∗(H) is a hyperoperation.

Remark 2.2. Suppose that M and N are non-empty subsets of H and x ∈ H. We define

M ∗N =
∪

m∈M
n∈N

m ∗ n, M ∗ x = M ∗ {x}.

The pair (H, ∗) is said to be a semihypergroup if for every a, b, c in H, we have (a∗b)∗c = a∗(b∗c).
Also, (R,+, ·) is called a Krasner hyperring [12] if for any a, b, c in R:

(i) (R,+) is a canonical hypergroup,
1. a+ (b+ c) = (a+ b) + c,
2. a+ b = b+ a,
3. there exists 0 ∈ R such that 0 + a = {a},
4. there exists a unique element denoted by −a ∈ R such that 0 ∈ a+ (−a),
5. c ∈ a+ b implies b ∈ −a+ c and a ∈ c− b.

(ii) (R, ·) is a semigroup having 0 as a bilaterally absorbing element, i.e., x · 0 = 0 · x = 0.

(iii) (x · y) · z = x · (y · z).

A non-empty subset M of R is said to be a subhyperring of R if x− y ⊆ M and x · y ∈ M for
every x, y ∈ M . A subhyperring N of R is normal if and only if x+N + x ⊆ N for any x ∈ R.

The non-empty subset I is called a left (right) hyperideal of R if for every a, b in I, we have
a− b ⊆ I and r.a ∈ I, for any r ∈ R. If N is a normal hyperideal of a Krasner hyperring R, then
we define the relation of x ≡ y(modN) ⇔ (x − y) ∩ N ̸= ∅. This relation is denotes by xN∗y.
Let (R,+,⊗) and (R′,⊎, ⋄) be two Krasner hyperrings. A mapping ϕ : R → R′ is said to be a
homomorphism if for any a, b ∈ R, we have ϕ(a + b) = ϕ(a) ⊎ ϕ(b), ϕ(a ⊗ b) = ϕ(a) ⋄ ϕ(b) and
ϕ(0) = 0.

3 Near Krasner hyperring and near subhyperring
In this part, we present the idea of a near hyperrings on nearness approximation spaces and give
some examples. Moreover, we study and analyze some of its features.
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Definition 3.1. Suppose that R ⊆ O. Then (R,⊕,⊗) is named a near Krasner hyperring on
NAS if the following are satisfied for every m,n, p ∈ R:

(1) m⊕ (n⊕ p) = (m⊕ n)⊕ p hold in Nr(B)∗R,

(2) m⊕ n = n⊕m,

(3) There exists 0 ∈ Nr(B)∗R such that 0⊕m = {m},

(4) There exists a unique element n ∈ R such that 0 ∈ m⊕ n,
(We shall write n = −m and we named it the near opposite of m.)

(5) p ∈ m⊕ n implies n ∈ −m⊕ p and m ∈ p− n,

(6) (R,⊗) is a near semigroup having zero as a near bilaterally absorbing element, i.e., m⊗ 0 =
0⊗m = 0,

(7) m⊗ (n⊕ p) = (m⊗ n)⊕ (m⊗ p) and
(m⊕ n)⊗ p = (m⊗ p)⊕ (n⊗ p) keep properties in Nr(B)∗R.

R is said to be commutative if m ⊗ n = n ⊗ m. Also, R is said be to a near Krasner hyperring
with identity if 1R ∈ Nr(B)∗R we get 1R ⊗m = m⊗ 1R = m.

Remark 3.2. Throughout this article, we assume (R,⊕,⊗) and R′,⊎,⊙) are two near Krasner
hyperrings on NAS.

Example 3.3. Suppose that O = {0, 1,m, n, p} with a hyperoperation “⊕” and an operation “⊗”
defined as follows:

⊕ 0 1 m n p

0 0 1 m n p

1 1 {0,m} {1, n} m n

m m {1, n} {0,m} 1 m

n n m 1 0 p

p 0 1 m n p

⊗ 0 1 m n p

0 0 0 0 0 0

1 0 1 m n 0

m 0 m m n 0

n 0 n n m 0

p 0 0 0 0 1

Then (O,⊕,⊗) is not a hyperring, because (O,⊕) is not associative, for instance

(m⊕ n)⊕ p = 1⊕ p = n ̸= m = m⊕ p = m⊕ (n⊕ p).

Suppose that B = {Θ1,Θ2,Θ3} is a subset of F , where Θi’s are functions. Assume that Θ1 : O →
{ρ1, ρ2, ρ3}, Θ2 : O → {ρ1, ρ2} and Θ3 : O → {ρ1, ρ2, ρ3} are given in the following table:

0 1 m n p

Θ1 ρ1 ρ2 ρ2 ρ3 ρ3
Θ2 ρ1 ρ1 ρ1 ρ2 ρ2
Θ3 ρ2 ρ1 ρ3 ρ3 ρ1
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Assume that R = {0, 1,m, n} ⊆ O with a hyperoperation “ ⊕ ” and an operation “ ⊗ ” defined in
the following tables:

⊕ 0 1 m n

0 0 1 m n

1 1 {0,m} {1, n} m

m m {1, n} {0,m} 1

n n m 1 0

⊗ 0 1 m n

0 0 0 0 0

1 0 1 m n

m 0 m m n

n 0 n n m

[0]Θ1 = {α ∈ O | Θ1(0) = Θ1(α) = ρ1} = {0},
[1]Θ1 = {α ∈ O | Θ1(1) = Θ1(α) = ρ2} = {1,m} = [m]Θ1 ,

[n]Θ1 = {α ∈ O | Θ1(n) = Θ1(α) = ρ3} = {n, p} = [p]Θ1 .

We obtain ξΘ1 = {[0]Θ1 , [1]Θ1 , [n]Θ1}.

[0]Θ2 = {α ∈ O | Θ2(0) = Θ2(α) = ρ1} = {0, 1,m} = [m]Θ2 = [1]Θ2 ,

[n]Θ2 = {α ∈ O | Θ2(b) = Θ2(α) = ρ2} = {n, p} = [p]Θ2 .

We get ξΘ2 = {[0]Θ2 , [n]Θ2}. In the same way, ξ3 = {[0]Θ3 , [1]Θ3 , [m]Θ3}.
Hence, for r = 1 a partition of O is N1 = {ξΘ1 , ξΘ2 , ξΘ3}. So, we obtain Nr(B)∗R = {0, 1,m, n, p}.
Therefore, in the sense of Definition 3.1, (R,⊕,⊗) is a near Krasner hyperring.

We defined a collection of partitions N1(B), where N1(B) = {ξO,B1 | B1 ⊆ B}. Families of
neighborhoods are constructed for any combination of functions in B using

(|B|
r

)
, that means of,

|B| functions taken 1 at a time. We can give an example for r = 2.

Example 3.4. In Example3.3, consider R = {0, 1,m, n} with a hyperoperation “ ⊕ ” and an
operation “⊗ ” by below tables:

⊕ 0 1 m n

0 0 1 m n

1 1 {0,m} {1, n} m

m m {1, n} {0,m} 1

n n m 1 0

⊗ 0 1 m n

0 0 0 0 0

1 0 1 m n

m 0 m m n

n 0 n n m
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We define a set of functions B = {ϕ1, ϕ2, ϕ3, ϕ4} ⊆ F . The values of functions ϕ1 : O →
{γ1, γ2, γ5}, ϕ2 : O → {γ2, γ3, γ4, γ5}, ϕ3 : O → {γ1, γ3, γ4, γ5} and ϕ4 : O → {γ3, γ4, γ5} are given
in the below table:

0 1 m n p

ϕ1 γ1 γ2 γ2 γ5 γ1
ϕ2 γ4 γ2 γ3 γ5 γ4
ϕ3 γ1 γ5 γ3 γ1 γ4
ϕ4 γ5 γ5 γ3 γ4 γ5

[1]{ϕ1,ϕ2} = {α ∈ O | ϕ1(α) = ϕ2(α) = ϕ1(1) = ϕ2(1) = γ2} = {1},
[n]{ϕ1,ϕ2} = {α ∈ O | ϕ1(α) = ϕ2(α) = ϕ1(n) = ϕ2(n) = γ5} = {n}.

We obtain ξ{ϕ1,ϕ2} = {[1]{ϕ1,ϕ2}, [n]{ϕ1,ϕ2}}.

[0]{ϕ1,ϕ3} = {α ∈ O | ϕ1(α) = ϕ3(α) = ϕ1(0) = ϕ3(0) = γ1} = {0, p} = [p]{ϕ1,ϕ3}.

We get ξ{ϕ1,ϕ3} = {[0]{ϕ1,ϕ3}}.

[m]{ϕ2,ϕ3} = {α ∈ O | ϕ2(α) = ϕ3(α) = ϕ2(m) = ϕ3(m) = γ3} = {m},
[p]{ϕ2,ϕ3} = {α ∈ O | ϕ2(α) = ϕ3(α) = ϕ2(p) = ϕ3(p) = γ4} = {p}.

So, we have ξ{ϕ2,ϕ3} = {[m]{ϕ2,ϕ3}, [p]{ϕ2,ϕ3}}.

[m]{ϕ2,ϕ4} = {α ∈ O | ϕ2(α) = ϕ4(α) = ϕ2(m) = ϕ4(m) = γ3} = {m}.

We get ξ{ϕ2,ϕ4} = {[m]{ϕ2,ϕ4}}.

[1]{ϕ3,ϕ4} = {α ∈ O | ϕ3(α) = ϕ4(α) = ϕ3(1) = ϕ4(1) = γ5} = {1},
[m]{ϕ3,ϕ4} = {α ∈ O | ϕ3(α) = ϕ4(α) = ϕ3(m) = ϕ4(m) = γ3} = {m}.

We obtain ξ{ϕ3,ϕ4} = {[1]{ϕ3,ϕ4}, [m]{ϕ3,ϕ4}}.
Thus, for r = 2, a set of partitions of O is N2(B) = {ξ{ϕ1,ϕ3}, ξ{ϕ2,ϕ3}, ξ{ϕ2,ϕ4}, ξ{ϕ3,ϕ4}}.

So, we write N2(B)∗(R) = {0, 1,m, n, p}. By Definition 3.1, (R,⊕,⊗) is a near Krasner
hyperring on NAS.

Corollary 3.5. Every Krasner hyperrings is a near Krasner hyperring on NAS.

Proof. It is straightforward.

Definition 3.6. [8] Let NAS = (O,F ,∼Br , Nr, vNr) be a nearness approximation space and let
· be a binary operation on O. A subset G of perceptual objects O is called a near group if the
following properties are satisfied:

(1) ∀x, y ∈ G, x · y ∈ Nr(B)∗G;

(2) ∀x, y, z ∈ G, (x · y) · z = x · (y · z) property holds in x · y ∈ Nr(B)∗G;

(3) ∃e ∈ Nr(B)∗G such that for all x ∈ G, x · e = e · x = x, e is called the near identity element;
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(4) ∀x ∈ G, ∃y ∈ G such that x · y = y · x = e, y is called the near inverse element of x.

Definition 3.7.
(1) Assume that (R,+, ·) is a near Krasner hyperring. Then R is said to be a near hyperfield if
(R \ {0}, ·) is a commutative near group.

(2) If R is a commutative near Krasner hyperring with unit element and mn = 0 implies m = 0 or
n = 0 for all m,n ∈ R, then R is a near hyperdomine.

Example 3.8. Let O = {0, 1, a, b} be a set with a hyperoperation “⊞ ” and an operation “⊠ ” by
the following tables:

⊞ 0 1 a b

0 0 1 a b

1 1 {0, 1} 1 {1, b}
a a 1 {0, a} 0

b b {1, b} 0 O

⊠ 0 1 a b

0 0 0 0 0

1 0 1 a b

a 0 a 1 a

b 0 b a 1

Then (O,⊞,⊠) is not a hyperring, because (a⊞ b)⊞ 1 = 0⊞ 1 = 1 ̸= 0 = a⊞ (b⊞ 1). Suppose
that B = {γ1, γ2} ⊆ F where γ1 : O → {1, 2} and γ2 : O → {1, 2} are given in below Tables.

0 1 a b

γ1 1 2 1 2

γ2 2 1 1 2

we obtain

[0]γ1 = {0, a} = [a]γ1 , [1]γ1 = {1, b} = [b]γ1 ,

[0]γ2 = {0, b} = [b]γ2 , [1]γ2 = {1, a} = [a]γ2 .

Now, we assume that R = {0, 1, a} ⊆ O with a hyperoperation “⊞ ” and an operation “⊠ ” by the
below tables:

⊞ 0 1 a

0 0 1 a

1 1 {0, 1} 1

a a 1 {0, a}

⊠ 0 1 a

0 0 0 0

1 0 1 a

a 0 a 1

Therefore, Nr(B)∗(R) = {0, 1, a, b}.So, by Definition 3.1, (R,⊞,⊠) is a near Krasner hyperring
with identity element 1 and it is commutative. Because for all m,n ∈ R we have m⊠ n = n⊠m.
Also, (R,⊞,⊠) is a near hyperdomain. Hence 1⊠ 0 = a⊠ 0 = b⊠ 0 = 0.
On the other hand, (R \ {0},⊠) is a commutative near group.

(1) for every a, b, c ∈ R \ {0}, we have (a⊠ b)⊠ c = a⊠ (b⊠ c),

(2) for every a⊠ b = b⊠ a,

(3) there exists 1 ∈ Nr(B)∗(R \ {0}), for all x ∈ R \ {0}, we have x⊠ 1 = x,

(4) for all x ∈ R \ {0}, there exists y ∈ R \ {0}, we have x⊠ y = 1.

So, R is a near hyperfield.
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Suppose that M ⊕N =
{
x | x ∈ m+ n,m ∈ M and n ∈ N

}
and

M ⊗N =
{∑

finit

mi ⊗ ni | mi ∈ M, ni ∈ N
}
,

where M,N are two subsets of R.

Theorem 3.9. Suppose that M,N are two subsets of R. Then,

(1) If M,N ⊆ R, then (Nr(B)∗M)⊕ (Nr(B)∗N) ⊆ Nr(B)∗(M ⊕N),

(2) If M,N ⊆ R, then Nr(B)∗(M)⊗Nr(B)∗(N) ⊆ Nr(B)∗(M ⊗N).

Proof. (1) Assume that x ∈ (Nr(B)∗M) ⊕ (Nr(B)∗N). We have x ∈ m ⊕ n; m ∈ (Nr(B)∗M),
n ∈ (Nr(B)∗N). Since m ∈ Nr(B)∗M , it follows that [m]Br ∩M ̸= ∅. Therefore, y ∈ [m]Br ∩M .
Then y ∈ [m]Br and y ∈ M . Likewise, n ∈ Nr(B)∗N , then [n]Br∩N ̸= ∅, there exists z ∈ [n]Br∩N ,
so z ∈ [n]Br and z ∈ N . Since w ∈ y⊕z ⊆ [m]Br ⊕ [n]Br ⊆ [m⊕n]Br , it follows that w ∈ [m⊕n]Br

and w ∈ M ⊕N . Thus, w ∈ [m⊕ n]Br ∩ (M ⊕N). Therefore, [m⊕ n]Br ∩ (M ⊕N) ̸= ∅, and so
x ∈ a⊕ b ⊆ Nr(B)∗(M ⊕N).

(2) The proof of (2) is similar to (1).

Suppose that O1,O2 are two sets and “ ∼′
Br

”, “ ∼′′
Br

” are two indispensability relations on
O1, O2 respectively. Then, we define relation “ ∼Br ” on O1×O2, for every (a, b), (c, d) ∈ O1×O2:

(a, b) ∼Br (c, d) ⇔ a ∼′
Br

c and b ∼′′
Br

d.

It is easy to see that the relation “ ∼Br ” is an equivalence relation on O1 × O2. Now, we define
equivalence classes on elements O1 ×O2 as follows:

[(a, b)]∼Br
= {(c, d) ∈ O1 ×O2 | (a, b) ∼Br (c, d)}.

If X1 ⊆ O1 and X2 ⊆ O2, then Nr(B)∗(X1 ×X2) =
∪

[(a,b)]Br∩(X1×X2) ̸=∅

[(a, b)]Br .

Suppose that R1, R2 are two near Krasner hyperrings. So, R1 × R2 is not a near Krasner
hyperring. See the following example:

Example 3.10. In Example 3.8, we show R = {0, 1, a} is a near Krasner hyperring with function
B = {γ1, γ2}. Also, in Example 3.3, R = {0, 1,m, n} is a near Krasner hyperring with function
B = {ϕ1, ϕ2, ϕ3, ϕ4}. But, R1 × R2 is not a near Krasner hyperring because |B|O1 = 2 and
|B|O2 = 4, thus |B|O1 ̸= |B|O2.

Theorem 3.11. Assume that R,R′ are two near Krasner hyperrings. If

1. The number of functions in O1 and O2 should be equal, that is |B|O1 = |B|O2,

2. Nr(B)∗R×Nr(B)∗R′ = Nr(B)∗(R×R′).

Then (R×R′,+, .) is a near Krasner hyperring.

Proof. First, we define hyperoperation “+”, operation “·” between elements R×R′. Let m,m′,∈ R
and n, n′ ∈ R′:

(m,n) + (m′, n′) = {(x, y) | x ∈ m⊕m′, y ∈ n ⊎ n′},
(m,n).(m′, n′) = (x, y), x = m⊗m′, y = n⊙ n′.

Let m,m′,m1,m2,m3 ∈ R and n, n′, n1, n2, n3 ∈ R′.
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(i) We show (R×R′,+) is a near canonical hyperring.
(1) Associative property:

(m,n) +
(
(m1, n1) + (m2, n2)

)
= (m,n) + {(m′, n′) | m′ ∈ m1 ⊕m2, n

′ ∈ n1 ⊎ n2}
= {(m′′, n′′) | m′′ ∈ m⊕ (m1 ⊕m2), n ∈ n ⊎ (n1 ⊎ n2)}
= {(m′′, n′′) | m′′ ∈ (m⊕m1)⊕m2, n

′′ ∈ (n ⊎ n1) ⊎ n2}
= {(p, q) | p ∈ m⊕m1, q ∈ n ⊎ n1}+ (m2, n2)

=
(
(m,n) + (m1, n1)

)
+ (m2, n2),

(2) Commutative property:

(m1, n1) + (m2, n2) = {(m,n) | m ∈ m1 ⊕m2, n ∈ n1 ⊎ n2}
= {(m,n) | m ∈ m2 ⊕m1, n ∈ n2 ⊎ n1}
= (m2, n2) + (m1, n1).

(3) There exists 0R ∈ Nr(B)∗(R) such that 0R ⊕ m = {m} and similar to for R′, we have
0R′ ⊎ n = {n}. So, (0R, 0R′) + (m1,m2) = {(m1,m2)}.

(4) For any m ∈ R, there exists a unique element −m such that 0R ∈ m − m. Similarly, for R′,
0R′ ∈ n− n. Therefore, (0R, 0R′) ∈ (m,n) + (−m,−n).

(5) We prove that if (m1, n1) ∈ (m2, n2) + (m3, n3), then (m2, n2) ∈ (m1, n1) + (−m3,−n3) and
(m3, n3) ∈ (m1, n1) + (−m2,−n2).

m1 ∈ m2 ⊕m3 ⇒ m2 ∈ m1 −m3 and m3 ∈ m1 −m2,

n1 ∈ n2 ⊎ n3 ⇒ n2 ∈ n1 − n3 and n3 ∈ n1 − n2.

From (1), (2), we get (m2, n2) ∈ (m1, n1) + (−m3,−n3) and (m3, n3) ∈ (m1, n1) + (−m2,−n2).
(ii) (R×R′, ·) is a near semigroup. Whereas R,R′ be two near semigroups, we obtain

(m1, n1).(m2, n2) = (m1 ⊗m2, n1 ⊙ n2) = (m2 ⊗m1, n2 ⊙ n1) = (m2, n2).(m1, n1).

(iii) Distributive property.

(m1, n1).
[
(m2, n2) + (m3, n3)

]
= (m1, n1).{(m,n) | m ∈ m2 ⊕m3, n ∈ n2 ⊎ n3}
= {(m′, n′) | m′ ∈ m⊗m1, n

′ ∈ n⊙ n1,m ∈ m2 ⊕m3, n ∈ n2 ⊎ n3}
= {(m′, n′) | m′ ∈ m1 ⊗ (m2 ⊕m3), n

′ ∈ n1 ⊙ (n2 ⊎ n3)}
= {(m′, n′) | m′ ∈ m1 ⊗m2 ⊕m1 ⊗m3, y

′ ∈ n1 ⊙ n2 ⊎ n1 ⊙ n3}
= (m1 ⊗m2, n1 ⊙ n2) + (m1 ⊗m3, n1 ⊙ n3)

= (m1, n1).(m2, n2) + (m1, n1).(m3, n3).

Example 3.12. In Example 3.8, we show (R = {0, 1, a},⊞,⊠) is a near Krasner hyperring by
below tables.
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⊞ 0 1 a

0 0 1 a

1 1 {0, 1} 1

a a 1 {0, a}

⊠ 0 1 a

0 0 0 0

1 0 1 a

a 0 a 1

Now, we have

R×R = {(0, 0), (0, 1), (0, a), (1, 0), (1, 1), (1, a), (a, 0), (a, 1), (a, a)}.

Also Nr(B)∗(R) = {0, 1, a, b}. We give

Nr(B)∗(R)×Nr(B)∗(R) = {(0, 0), (0, 1), (0, a), (0, b), (1, 0), (1, 1), (1, a), (1, b),
(a, 0), (a, 1), (a, a), (a, b), (b, 0), (b, 1), (b, a), (b, b)}.

[(0, 0)]γ1 = {(x, y) ∈ O ×O | (0, 0) ∼Br (x, y)}
= {(0, 0), (0, a), (a, 0), (a, a)},

[(0, 1)]γ1 = {(0, 1), (0, b), (a, 1), (a, b)},
[(1, 0)]γ1 = {(1, 0), (1, a), (b, 0), (b, a)},
[(1, 1)]γ1 = {(1, 1), (1, b), (b, 1), (b, b)}.

So, we obtain ξγ1 = {[(0, 0)]γ1 , [(0, 1)]γ1 , [(1, 0)]γ1 , [(1, 1)]γ1}.

[(0, 0)]γ2 = {(0, 0), (0, b), (b, 0), (b, b)}
[(0, 1)]γ2 = {(0, 1), (0, a), (b, 1), (b, a)}
[(1, 0)]γ2 = {(1, 0), (1, b), (a, 0), (a, b)}
[(1, 1)]γ2 = {(1, 1), (1, a), (a, 1), (0, a)}.

Thus, we have ξγ2 = {[(0, 0)]γ2 , [(0, 1)]γ2 , [(1, 0)]γ2 , [(1, 1)]γ2}.
Therefore, we obtain

N1(B)∗(R×R) = {(0, 0)(0, 1), (1, 0), (0, a), (a, 0), (1, a), (a, 1), (a, a),
(a, b), (b, a), (0, b), (b, 0), (1, b), (b, 1), (b, b)}.

Hence, Nr(B)∗(R×R) = Nr(B)∗(R)×Nr(B)∗(R), so R×R is a near Krasner hyperring.

Theorem 3.13. (1) If |B|O1 = |B|O2 and Nr(B)∗R×Nr(B)∗R′ = Nr(B)∗(R×R′), then R×R′

is a commutative near Krasner hyperring where R,R′ are two commutative near Krasner
hyperrings.

(2) If |B|O1 = |B|O2 and Nr(B)∗R×Nr(B)∗R′ = Nr(B)∗(R×R′), then R×R′ is a near Krasner
hyperring with near unite element where R,R′ are two near Krasner hyperrings with near
unite elements.

Proof. (1) We assume m1,m2 ∈ R and n1, n2 ∈ R′. Since m1⊗m2 = m2⊗m1 and n1⊙n2 = n2⊙n1,
we have

(m1, n1)(m2, n2) = (m1 ⊗m2, n1 ⊙ n2) = (m2 ⊗m1, n2 ⊙ n1) = (m2, n2)(m1, n1).

Therefore, R×R′ is a commutative near Krasner hyperring.
(2) Whereas R,R′ are two near Krasner hyperrings on NAS with near unite elements respectively
1R1 , 1R′ , we have 1R ⊗m1 = m1 and 1R′ ⊙m2 = m2 for every m1 ∈ R,m2 ∈ R′. Thus,
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(1R, 1R′)(m1,m2) = (1R1 ⊗m1, 1R′ ⊙m2) = (m1,m2).

So, R×R′ is a near Krasner hyperring with near unite element (1R, 1R′).

In the following, we present an example of Theorem 3.13.

Example 3.14.
(1) In Example 3.12, we prove (R×R,+, .) is a near Krasner hyperring. On the other hand, (R,⊠)
is a commutative, that means of x, y ∈ R, x⊠ y = y ⊠ x. Now, for every (a, b), (c, d) ∈ R×R, we
obtain (a, b).(c, d) = (c, d).(a, b). For example,

(0, 1).(0, a) = (0, a) = (0, a).(0, 1),
(1, 1).(a, 0) = (a, 0) = (a, 0).(1, 1).

Therefore, R×R is a commutative near Krasner hyperring.
(2) R is a near Krasner hyperring with near unite element 1. Thus, for every x ∈ R, we
get 1 ⊗ x = x ⊗ 1 = x. So, for any (x, y) ∈ R × R and (1, 1) ∈ Nr(B)∗(R × R), we obtain
(x, y).(1, 1) = (x, y). Thus (1, 1) is a near unite element R×R.

Corollary 3.15.
(1) If Nr(B)∗(

∏
i∈Γ

Ri) =
∏
i∈Γ

Nr(B)∗Ri, then
∏
i∈Γ

Ri is a near Krasner hyperring, where Ri are near

Krasner hyperrings.
(2) If Ri are commutative near Krasner hyperrings on NAS, then

∏
i∈Γ

Ri is a commutative near

Krasner hyperring.
(3) If Ri are near Krasner hyperrings with identity on NAS, then

∏
i∈I

Ri is a near Krasner hyperring

with identity.

Proof. It is straightforward.

Definition 3.16. Suppose M ⊆ R. Then M is said be to a near subhyperring of R. If m1 −m2 ⊆
Nr(B)∗M and m1 ⊗m2 ∈ Nr(B)∗M for every m1,m2 ∈ M .

Example 3.17. In Example 3.3, let M = {0, 1, n} ⊆ R and consider the following tables:

⊕ 0 1 n

0 0 1 n

1 1 {0,m} m

n n m 0

⊗ 0 1 n

0 0 0 0

1 0 1 n

n 0 n 1

We obtain N1(B)∗M = {0, 1,m, n, p}. So, by Definition 3.16, M is a near subhyperring of R.
Also, we suppose M ′ = {n} ⊆ R and B = {Θ1,Θ2,Θ3}. In this case, we show M ′ is not a

near subhyperring of R. Consider the below tables .

0 1 m n p

Θ1 ρ1 ρ2 ρ2 ρ3 ρ3
Θ2 λ1 λ1 λ1 λ2 λ2

Θ3 γ2 γ1 γ3 γ3 γ1
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We obtain N1(B)∗M ′ =
∪

[x]Θi
∩M ′ ̸=∅

[x]Θi = {n, p,m}. By Definition 3.16, we have

n⊕ n = 0 /∈ {n, p,m} = N1(B)∗M ′.

Thus, M ′ is not a near subhyperring of R.

Lemma 3.18. If M is a subhyperring of R, then, M is a near subhyperring on NAS.

Proof. By the definition of subhyperring, for every a, b ∈ M we have a − b ⊆ M and a ⊗ b ∈ M .
On the other hand, M ⊆ Nr(B)∗(M). So, a− b ⊆ Nr(B)∗M and a⊗ b ∈ Nr(B)∗(M).

In the following example we see that the converse of Lemma 3.18 is not true. In fact, we show
that a near subhyperring is not a subhyperring.

Example 3.19. In Example 3.17, M = {0, 1, n} is a near subhyperring of R. But, M is not a
subhyperring, because 1⊕ 1 = {0,m} ⊈ M .

Theorem 3.20. The intersection of two near subhyperring is a near subhyperring if (Nr(B)∗M1)∩
(Nr(B)∗M2) = Nr(B)∗(M1 ∩M2) where M1,M2 are near subhyperrings of R.

Proof. Suppose m1,m2 ∈ M1 ∩M2. Then m1,m2 ∈ M1 and m1,m2 ∈ M2. Since M1,M2 are two
near subhyperrings, we have m1 −m2 ⊆ Nr(B)∗M1 and m1 −m2 ⊆ NR(B)∗M2. By assumption,
Nr(B)∗M1 ∩Nr(B)∗M2 = Nr(B)∗(M1 ∩M2), m1 −m2 ⊆ Nr(B)∗(M1 ∩M2).
Whereas M1,M2 are two near subhyperring, we get m1 ⊗ m2 ∈ Nr(B)∗M1 and m1 ⊗ m2 ∈
Nr(B)∗M2. Then m1⊗m2 ∈ (Nr(B)∗M1)∩(Nr(B)∗M2) = Nr(B)∗(M1∩M2). Therefore, M1∩M2

is a near subhyperring of R.

Example 3.21. Suppose that O = {0, 1, h, k, s, t, z, w} is a set

+ 0 1 h k s t z w

0 0 1 h k s t z w

1 1 1 {0, 1, h, k} 1 t t {s, t, z, w} t

h h {0, 1, h, k} h h z {s, t, z, w} z z

k k 1 h 0 w t z s

s s t z w {0, s} {1, t} {h, z} {k,w}
t t t {s, t, z, w} t {1, t} {1, t} O {1, t}
z z {s, t, z, w} z z {h, z} O {h, z} {h, z}
w w t {z, w} s {k,w} {1, t} {h, z} {0, s}

. 0 1 h k s t z w

0 0 s h k s t z w

1 0 s h k 0 1 h k

h 0 h s k 0 h t k

k 0 0 0 0 0 0 0 0

s 0 0 0 0 s s s s

t 0 1 h k s t z w

z 0 h t k s z t w

w 0 0 0 0 s s s s

(O,+, .) is not a Krasner hyperring. Because
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(w + h) + w = {0, h, z, s} ̸= {h, z} = w + (h+ w)

Assume that B = {γ1, γ2, γ3, γ4} is a subset of F , where γi’s are functions. We define γ1 : O →
{a, b, c}, γ2 : O → {a, c, d}, γ3 : O → {a, b, d} and γ4 : O → {a, b, c, d} are given in the following
tables:

0 1 h k s t z w

γ1 a b c a a c c b

γ2 a c a c d a d d

γ3 b d b d b d a a

γ4 c d a b c a d d

Assume that R = {0, 1, h, k, s} is a non-empty subset of O with a hyperoperation “ + ” and an
operation “ · ” defined in the following tables:

+ 0 1 h k s

0 0 1 h k s

1 1 1 {0, 1, h, k} 1 t

h h {0, 1, h, k} h h z

k k 1 h 0 w

s s t z w {0, s}

. 0 1 h k s

0 0 s h k s

1 0 s h k 0

h 0 h s k 0

k 0 0 0 0 0

s 0 0 0 0 s

[0]γ1 = {y ∈ O | γ1(0) = γ1(y) = a} = {0, k, s} = [k]γ1 = [s]γ1 ,

[1]γ1 = {y ∈ O | γ1(1) = γ1(y) = b} = {1, w} = [w]γ1 ,

[h]γ1 = {y ∈ O | γ1(h) = γ1(y) = c} = {h, t, z} = [t]γ1 = [z]γ1 .

We obtain ξγ1 = {[0]γ1 , [1]γ1 , [h]γ1}.

[0]γ2 = {y ∈ O | γ2(0) = γ2(y) = a} = {0, h, t} = [h]γ2 = [t]γ2 ,

[1]γ2 = {y ∈ O | γ2(1) = γ2(y) = c} = {1, k} = [k]γ2 ,

[s]γ2 = {y ∈ O | γ2(s) = γ2(y) = d} = {s, z, w} = [z]γ2 = [w]γ2 .

We get ξγ2 = {[0]γ2 , [1]γ2 , [s]γ2}.

[0]γ3 = {y ∈ O | γ3(0) = γ3(y) = b} = {0, h, s} = [h]γ3 = [s]γ3 ,

[1]γ3 = {y ∈ O | γ3(1) = γ3(y) = d} = {1, k, t} = [k]γ3 = [t]γ3 ,

[z]γ3 = {y ∈ O | γ3(s) = γ3(y) = a} = {z, w} = [w]γ3 .
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We get ξγ3 = {[0]γ3 , [1]γ3 , [z]γ3}.

[0]γ4 = {y ∈ O | γ4(0) = γ4(y) = c} = {0, s} = [s]γ4 ,

[1]γ4 = {y ∈ O | γ4(1) = γ4(y) = d} = {1, z, w} = [z]γ4 = [w]γ4 ,

[h]γ4 = {y ∈ O | γ4(s) = γ4(y) = a} = {h, t} = [t]γ4

[k]γ4 = {y ∈ O | γ4(s) = γ4(y) = b} = {k}.

We have ξγ4 = {[0]γ4 , [1]γ4 , [h]γ4 , [k]γ4}. Then, for r = 1 a partition of O is N1 = {ξγ1 , ξγ2 , ξγ3 , ξγ4}.
Therefore, we get Nr(B)∗R = {0, 1, h, k, s, t, z, w} = O. Thus, by Definition 3.1, (R,+, ·) is a near
krasner hyperring.

Consider that R′ = {0, h, s} and R′′ = {0, 1, s} are two subsets of R. It is easy to see R′ and
R′′ are two near subhyperrings of R. We obtain

Nr(B)∗(R′ ∩R′′) = Nr(B)∗({0, s}) = {0, h, k, s, t, z, w},
Nr(B)∗(R′) = {0, k, s, h, z, t, w},
Nr(B)∗(R′′) = O.

Also, Nr(B)∗(R′ ∩R′′) = Nr(B)∗(R′) ∩Nr(B)∗(R′′). Thus R′ ∩R′′ is a near subhyperring of R.
Corollary 3.22. The intersection of a family of near subhyperrings is a near subhyperring if
Nr(B)∗

( ∩
i∈Γ

Mi

)
=

∩
i∈Γ

(
Nr(B)∗Mi

)
, where Mi are near subhyperrings.

Proof. It is straightforward.

Theorem 3.23. M1 ×M2 is a near subhyperring of R×R′ if |B|O1 = |B|O2 and

Nr(B)∗(M1 ×M2) = Nr(B)∗(M1)×Nr(B)∗(M2),

where M1,M2 are two near subhyperrings of R,R′, respectively.
Proof. Let (m1, n1), (m2, n2) ∈ M1 ×M2. Then, by Definition 3.16, we get

(m1, n1)− (m2, n2) = {(m1 −m2, n1 − n2) | m1,m2 ∈ M1, n1, n2 ∈ M2}
⊆ Nr(B)∗M1 ×Nr(B)∗M2 = Nr(B)∗(M1 ×M2).

(m1, n1).(m2, n2) = (m1.m2, n1.n2) ∈ Nr(B)∗(M1)×Nr(B)∗(M2)

= Nr(B)∗(M1 ×M2).

Therefore, M1 ×M2 is a near subhyperring of R×R′.

Example 3.24. In Example 3.17, let M = {0, 1} ⊆ R. Then, we obtain Nr(B)∗M = {0, 1, a, b}.
So, by Definition 3.16, M is a near subhyperring. Thus, M ×M = {(0, 0), (0, 1), (1, 0), (1, 1)}.

Nr(B)∗(M)×Nr(B)∗(M) = {0, 1, a, b} × {0, 1, a, b}
= {(0, 0), (0, 1), (0, a), (0, b), (1, 0), (1, 1), (1, a), (1, b),
(a, 0), (a, 1), (a, a), (a, b), (b, 0), (b, 1), (b, a), (b, b)}.

On the other hand we see in Example 3.12, ξγ1 = {[(0, 0)]γ1 , [(0, 1)]γ1 , [(1, 0)]γ1 , [(1, 1)]γ1} and
ξγ2 = {[(0, 0)]γ2 , [(0, 1)]γ2 , [(1, 0)]γ2 , [(1, 1)]γ2}. Therefore,

Nr(B)∗(M ×M) = {(0, 0)(0, 1), (1, 0), (0, a), (a, 0), (1, a), (a, 1), (a, a),
(a, b), (b, a), (0, b), (b, 0), (1, b), (b, 1), (b, b)}.

Thus, NR(B)∗(M ×M) = Nr(B)∗M ×Nr(B)∗M . So, M ×M is a near subhyperring of R×R.
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Corollary 3.25.
∏
i∈Γ

Mi is a near subhyperring
∏
i∈Γ

Ri if Nr(B)∗
(∏
i∈Γ

Mi

)
=

∏
i∈Γ

(
Nr(B)∗Mi

)
, where

that Mi is a near subhyperring of Ri.

Proof. It is straightforward.

Let A be a non-empty subset of near Krasner hyperring R. Then, we defined

r ⊗A =
{ n∑

i=1

r ⊗ ai | ai ∈ A
}
,

for r ∈ R.

Lemma 3.26. For each a ∈ R, a⊗R is a right near subhyperring of R .

Proof. Suppose x ∈
∑
finit

a⊗ xi and y ∈
∑
finit

a⊗ yi for xi, yi in R. Thus,

x− y ⊆
∑
finit

a⊗ xi −
∑
finit

a⊗ yi = a⊗
∑
finit

zi ⊆ a⊗ (Nr(B)∗R),

for all zi ∈ R. There exists w ∈ Nr(B)∗R such that x − y = a ⊗ w for any a ∈ R. Then
[w]Br ∩ R ̸= ∅, and so p ∈ [w]Br and p ∈ R. We get w ∼Br p and p ∈ R. Therefore, a ⊗ w ∼Br

a ⊗ p. Hence, a ⊗ p ∈ [a ⊗ w]Br and a ⊗ p ∈ a ⊗ R, then [a ⊗ w]Br ∩ a ⊗ R ̸= ∅. We obtain
x− y = a⊗ w ∈ Nr(B)∗(a⊗R). Now, we assume x ∈ a⊗R and y ∈ R. Consider

x⊗ y ∈ (
∑
finit

a⊗ r)⊗ y =
∑
finit

a⊗ (r ⊗ y) = a⊗
∑
finit

r ⊗ y ⊆ a⊗Nr(B)∗(R),

then there exists z ∈ Nr(B)∗R such that x⊗ y = a⊗ z for every y ∈ R. Therefore, [z]Br ∩R ̸= ∅,
hence c ∈ [z]Br , c ∈ R and c ∼Br z. We have a ⊗ c ∼Br a ⊗ z, c ∈ R, a ⊗ z ∈ [a ⊗ c]Br and
a⊗ z ∈ a⊗R. Therefore, [a⊗ z]Br ∩ (a⊗R) ̸= ∅, so we have x⊗ y = a⊗ z ∈ Nr(B)∗(a⊗R). We
get (a⊗R)⊗R ⊆ Nr(B)∗(a⊗R).

4 Near hyperideals and near prime hyperideals
In the following, we introduce the idea of near (prime) hyperideal and investigate some results.
This section presents definitions and theorems for left near hyperideals. These definitions and
theorems are also true for near hyperideals. Also, it is true for right near hyper ideals.

Definition 4.1. Suppose that R is a near Krrasner hyperring on NAS and M ⊆ R. Then, M is
said to be a left (right) near hyperideal of R if α− β ⊆ Nr(B)∗M , and

r′ ⊗ α ∈ Nr(B)∗M (α− β ⊆ Nr(B)∗M,α⊗ r′ ∈ Nr(B)∗M),

for every α, β ∈ M and r′ ∈ R.
If M is both a left and a right near hyperideal, then M is called a near hyperideal on R.

Example 4.2. In Example 3.3, suppose that I = {m,n} ⊆ R and B = {φ1, φ2, φ3}. Consider the
following tables:
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⊕ m n

m {0,m} 1

n 1 0

⊗ m n

m m n

n n m

So, we obtain N1(B)∗(I) =
∪

[x]φi∩I ̸=∅

[x]φ = {0, 1,m, n, p}. In the sense of Definition 4.1, we get

m−m = {0,m}, n− n = 0, m− n = n−m = 1.

They are all subsets of N1(B)∗(I). For every r ∈ R, x ∈ I, we get r ⊗ x ∈ N1(B)∗(I). Therefore,
I is a near hyperideal of R.

Lemma 4.3. Every near hyperideal is a near subhyperring of R.

Remark 4.4. The converse of Lemma 4.3 is not correct, see the following example.

Example 4.5. In Example 3.21, we show R′ = {0, h, s} is a near subhyperring of R but R′ is not
a near hyperideal of R. Because, we suppose x = h ∈ R′, we have h − h = h + (−h) = h + 1 =
{0, 1, h, k} ⊈ Nr(B)∗(R′) = {0, k, s, h, t, z, w}.

Theorem 4.6. Suppose that I1, I2 are two near hyperideals of R.

(1) If Nr(B)∗(I1 ∩ I2) = Nr(B)∗(I1) ∩Nr(B)∗(I2), then I1 ∩ I2 is a near hyperideal.

(2) Union of two near hyperideals is a near hyperideal if

Nr(B)∗(I1 ∪ I2) = Nr(B)∗(I1) ∪Nr(B)∗(I2).

Proof.
(1) Assume α, β ∈ I1 ∩ I2. Then α, β ∈ I1 and α, β ∈ I2. By Definition 4.1, we have α − β ⊆
Nr(B)∗(I1) and α − β ⊆ NR(B)∗(I2). Thus, α − β ⊆ Nr(B)∗(I1) ∩ Nr(B)∗(I2). By hypothesis,
α− β ⊆ Nr(B)∗(I1 ∩ I2). Also, we suppose r ∈ R and α ∈ I1 ∩ I2. Therefore, r ⊗ α ∈ Nr(B)∗(I1)
and r ⊗ α ∈ Nr(B)∗(I2). By hypothesis, we have r ⊗ α ∈ Nr(B)∗(I1 ∩ I2). We prove I1 ∩ I2 is a
near hyperideal of R.

(2) The proof is straightforward.

Example 4.7. 1. In Example 4.2, we see I = {m,n} is a near hyperideal of R and Nr(B)∗(I) =
{0, 1,m, n, p}. Also, I ′ = {0,m} is a near hyperideal of R. We give Nr(B)∗(I ′) = {0, 1,m}. Then
Nr(B)∗(I)∩Nr(B)∗(I ′) = {0, 1,m}, on the other hand Nr(B)∗(I∩I ′) = Nr(B)∗({m}) = {0, 1,m}.
So, I ∩ I ′ is a near hyperideal of R.
2. We obtain Nr(B)∗(I∪I ′) = Nr(B)∗({0,m, n}) = {0, 1,m, n, p}. On the other hand, Nr(B)∗(I)∪
Nr(B)∗(I ′) = {0, 1,m, n, p}. Therefore, I ∪ I ′ is a near hyperideal of R.

Corollary 4.8. Suppose that {Ii}i∈Λ is a non-empty family of near hyperideals of R. Then

(1) Intersection of near hyperideals is a near hyperideal if Nr(B)∗
( ∩
i∈Λ

Ii
)
=

∩
i∈Λ

(
Nr(B)∗Ii

)
.

(2) Union of near hyperideals is a near hyperideal of R.

Proof. It is straightforward.
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Definition 4.9. Assume that N is a non-empty subset R. Then N is said to be a near left (right,
two sided) hyperideal of R if Nr(B)∗N is a left (right, two side) hyperideal of R.

Example 4.10. In Example 3.3, we show that (R,⊕,⊗) is a near Krasner hyperring, where
R = {0, 1,m, n}. Let N = {0,m, n} be a non-empty subset of R. We obtain Nr(B)∗(N) =
{0, 1,m, n, p}. Therefore, Nr(B)∗N is a hyperideal of R. Because, for every x, y ∈ Nr(B)∗(N),
we have x− y ⊆ Nr(B)∗N and for every r ∈ R, we have r ⊗ x ∈ Nr(B)∗N . For example

0− 0 = 0, 0−m = m, 0− n = n,

m− 0 = m, m−m = {0,m}, m− n = 1.

Also, 1⊗m = m ∈ Nr(B)∗N , m⊗n = n ∈ Nr(B)∗N , etc. It is easily prove that N is a hyperideal
of R.

Proposition 4.11. Suppose that M and N are a near subhyperring and a near hyperideal of R,
respectively. Then

(1) M ⊕N is a near subhyperring of R.

(2) M ∩N is a near hyperiseal of M .

Proof.
1. Suppose m,n ∈ M ⊕ N . Then there exist m′,m′′ ∈ M , and n′, n′′ ∈ N such that m ∈ m′ ⊕ n′

and n ∈ m′′ ⊕ n′′. Therefore,

m− n ⊆ (m′ + n′)− (m′′ ⊕ n′′) = (m′ −m′′)⊕ (n′ − n′′) ⊆ Nr(B)∗M ⊕Nr(B)∗N ⊆ Nr(B)∗(M ⊕N).

Now, we have

m⊗ n ∈ (m′ ⊕ n′)⊗ (m′′ ⊕ n′′)

⊆ m′m′′ ⊕m′n′′ ⊕m′′n′ ⊕ n′n′′

= m′m′′ ⊕ (m′n′′ ⊕m′′n′ ⊕ n′n′′)

⊆ Nr(B)∗M ⊕Nr(B)∗N

⊆ Nr(B)∗(M ⊕N),

since N is a near hyperideal of R. Consequently M ⊕N is a near subhyperring of R.
2. Let m,n ∈ M ∩ N implies m,n ∈ M and m,n ∈ N . Since M is a near subhyperring and N
is a near hyperideal, we get m − n ⊆ Nr(B)∗M and m − n ⊆ Nr(B)∗N , which implies m − n ⊆
Nr(B)∗M ∩Nr(B)∗N = Nr(B)∗(M ∩N).

Let m′ ∈ M . Then m′⊗n ∈ Nr(B)∗M . Also, m′⊗n ∈ Nr(B)∗N , since N is a near hyperideal
and M is a near subhyperring. Hence, M ∩N is a near hyperideal of M .

Definition 4.12. A near hyperideal P is called a near prime hyperideal of R if a⊗ b ∈ Nr(B)∗P .
Then a ∈ P or b ∈ P , for each near hyperideal a, b of R.

Example 4.13. Suppose that O = {0, a, b, c, d, e} with a hyperoperation “ + ” and an operation
“ • ” defined by the below tables.
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+ 0 a b c d e

0 0 a b c d e

a a {0, a} {a, b, d} {a, c} {0, a, b, d} {a, e}
b b {a, b} {0, b} {b, c} {b, d} {b, d, e}
c c {a, c} {b, c} {0, c} {c, d} {c, d, e}
d d {a, d} {b, d} {c, d} {0, d} {e, d}
e e {a, d} {b, d, e} {c, d, e} {d, e} {0, e}

• 0 a b c d e

0 0 0 0 0 a 0

a 0 a 0 b c e

b 0 0 0 0 0 0

c 0 c 0 0 e e

d 0 a 0 c e e

e 0 e 0 0 e e

(O,+, •) is not a hyperring, because (O,+) is not associative, for instance

(a+ d) + b = {0, b, d} ̸= {0, a, b, d} = a+ (b+ d).

Assume that B = {φ1, φ2} is a subset of F , where φi’s are functions. Suppose that φ1 : O →
{1, 2, 3} and φ2 : O → {1, 2} are given in the following table:

0 a b c d e

φ1 1 2 3 3 2 1

φ2 2 2 1 2 1 1

We obtain

[0]φ1 = {0, c} = [c]φ1 , [a]φ1 = {a, d}, [b]φ1 = [e]φ1 = {e, b},
[0]φ2 = {0, a, } = [a]φ2 , [c]φ2 = [b]φ2 = {b, c}, [d]φ2 = [e]φ2 .

Suppose that R = {0, a, b, c, e} is a non-empty subset of O with a hyperoperation “ + ” and an
operation “ • ” defined in the following tables:

+ 0 a b c e

0 0 {0, a} b c e

a 0 a 0 b e

b b {a, b} {0, b} {b, c} {b, d, e}
c c {a, c} {b, c} {0, c} {c, d, e}
e e {a, d} {b, d, e} {c, e} {0, e}

• 0 a b c e

0 0 0 0 0 0

a 0 0 0 0 0

b 0 0 0 0 0

c 0 0 0 e e

e 0 0 0 0 e
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It is see that (R,+, •) is not a hyperring. Because b + e = {b, d, e} ⊈ R. We have Nr(B)∗R =
{0, a, b, c, d, e}. By Definition 3.1, (R,+, •) is a near Krasner hyperring on NAS. Let P = {0, c} ⊆
R. We get Nr(B)∗P = {0, a, c}. By Definition 4.12, P is a near prime hyperideal of R.

Remark 4.14. Every prime hyperideal is not a near prime hyperideal of R. See Example 4.15.

Example 4.15. In Example 3.21, (R,+, ·) is a near krasner hyperring where R = {0, 1, s, h, k}.
Now, Assume that P = {0, s, k, h}. Then P is a prime hyperideal of R, but P is not a near prime
hyperideal. We obtain Nr(B)∗(P ) = {0, 1, s, h, k, t, w, z}. On the other hand, z.t = z ∈ Nr(B)∗(P ),
but z /∈ P and t /∈ P .

. 0 h k s

0 0 h k s

h 0 s k 0

k 0 0 0 0

s 0 0 0 s

In Example 4.16, we show that if P1 and P2 are two near prime hyperideals of R, then P1 ∩P2

is not a near prime hyperideal of R.

Example 4.16. In Example 4.13, we see that P = {0, c} is a near prime hyperideal of R.
Suppose P ′ = {b, c}. Then Nr(B)∗P ′ = {b, c, e}. It is easily seen that P ′ is a near prime
hyperideal. We obtain Nr(B)∗P ∩ Nr(B)∗P ′ = {0, a, c} ∩ {b, c, e} = {c}. On the other hand,
Nr(B)∗(P ∩ P ′) = Nr(B)∗(B){c} = {0, a, c}.

Theorem 4.17. Suppose that P1 and P2 are two near prime hyperideals of R and Nr(B)∗(P1∩P2) =
Nr(B)∗(P1)∩Nr(B)∗(P2). Then P1∩P2 is a near prime hyperideal of R if P1∩P2 is a near prime
hyperideal of P1 ∪ P2.

Proof. By Theorem 4.6, we show P1∩P2 is a near hyperideal of R. Assume a⊗b ∈ Nr(B)∗(P1∩P2).
Because Nr(B)∗(P1 ∩P2) = Nr(B)∗(P1)∩Nr(B)∗(P2), we have a⊗ b ∈ Nr(B)∗(P1)∩Nr(B)∗(P2).
Thus, a⊗b ∈ Nr(B)∗(P1) and a⊗b ∈ Nr(B)∗(P2). Hence, P1 and P2 are two near prime hyperideals
of R, we get a ∈ P1 or b ∈ P1. Also, a ∈ P2 or b ∈ P2. Consequently, a, b ∈ P1 ∪ P2. As, P1 ∩ P2 is
a near prime hyperideal of P1 ∩ P2, we obtaim a ∈ P1 ∩ P2 or b ∈ P1 ∩ P2.

Theorem 4.18. If P1 and P2 are two near prime hyperideals of R. Then P1 ∪P2 is a near prime
hyperideal of R if Nr(B)∗(P1 ∪ P2) = Nr(B)∗(P1) ∪Nr(B)∗(P2).

Proof. We suppose that a ⊗ b ⊆ Nr(B)∗(P1 ∪ P2) for all a, b ∈ R. Because Nr(B)∗(P1 ∪ P2) =
Nr(B)∗P1 ∪ Nr(B)∗P2, so a ⊗ b ⊆ Nr(B)∗P1 or a ⊗ b ⊆ Nr(B)∗P2. Hence, P1 is a near prime
hyperideal, we have a ∈ P1 or b ∈ P1. Also, P2 is a near prime hyperideal, we obtain a ∈ P2 or
b ∈ P2. Therefore, a ∈ P1 ∪ P2 or b ∈ P1 ∪ P2. Consequently, P1 ∪ P2 is a near prime hyperideal
of R.

Example 4.19. In Example 4.16, we show P = {0, c} and P ′ are two near prime hyperide-
als. Also, we obtained Nr(B)∗(P ) = {0, a, c} and Nr(B)∗(P ′) = {b, c, e}. On the other hand,
Nr(B)∗(P ) ∪ Nr(B)∗(P ′) = {0, a, b, c, e} and Nr(B)∗(P ∪ P ′) = Nr(B)∗({0, b, c}) = {0, a, b, c, e}.
Hence, Nr(B)∗(P ) ∪ Nr(B)∗(P ′) = {0, a, b, c, e} = Nr(B)∗(P ∪ P ′). Therefore, P ∪ P ′ is a near
prime hyperideal.

Corollary 4.20. Assume that {Pi | i ∈ Λ} is a near prime hyperideal of R. Then
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(1) An intersection of near prime hyperideals is a near prime hyperideal, and

Nr(B)∗(
∩
i∈I

Pi) =
∩
i∈I

Nr(B)∗Pi.

Then,
∩
i∈I

Pi is a near prime hyperideal of R, if
∩
i∈I

Pi is a near prime hyperideal of
∪
i∈I

Pi.

(2) A union of near prime hyperideals is also a near prime hyperideal if Nr(B)∗(
∪
i∈I

Pi) =∩
i∈I

Nr(B)∗Pi.

Proof. It is straightforward.

Theorem 4.21. If X ⊕X ′ =
∪

x∈X,x′∈X′

(x ⊕ x′), then X ⊕X ′ is a near hyperideal of R where X

and X ′ are two near hyperideals.

Proof. Let x, x′ ∈ X⊕X ′. Then there exist x1, x2 ∈ X and x′1, x
′
2 ∈ X ′, such that x ∈ x1⊕x′1 and

y ∈ x2 ⊕ x′2. So, x− y ⊆ (x1 ⊕ x′1)− (x2 ⊕ x′2) , and by using associativity and commutativity of
(R,⊕,⊗). We have x⊕y ⊆ (x1−x2)⊕(x′1−x′2). Since X,X ′ are near hyperideals of R, we get x1−
x2 ⊆ Nr(B)∗X and x′1−x′2 ⊆ Nr(B)∗X ′. This implies (x1−x2)⊕(x′1−x′2) ⊆ Nr(B)∗A⊕Nr(B)∗B.
By Theorem 3.9, (x1 − x2)⊕ (x′1 − x′2) ⊆ Nr(B)∗(X ⊕X ′). Hence, x− y ⊆ Nr(B)∗(X ⊕X ′).
Let r ∈ R and x ∈ X ⊕X ′. Then there exist x1 ∈ X and x′1 ∈ X ′ such that x ∈ x1 ⊕ x′1. Consider
r⊗x ∈ r⊗(x1⊕x′1) = r⊗x⊕r⊗x′1 by distributivity of R. Whereas X,X ′ are two near hyperideals
of R, for each x ∈ X,x1 ∈ X ′

1 and r ∈ R, we obtain r ⊗ x ∈ Nr(B)∗X and r ⊗ x′1 ∈ Nr(B)∗X ′

implies (r⊗x)⊕(r⊗x′1) ⊆ Nr(B)∗X⊕Nr(B)∗X ′. By Theorem 3.9(i), r⊗x ∈ Nr(B)∗(X⊕X ′).

Theorem 4.22. Suppose that p, q ∈ R. If P is a near right prime hyperideal of R such that
Nr(B)∗(Nr(B)∗P ) = Nr(B)∗P , then p⊗R⊗ q ⊆ Nr(B)∗P implies p ∈ P or q ∈ P .

Proof. Let p⊗R⊗ q ⊆ Nr(B)∗P . We have (p⊗R⊗ q)⊗R ⊆ (Nr(B)∗P )⊗R ⊆ Nr(B)∗P in the
sense of Theorem 3.9 (ii). Therefore, by Lemma 3.26, p⊗R and q ⊗R are right near hyperideals
of R and hence P is a right near prime hyperideal of R, p ⊗ R ⊆ P or q ⊗ R ⊆ P . There exists
e ∈ Nr(B)∗R such that r = e⊗ r for all r ∈ R. Therefore, either p ∈ P or q ∈ P .

5 Near homomorphisme of a near Krasner hyperring
In this segment, we present the idea of near homomorphism and investigate some of its near
hyperring homomorphism theorems. Also, we defined kernel of near hyperring homomorphism.

Definition 5.1. The mapping Γ is from Nr(B)∗R into Nr(B)∗R′. Then Γ said to be a near
hyperring homomorphism for every α, β ∈ Nr(B)∗R,

Γ(α⊕ β) = Γ(α) ⊎ Γ(β), Γ(α⊗ β) = Γ(α)⊙ Γ(β) and Γ(0R) = 0R′.

A near hyperring homomorphism Γ said to be a near isomorphism if Γ is one-one and onto and
we write R ≃n R′.
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Example 5.2. In Example 3.8, we see R = {0, 1, a} is a near krasner hyperring. We get
Nr(B)∗R = {0, 1, a, b}. Let R′ = {0, 1} be a non-empty subset of O. Then, Nr(B)∗(R′) =
{0, 1, a, b}. It is easily seen R′ is a near Krasner hyperring.

⊞ 0 1 a

0 0 1 a

1 1 {0, 1} 1

a a 1 {0, a}

⊠ 0 1 a

0 0 0 0

1 0 1 a

a 0 a 1

We define

Γ : Nr(B)∗R → Nr(B)∗R′

Γ(0R) = 0R′ , Γ(1R) = 1R′ , Γ(a) = a, Γ(b) = b.

Then Γ is a near homomorphisme.

Lemma 5.3. Suppose that Γ : Nr(B)∗(R) → Nr(B)∗(R′) is a near homomorphism. Then Γ(−α) =
−Γ(α) for every α in R.

Proof. Whoever α in R, we have 0R ∈ α−α. So, we get Γ(0) ∈ Γ(α)⊎Γ(−α) or 0R′ ∈ Γ(α)⊎Γ(−α).
We yields Γ(−α) ∈ −Γ(α)⊕ 0, therefore Γ(−α) = −Γ(α) for every α in R.

We write Γ(X) = {Γ(α) : α ∈ X} where in X is a near subhyperring of R. Now, in following
theorem, we show that Γ(X) is a near subhyperring of R′.

Theorem 5.4. Suppose that Γ : Nr(B)∗R → Nr(B)∗R′ is a near homomorphism . Also, we assume
that X is a near subhyperring of R, Then Γ(X) is a near subhyperring of R′, if Γ(Nr(B)∗X) =
Nr(B)∗Γ(X).

Proof. We claim Γ(X) ̸= ∅. Since 0 ∈ Nr(B)∗X and in the sense of Definition 5.1, Γ(0R) = 0R′ .
So, we have 0R′ = Γ(0R) ∈ Γ(Nr(B)∗X) = Nr(B)∗Γ(X). This yields Γ(X) ̸= ∅. Now, we assume
Γ(α),Γ(β) in Γ(X), where α, β in X. As X is a near subhyperring of R, we have α−β ⊆ Nr(B)∗X.
Wherefore, Γ(α)−Γ(β) = Γ(α−β) ⊆ Γ(Nr(B)∗X) = Nr(B)∗Γ(X). Also, α⊗β ∈ Nr(B)∗X, hence
Γ(α) ⊙ Γ(β) = Γ(α ⊗ β) ∈ Γ(Nr(B)∗X) = Nr(B)∗Γ(X). Consequently, in the sense of Definition
3.16, Γ(X) is a near subhyperring of R′.

Theorem 5.5. Suppose that Γ : Nr(B)∗R → Nr(B)∗R′ is a near homomorphism. Also, we assume
that X is a near commutative subhyperring of a near Krasner hyperring R. Then Γ(X) is a near
commutative subhyperring of R′ if Γ(Nr(B)∗X) = Nr(B)∗Γ(X).

Proof. In the sense of Theorem 5.4, Γ(X) is a near subhyperring of R′. Whoever Γ(α),Γ(β) in
Γ(X), we have

Γ(α)⊙ Γ(β) = Γ(α⊗ β) = Γ(β ⊗ α) = Γ(β)⊙ Γ(α).

So Γ(X) is a commutative near subhyperring of R′.

Theorem 5.6. Assume that Γ : Nr(B)∗R → Nr(B)∗R′ is a near homomorphism. Moreover, let K
be a near hyperideal on R. Then Γ(K) is a near hyperideal of R′, if Γ(Nr(B)∗K) = Nr(B)∗Γ(K).

Proof. As K is a near hyperideal, we have α − β ⊆ Nr(B)∗K and r ⊗ α ∈ Nr(B)∗K where α, β
in K and r in R. Therefore, we get Γ(α) − Γ(β) = Γ(α − β) ⊆ Γ(Nr(B)∗K) = Nr(B)∗Γ(K) and
Γ(r)⊙ Γ(α) = Γ(r ⊗ α) ⊆ Γ(Nr(B)∗K) = Nr(B)∗Γ(K) for every Γ(α),Γ(β) in Γ(K). Then Γ(K)
is a near hyperideal of R′.
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Definition 5.7. Suppose that Γ : Nr(B)∗R → Nr(B)∗R′ is a near homomorphism. We denoted
kerΓ = {α ∈ R | Γ(α) = 0}.

Example 5.8. In Example 5.2, we obtain KerΓ = {0}.

Theorem 5.9. Suppose that Γ : Nr(B)∗R → Nr(B)∗R′ is a near homomorphism where R and R′

are two near Krasner hyperrings on NAS. Then KerΓ ̸= ∅ is a near hyperideal of R.

Proof. By the definition of KerΓ, we have Γ(α − β) = Γ(α) − Γ(β) = 0 − 0 = 0 ∈ Nr(B)∗R′

and α − β ⊆ Nr(B)∗(KerΓ) for every α, β in KerΓ and r in R. Then Γ(r ⊗ α) = Γ(r) ⊙ Γ(α) =
Γ(r) ⊙ 0 = 0 ∈ Nr(B)∗R′ and r ⊗ α ∈ Nr(B)∗(KerΓ). Similarly, α ⊗ r ∈ Nr(B)∗(KerΓ). Hence,
by Definition 4.1, KerΓ is a near hyperideal of R.

6 Conclusion
We combined the notions of near sets and Krasner hyperrings to obtain a generalization of near
rings. Some properties of this algebraic hyperstructure are drived and several examples are given.
As a future work, we will focus on the other algebraic hyperstructures.
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