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Abstract

Murali and Makamba (2001) introduced an equivalence
of fuzzy subgroups. Dudek and Jun (2004) studied the
equivalence defined by Murali and Makamba in fuzzy ide-
als of a BCI-algebra. In this paper, we obtained a se-
quence of fuzzy ideals of a BCI-algebra X from a fuzzy
ideal on X. We will show that, if two fuzzy ideals are
equivalent, then the sequence of fuzzy ideals obtained
from them are equivalent. We show that there is a rela-
tionship between a fuzzy ideal with BCI-algebra X and
a fuzzy ideal with adjoint BCI-algebra A, where A is an
Abelian subgroup of Autµ(X).
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1 Introduction
Non-classical logic has become a considerable formal tool for computer science and artificial in-
telligence to deal with fuzzy information and uncertainty information. Many-valued logic, a great
extension and development of classical logic, has always been a crucial direction in non-classical
logic. Since 1965 Zadeh’s [17] invention, the concept of fuzzy sets has been extensively applied
to many mathematical field. On the other hand, the concept of BCI/BCK-algebras introduced
by Iseki [4] and it has been raised by Imai and Iseki [3]. Xi [16] used the theory of fuzzy sets
to BCK-algebras. Lee, Jun, Liu and several researchers investigated fuzzy ideals in BCI-algebras
[7, 8, 9]. Jun (2011) studied fuzzy translations, fuzzy extensions and fuzzy multiplications of
fuzzy sub BCI-algebras and ideals in BCK/BCI-algebras [5, 6]. They investigated relations among
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fuzzy translations, fuzzy extensions and fuzzy multiplications. In 2015, Senapati et al., [12, 13],
introduced the notation of fuzzy translation of fuzzy H-ideals and also they studied intuitionistic
fuzzy translation in BCI-algebras. Also, Senapati studied some applications of fuzzy translations
in B-algebras [11, 14]. In 2016, Senapati et al., studied Atanassov’s intuitionistic fuzzy bi-normed
KU-ideals of a KU-algebra and they discussed some properties of it [15]. In 2004, Dudek and Jun
studied the equivalence defined by Murali and Makamba [10] in fuzzy ideals in a BCI-algebra [1].
In this paper, we first show that from any fuzzy ideal, a sequence of fuzzy ideals can be obtained
in a BCI-algebra and in the final part, the equivalences raised by Murali and Makamba and its
generalization in fuzzy ideals of a BCI-algebra are studied. Also, we obtain a sequence fuzzy ideals
of adjoint BCI-algebra A, where A is an Abelian subgroups of AUT∼(X), from a fuzzy ideal on
BCI-algebra X.

2 Some fuzzy ideals obtained from fuzzy ideal on a BCI-algebra
By a BCI-algebra we mean an algebra (X; ∗, 0) of type (2, 0) satisfying the following axioms for
all x, y ∈ X:

(1) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,

(2) (x ∗ (x ∗ y)) ∗ y) = 0,

(3) x ∗ x = 0,

(4) x ∗ y = 0 and y ∗ x = 0 imply x = y.

for all x, y, z ∈ X. We can define a partial ordering ′′ ≤′′ on X by x ≤ y if and only if x ∗ y = 0.
In this paper we consider that X is a BCI-algebra.
The following statements are true in any BCI-algebra X for all x, y, z ∈ X:

(1.1) (x ∗ y) ∗ z = (x ∗ z) ∗ y,

(1.2) x ∗ 0 = x,

(1.3) (x ∗ z) ∗ (y ∗ z) ≤ x ∗ y,

(1.4) x ≤ y implies x ∗ z ≤ y ∗ z and z ∗ y ≤ z ∗ x,

(1.5) 0 ∗ (x ∗ y) = (0 ∗ x) ∗ (0 ∗ y),

(1.6) x ∗ (x ∗ (x ∗ y)) = x ∗ y.

A non-empty subset I of X is called an ideal on X if it satisfies:

(I1) 0 ∈ I,

(I2) x ∗ y ∈ I and y ∈ I imply x ∈ I.

Moreover, a nonempty subset I of X is called a p-ideal on X if it satisfies condition (I1) and

(I3) (x ∗ z) ∗ (y ∗ z) ∈ I and y ∈ I imply x ∈ I.

Putting z = 0 in (I3), we can see that every p-ideal is an ideal.
A fuzzy subset on a set X is defined as a mapping µ : X → [0, 1]. Moreover, we define

αµ = Sup{µ(x) | x ∈ X}.
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Definition 2.1. [1] A fuzzy subset µ of BCI-algebra X is called a fuzzy ideal on X if it satisfies
for all x, y ∈ X:

(FI1) µ(0) ≥ µ(x),

(FI2) µ(x) ≥ min{µ(x ∗ y), µ(y)}.

Definition 2.2. [1] A fuzzy subset µ in a BCI-algebra X is called a fuzzy p-ideal on X if satisfies
condition (FI1) and

(FI3) µ(x) ≥ min{µ((x ∗ z) ∗ (y ∗ z)), µ(y)}, ∀x, y, z ∈ X.

Any fuzzy p-ideal is a fuzzy ideal.

Definition 2.3. [1] Let µ and ν be two fuzzy ideals on underlying of X and X ′, respectively.
We say that µ and ν are strong equivalent and we write µ ≈ ν, if there is a bijective function
f : X −→ X ′ such that for all x, y ∈ X:

µ ≈ ν ⇐⇒


µ(x) > µ(y) ⇔ ν(f(x)) > ν(f(y)),

µ(x) = 1 ⇔ ν(f(x)) = 1,
µ(x) = 0 ⇔ ν(f(x)) = 0.

In Definition 2.3, if we subset X = X ′ and f = idX , then we have the next Definition:

Definition 2.4. [1] Let µ and ν be two fuzzy ideals of X. We say that µ and ν are equivalent and
we write µ ∼ ν,

µ ∼ ν ⇐⇒


µ(x) > µ(y) ⇔ ν(x) > ν(y),

µ(x) = 1 ⇔ ν(x) = 1,
µ(x) = 0 ⇔ ν(x) = 0.

for all x, y ∈ X.

Theorem 2.5. Equivalency (strong equivalency ) between fuzzy ideals of a BCI-algebra is an
equivalence relation.

Example 2.6. [1] Let X = {0, 1, 2, 3} be a BCI-algebra with the following Cayley table:

∗ 0 1 2 3

0 0 0 2 2
1 1 0 3 2
2 2 2 0 0
3 3 2 1 0

Define fuzzy subsets µ and ν in X as follows:

µ(x) =


1 for x = 0
0.5 for x = 1
0.3 for x ∈ {2, 3},

ν(x) =


1 for x = 0
0.5 for x = 2
0.3 for x ∈ {1, 3}

Then µ and ν are not equivalent because µ(1) > µ(2) but ν(1) ≯ ν(2).

Definition 2.7. Let (X; ∗, 0) and (X ′; ∗′, 0′) be two BCI-algebras. A mapping f from X to X ′ is
called a BCI-homomorphism if

f(x ∗ y) = f(x) ∗′ f(y) for all x, y ∈ X.

BCI-homomorphism f is called a BCI-isomorphism if it is bijective.
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Theorem 2.8. Let µ and ν be two fuzzy subsets on underlying of X and X ′, respectively. Let
f : X −→ X ′ be a bijective map such that for all x, y ∈ X:

(1) f(x ∗ y) = f(x) ∗′ f(y) for all x, y ∈ X.

(2) µ(x) > µ(y) ⇔ ν(f(x)) > ν(f(y)),

(3) µ(x) = 1 ⇔ ν(f(x)) = 1,

(4) µ(x) = 0 ⇔ ν(f(x)) = 0.

If µ is a fuzzy ideal on BCI-algebra X, then ν is a fuzzy ideal on BCI-algebra X ′.

Proof. Let x′, y′ ∈ X ′, then there are x, y ∈ X such that ϕ(x) = x′ and ϕ(y) = y′. Since µ is a
fuzzy ideal, we get µ(x) ≥ min{µ(x ∗ y), µ(y)}. So, µ(x) ≥ µ(x ∗ y) or µ(x) ≥ µ(y). Therefore,

ν(ϕ(x)) ≥ ν(ϕ(x ∗ y)) or ν(ϕ(x)) ≥ ν(ϕ(y)),

and so, ν(x′) ≥ min{ν(x′ ∗′ y′), ν(y′)}.
Moreover, µ(0) ≥ µ(x) implies ν(0′) ≥ ν(x′) and so ν is a fuzzy ideal on X ′.

Theorem 2.9. Let µ be a fuzzy ideal on finite BCI-algebra X and f : X −→ X be a function
such that for all x, y ∈ X. Then µ(x) > µ(y) ⇔ µ(f(x)) > µ(f(y)). Also, for all x ∈ X we have
µ(f(x)) = µ(x)).

Proof. Let µ(f(x)) > µ(x)) for some x ∈ X. Then

µ(fn(x)) > . . . > µ(f(x)) > µ(x)),

and it contradicts the fact that X is finite.

Group-like BCI-algebras are described in [1]. Moreover, in Example 1.1.2 [2] BCI-algebra
obtained from an Abelian group.

Example 2.10. [2] Suppose (X; ·, 0) is an Abelian group with 0 as the identity element. Define a
binary operation ∗ on X by putting x ∗ y = x · y−1. Then (X; ∗, 0) is a BCI-algebra.

We call (X; ∗, 0) in the above example the adjoint BCI-algebra of the Abelian group (X; ·, 0).

Theorem 2.11. Let µ be a fuzzy subset in X and Im(µ) = {λ0, λ1, . . . , λn}, where λ0 > λ1 > . . . >
λn. If X0 ⊂ X1 ⊂ . . . ⊂ Xn = X are p-ideals of X such that µ (Xk\Xk−1) = λk for k = 0, 1, . . . , n,
where X−1 = ∅, then µ is a fuzzy p-ideal in X.

Example 2.12. Let (X; ∗, 0) be an adjoint BCI-algebra of the Abelian group (Z4; +, 0). Then
x ∗ y = (x+ 3y)(mod4) and ∅ ⊂ X1 ⊂ X2 ⊂ X3, where X1 = {0}, X2 = {0, 2} ≃ Z2, X3 = Z4, is
1 > α > β > 0.

µ(x) =


1 for x ∈ X1

α for x ∈ X2\X1

β for x ∈ X3\X2

Then µ is a fuzzy p-ideal on (X; ∗, 0).

Let µ be a fuzzy ideal on BCI-algebra (X; ∗, 0). We define

Autµ(X) = {f : X → X|f is a bijective map and µ(f(x)) = µ(x), ∀x ∈ X}.
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Lemma 2.13. Let µ be a fuzzy ideal on BCI-algebra (X; ∗, 0). Define a binary operation ◦ on
Autµ(X) by putting f ◦ g(x) = f(g(x)). Then (Autµ(X); ◦, idX) is a group.

Proposition 2.14. Let µ be a fuzzy subset on BCI-algebra (X; ∗, 0). Let A be an Abelian subgroup
of (Autµ(X); ◦, idX). Then (A; ⋆, idX) is a BCI-algebra when f ⋆ g = f ◦ g−1. In fact, (A; ⋆, idX)
is the adjoint BCI-algebra of the Abelian group (A; ◦, idX).

Proof. It obtains from Example 2.10.

Proposition 2.15. Let µ be a fuzzy ideal on BCI-algebra (X; ∗, 0) and A be an Abelian subgroup
of (Autµ(X); ◦, idX). For all f ∈ A and n ≥ 1 define a map τ : A −→ [0, 1] as follows

τ(f) =

{
αµ

1+αµ
f = id

αµ

n+αµ
f ∈ A− {id} (1)

for all f ∈ A. Then τ is a fuzzy ideal on adjoint BCI-algebra (A; ⋆, idX).

Proof. By Theorem 2.11, clearly τ is a p-fuzzy ideal on A. Therefore, τ is a fuzzy ideal on A.

Theorem 2.16. Let A be an Abelian subgroup (Autµ(X); ◦, idX). and (idX) = A0 ⊂ A1 ⊂ . . . ⊂
An = A be a maximal chain of ideals of adjoint BCI-algebra (A; ⋆, idX). For every λi ∈ [0, 1], i ∈
{1, . . . , n}, 1 ≥ λ1 ≥ . . . ≥ λn, define µ as follows:

µ(x) =



1 x ∈ A0

λ1 x ∈ A1 −A0

λ2 x ∈ A2 −A1

...
...

λn x ∈ An −An−1

Then µ is a fuzzy ideal on A.

Proposition 2.17. Let µ be a fuzzy ideal on BCI-algebra X and A be an Abelian subgroup of
(Autµ(X); ◦, idX). For all f ∈ A, for a, b > 0, define a map ϱ : A −→ [0, 1] as follows

ϱ(f) =

{
a

b+a f is an even permutation
0 f is an odd permutation, (2)

for all f ∈ A. Then ϱ is a fuzzy ideal on adjoint BCI-algebra (A; ⋆, idX).

Proof. We prove this result in two following cases:
Case 1) Suppose that f, g ∈ A both are even or odd permutation. Hence, f ⋆ g becomes an

even permutation. If f and g both are even permutation, then

ϱ(f) =
a

b+ a

≥ min

{
a

b+ a
,

a

b+ a

}
= min{ϱ(f ⋆ g), ϱ(g)}.
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If f and g both are odd permutation, then

ϱ(f) = 0

≥ min{0, a

b+ a
}

= min{ϱ(f ⋆ g), ϱ(g)}.

Case 2) Suppose that f, g ∈ A such that one of them is even permutation and the other one
is odd permutation. Thus f ⋆ g becomes an odd permutation. First, consider f is odd, then

0 = ϱ(f) = min

{
0,

a

b+ a

}
= min{ϱ(f ⋆ g), ϱ(g)}.

Else
a

b+ a
= ϱ(f) ≥ min{0, 0} = min{ϱ(f ⋆ g), ϱ(g)}.

Therefore, ϱ is a fuzzy ideal on A.

Theorem 2.18. Let µ be a fuzzy ideal on BCI-algebra X. If for all x ∈ X and i ∈ Nn,

µ1(x) = µ(x) and µi(x) =
µi−1(x)

1 + αµi−1 − µi−1(x)
, for i ≥ 2.

Then {µi}i∈N is a sequence of fuzzy ideals of X.

Proof. It is easy to see that for all x ∈ X and n ≥ 2

0 ≤ µn−1(x)

1 + αµn−1 − µn−1(x)
≤ 1.

Now, suppose that x and y are elements of X. If µ(x) ≥ µ(xy), for all x, y ∈ G, then

µ2(x) =
µ1(x)

1 + αµ1 − µ1(x)

≥ µ1(xy)

1 + αµ1 − µ1(xy)
= µ2(xy)

≥ µ2(xy) ∧ µ2(y).

Similarly, if µ(x) ≥ µ(y), for all x, y ∈ G, one can show that µ2(x) ≥ µ2(y) ≥ µ2(xy) ∧ µ2(y).
Therefore, µ2 is a fuzzy ideal on X.

By the similar way, we obtain for every n, µn is a fuzzy ideal on X.

Theorem 2.19. Let µ be a fuzzy ideal on BCI-algebra X. If for all x ∈ X and i, j ∈ Nn,

µij(x) =
µj(x)

max
{
αµi , αµj

}
+ αµj − µj(x)

.

Then {µij}ij∈N is a sequence of fuzzy ideals of a BCI-algebra X.
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Proof. It is easy to see that for all x ∈ G, n ≥ 2, we have

0 ≤ µj(x)

max
{
αµi , αµj

}
+ αµj − µj(x)

≤ 1.

Now, suppose x and y are elements of X. If µj(x) ≥ µj(xy), then

max{αµi , αµj}+ αµj − µj(x) ≤ max{αµi , αµj}+ αµj − µj(xy).

So, we have for all x ∈ G,

µj(x)

max{αµi , αµj}+ αµj − µj(x)
≥ µj(xy)

max{αµi , αµj}+ αµj − µj(x)
.

Thus,
µij(x) ≥ µij(xy) ≥ µij(xy) ∧ µij(y).

Hence, µij is a fuzzy ideal on X.

3 On the equivalence of sequences on fuzzy ideals
Definition 3.1. Let {µi}i∈N and {µ′

i}i∈N be two sequence of fuzzy ideals on X and X ′, respectively.
We say that {µi}i∈N and {µ′

i}i∈N are strong equivalent, if µi ≈ νi, for i ∈ N.
Moreover, if {µi}i∈N and {µ′

i}i∈N are two sequence of fuzzy ideals on X, then we say that
{µi}i∈N and {µ′

i}i∈N are equivalent, if µi ∼ νi, for i ∈ N.

Moreover, {µi}i∈N is two sequence of fuzzy ideals on BCI-algebra (X; ∗, 0). We define

Aut{µi}i∈N(X) = {f : X → X|f ∈ Autµi , ∀i ∈ N}.

Lemma 3.2. Let µ be a fuzzy ideal on BCI-algebra (X; ∗, 0). Define a binary operation ◦ on
Aut{µi}i∈N(X) by putting f ◦ g(x) = f(g(x)). Then (Aut{µi}i∈N(X); ◦, idX) is a group.

In Theorem 2.18 we obtain a sequence of fuzzy ideals of a fuzzy ideal µ on BCI-algebra X.
Now, we have:

Corollary 3.3. Let µ and ν be two strong equivalent fuzzy ideals of X and X ′, respectively. Then
{µi}i∈N and {νi}i∈N (Theorem 2.18) are strong equivalent fuzzy ideals on X and X ′, respectively.

Proof. We have

µi(x) > µi(y) ⇔ µ(x) > µ(y) ⇔ ν(f(x)) > ν(f(y)) ⇔ νi(f(x)) > νi(f(y)).

This shows that proof is complete.

By the similar way, we have

Corollary 3.4. Let µ and ν be two equivalent fuzzy ideals of X. Then {µi}i∈N and {νi}i∈N
(Theorem 2.18) are equivalent fuzzy ideals on X.

In Theorem 2.19 we obtain a sequence of fuzzy ideals {µij}i,j∈N of a fuzzy ideal µ on BCI-
algebra X. Now, we have:
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Corollary 3.5. Let µ and ν be two (strong) equivalent fuzzy ideals of X and X ′, respectively. Then
{µij}i,j∈N and {νij}i,j∈N(Theorem 2.19) are equivalent fuzzy ideals of X and X ′, respectively.

Corollary 3.6. Let {µi}i∈N be a sequence of fuzzy ideals of BCI-algebra X and A be an Abelian
subgroup of (Aut{µi}i∈N(X); ◦, idX). For all f ∈ A, define a map τi : A −→ [0, 1] as follows

τi(f) =

{ αµi
i+αµi

f = id
αµi

n+αµi
f ∈ A− {id} (3)

for all f ∈ A. {τi}i∈N is a sequence of fuzzy ideals of adjoint BCI-algebra A.

Proof. By Proposition 2.15, τi, i ∈ N is a fuzzy ideal on adjoin BCI-algebra A. Therefore {τi}i∈N
is a sequence of fuzzy ideals of adjoint BCI-algebra A.

Corollary 3.7. Let {µi}i∈N be a sequence of fuzzy ideals of BCI-algebra X and A be an Abelian
subgroup of (Aut{µi}i∈N(X); ◦, idX). For all f ∈ A, define a map ϱi : A −→ [0, 1] as follows

ϱi(f) =

{
αµi

i+αµi
f is an even permutation

0 f is an odd permutation,
(4)

for all f ∈ A. Then {ϱi}i∈N is a sequence of fuzzy ideals of adjoint BCI-algebra A.

Proof. By Proposition 2.17, ϱi, i ∈ N is a fuzzy ideal on adjoin BCI-algebra A. Therefore {ϱi}i∈N
is a sequence of fuzzy ideals of adjoint BCI-algebra A.

Example 3.8. Let X = (Z4,−, 0) be adjoint BCI-algebra of Abelian group (Z4,+, 0) (See Example
2.12). Define fuzzy subsets µ1, µ2 and µ3 in X as follows:

µ1(x) =

{ 1
2 , x = 0, 2
1
5 , x = 1, 3,

µ2(x) =

{ 1
2 , x = 0, 2
2
13 , x = 1, 3,

µ3(x) =

{ 1
2 , x = 0, 2
4
35 , x = 1, 3.

It is not difficult to see that Aut{µi}i∈N(X) = {id, (02), (13), (02)(13)} ∼= K4. By Corollary 3.6, for
i=1,2,3, we have

τi(f) =

{ 0.5
i+0.5 f = id
0.5

3+0.5 f ∈ A− {id}

and by Corollary 3.7, for i=1,2,3, we have

ϱi(f) =

{
0.5

i+0.5 f is an even permutation
0 f is an odd permutation,

Now, τi and ϱi are fuzzy ideal of adjoin BCI-algebra Aut{µi}i∈N(X).
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