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Abstract

In this paper, we introduce the notion of a ringoid, and we
obtain left distributive ringoids over a field which are not
rings. We introduce several different types of ringoids,
and also we discuss on (r, s)-ringoids. Moreover, we dis-
cuss geometric observations of the parallelism of vectors
in several ringoids.
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1 Introduction
The theory of groupoids [3, 4] has been introduced by some researchers. It has been combined with
the theory of general algebraic structures [7, 9, 10]. One of the methods for the generalization of
axioms is to employ special functions, i.e., by using of proper mappings, we may generalize axioms
in mathematical structures. The notion of a linear groupoid has been applied to the Fibonacci
sequences in groupoids. Using the notion of a flexibility, the linear groupoid was used to the study
of the Fibonacci sequence in groupoids [5]. The notion of BCK-algebras was formulated by K.
Iséki. The motivation of this notion is based on both set theory and propositional calculus (see
[6, 8, 11]). Neggers and Kim introduced the notion of d-algebras which is a useful generalization
of BCK-algebras, and they investigated several relations between d-algebras and BCK-algebras
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[12]. Allen et al. [1] developed a theory of companion d-algebras in sufficient detail to demonstrate
considerable parallelism with the theory of BCK-algebras as well as obtaining a collection of
results of a novel type. Allen et al. [2] introduced the notion of deformation in d/BCK-algebras.
Using such deformations they constructed d-algebras from BCK-algebras in such a manner as to
maintain control over properties of the deformed BCK-algebras via the nature of the deformation
employed, and observed that certain BCK-algebras cannot be deformed at all, leading to the
notion of a rigid d-algebra, and consequently of a rigid BCK-algebra as well.

In this paper, we introduce new generalization of rings as ringoids, and discuss several properties
of left distributive ringoids over a field which are not rings. Moreover, we will study several different
types of ringoids. One of them is a notion of an (r, s)-ringoid, and present proper examples for (d-
algebra, left zero, left distributive) ringoids and each (r, s)-ringoid. We will investigate geometric
interpretations of the parallelism of vectors in several ringoids. It will be discussed along with
several notions in linear algebras for further investigation.

2 Preliminaries
A d-algebra [12] is a non-empty set X with a constant 0 and a binary operation “ ∗ ” satisfying the
following axioms:

(I) x ∗ x = 0,

(II) 0 ∗ x = 0,

(III) x ∗ y = 0 and y ∗ x = 0 imply x = y for all x, y ∈ X.

A groupoid (X, ∗ ) is said to be a right zero semigroup if x∗y = y for any x, y ∈ X, and a groupoid
(X, ∗ ) is said to be a left zero semigroup if x ∗ y = x for any x, y ∈ X.
Let R be the set of all real numbers. We define a binary operation “∗” on R by

x ∗ y := A+Bx+ Cy,

for all x, y ∈ R, where A,B,C ∈ R. We call such a groupoid (R, ∗ ) is a linear groupoid [7, 9] over
reals.

3 Ringoids
An algebra (X, ∗, +, 0 ) of type (2, 2, 0) is said to be a ringoid if it satisfies the following conditions:

(I) (X, +, 0 ) is an abelian group,

(II) (X, ∗ ) is a groupoid.

Example 3.1. (i) Let (R, +, ·, 0, 1 ) be the field of real numbers. Define a binary operation “∗”
on R by x ∗ y := x · (x− y) for all x, y ∈ R. Then (R, ∗, 0 ) is a d-algebra, but it is not an abelian
group, since it does not contain the zero element. Hence (R, ∗, +, 0 ) is a ringoid, but it is neither
a ring nor a recognized type of generalization of a ring such as semi-ring, near-ring, etc.
(ii) Consider the abelian group (R, ·, 1 ). Define a binary operation “ ∗ ” on R as follows:

x ∗ y =

{
0 if x ≤ y,
1 otherwise.
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Table 1: Groupoid (Z4, ∗ )

∗ 0 1 2 3
0 3 1 2 3
1 0 3 2 1
2 0 1 3 2
3 0 1 2 1

Then (R, ∗, ·, 1 ) is a ringoid.
(iii) Consider the abelian group (Z4, +, 0 ). Define a binary operation “∗” on Z4 with the following
Table 1. Then (Z4, ∗, +, 0 ) is a ringoid.
(iv) Consider the interval [0, 1] of real numbers. Define binary operations “+” and “∗” on it as
follows: for all x, y ∈ [0, 1],

x+ y =

{
x+ y if x+ y < 1,
x+ y − 1 if x+ y ≥ 1,

and
x ∗ y =

{
1 if x = y = 0,
yx otherwise.

Then ([0, 1], ∗, +, 0 ) is a ringoid.
Clearly, every ring is a ringoid, but the converse need not be true in general. (See Theorem 4.4)

Given a ringoid (X, ∗, +, 0 ), we consider its cartesian product Xn consisting of vectors →
x=

(x1, · · · , xn). Define two binary operations “⊕” and “⊗” on Xn by
→
x ⊕ →

y := (x1 + y1, · · · , xn + yn),

and
→
x ⊗ →

y := (x1 ∗ y1, · · · , xn ∗ yn),

for all →
x= (x1, · · · , xn),

→
y= (y1, · · · , yn) ∈ Xn. We call two binary operations “⊕” and “⊗” a

natural vector addition and natural induced product respectively.
The ringoid structure permits us to define a natural scaler product:

→
x ⋆

→
y := x1 ∗ y1 + · · ·+ xn ∗ yn,

and a natural projection:
π(

→
x) := x1 + · · ·+ xn,

so that we obtain a general formula for all ringoids, viz., π(→x ⊗ →
y ) =

→
x ⋆

→
y .

Note that (Xn, ⊗, ⊕,
→
0 ) becomes again a ringoid, and also we have

π(
→
x ⊕ →

y ) = π(x1 + y1, · · · , xn + yn)

= (x1 + y1) + · · ·+ (xn + yn)

= (x1 + · · ·+ xn) + (y1 + · · ·+ yn)

= π(
→
x) + π(

→
y ),

so that π : (Xn, ⊕,
→
0 ) → (X, +, 0 ) is in fact a group homomorphism of abelian groups and

Kerπ := {→x | π(→x) = 0} is a subgroup of an abelian group (Xn, ⊕,
→
0 ).

Since π(
→
x ⊗ →

y ) ̸= π(
→
x) ∗ π(→y ) in general, it fails to be a homomorphism of ringoids.
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Example 3.2. Consider the ringoid (R, ∗, +, 0 ) in Example 3.1(i). Since x ∗ y = x · (x− y) for
all x, y ∈ R, we obtain (1, 2)⊗ (2, 7) = (−1,−10). Thus

π((1, 2)⊗ (2, 7)) = π(−1,−10) = −11 ≠ π(1, 2) ∗ π(2, 7) = 3 ∗ 9 = −18.

The extent to which π fails to be a homomorphism of ringoids can be measured by looking at
the subgroup of (X, +, 0 ) generated by the expressions:

h : (Xn, ⊗, ⊕,
→
0 )× (Xn, ⊗, ⊕,

→
0 ) −→ (X, ∗, +, 0 )

h(
→
x,

→
y ) := π(

→
x ⊗ →

y )− π(
→
x) ∗ π(→y ).

Remark 3.3. Two binary operations ⊗ and ⋆ are playing differently their roles of the commutativity
in general.

Example 3.4. Consider the ringoid (R, ∗, +, 0 ) in Example 3.1(i). Since x ∗ y = x · (x− y) for
all x, y ∈ R, we obtain (5, 2)⊗ (

√
29, 0) = (25− 5

√
29, 4) ̸= (29− 5

√
29, 0) = (

√
29, 0)⊗ (5, 2) and

(5, 2) ⋆ (
√
29, 0) = 29− 5

√
29 = (

√
29, 0) ⋆ (5, 2).

A ringoid (X, ∗, +, 0 ) is said to be a left zero ringoid if (X, ∗ ) is a left zero semigroup.

Example 3.5. Let (Q, +, ·, 0, 1 ) be the field of rational numbers. Define two binary operations
“∗” and “⊕” on Q by x ∗ y = x and x ⊕ y = x · y (resp. x ⊕ y = x + y) for all x, y ∈ Q. Then
(Q, ∗, ⊕, 1 ) (resp. (Q, ∗, ⊕, 0 )) is a left zero ringoid.

Proposition 3.6. If (X, ∗, +, 0 ) is a left zero ringoid, then (Xn, ⊗, ⊕,
→
0 ) is a left zero ringoid

and the natural projection π is an epimorphism of ringoids.

Proof. Since (X, ∗, +, 0 ) is a left zero ringoid, x ∗ y = x, for all x, y ∈ X. It follows that
→
x ⊗ →

y= (x1 ∗ y1, · · · , xn ∗ yn) = (x1, · · · , xn) =
→
x,

for all →
x= (x1, · · · , xn),

→
y= (y1, · · · , yn) ∈ Xn. Hence, (Xn, ⊗, ⊕,

→
0 ) is a left zero ringoid.

Moreover, we have

π(
→
x ⊗ →

y ) =
→
x ⋆

→
y

= x1 + · · ·+ xn

= π(
→
x)

= π(
→
x) ∗ π(→y ),

proving the proposition.

A ringoid (X, ∗, +, 0 ) is said to be a d-algebra ringoid if (X, ∗, 0 ) is a d-algebra.

Example 3.7. ([1]) Consider the real number R, and suppose that (R, ∗, e ) has the multiplication

x ∗ y = (x− y)(x− e) + e.

Then (R, ∗, +, e ) is a d-algebra ringoid.

Theorem 3.8. If (X, ∗, +, e ) is a d-algebra ringoid, then
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(i) (Xn, ⊗,
→
e ) is a d-algebra,

(ii) →
x ⋆

→
x=

→
e ⋆

→
x= ne,

(iii) if e = 0, then h(
→
x,

→
x) = 0 = h(

→
e ,

→
x), for all →

x∈ Xn.

Proof. (i) Given →
x∈ Xn, we have

→
x ⊗ →

x= (x1, · · · , xn)⊗ (x1, · · · , xn) = (x1 ∗ x1, · · · , xn ∗ xn) = (e, · · · , e) =→
e ,

and
→
e ⊗ →

x= (e, · · · , e)⊗ (x1, · · · , xn) = (e ∗ x1, · · · , e ∗ xn) = (e, · · · , e) =→
e .

Assume →
x ⊗ →

y=
→
y ⊗ →

x=
→
e . Then (x1 ∗ y1, · · · , xn ∗ yn) = (e, · · · , e) and (y1 ∗ x1, · · · , yn ∗ xn) =

(e, · · · , e), and so xi ∗ yi = yi ∗ xi = e for all i = 1, · · · , n. Since (X, ∗, e ) is a d-algebra, we obtain
xi = yi for all i = 1, · · · , n, i.e., →

x=
→
y . Hence (Xn, ⊗,

→
e ) is a d-algebra.

(ii) Given →
x∈ Xn, we have

→
x ⋆

→
x= x1 ∗ x1 + · · ·+ xn ∗ xn = e+ · · ·+ e = ne,

and
→
x ⋆

→
x= π(

→
x ⊗ →

x) = π(
→
e ) = ne.

(iii) Given →
x,

→
y∈ Xn, we have

h(
→
x,

→
y ) = π(

→
x ⊗ →

y )− π(
→
x) ∗ π(→y )

= π((x1 ∗ y1, · · · , xn ∗ yn))− (x1 + · · ·+ xn) ∗ (y1 + · · ·+ yn)

=

n∑
i=1

xi ∗ yi −
n∑

i=1

xi ∗
n∑

i=1

yi .

It follows that

h(
→
x,

→
x) = π(

→
x ⊗ →

x)− π(
→
x) ∗ π(→x) = π(

→
e )− e = ne− e = (n− 1)e.

Similarly, we obtain

h(
→
e ,

→
x) =

n∑
i=1

e ∗ xi −
n∑

i=1

e ∗
n∑

i=1

xi = ne− ne ∗
n∑

i=1

xi.

If we let e := 0, then we obtain h(
→
x,

→
x) = h(

→
0 ,

→
x) = 0. This proves the theorem.

A groupoid (X, ∗ ) is said to be a leftoid over a function φ : X → X if x ∗ y := φ(x) for all
x, y ∈ X.

A ringoid (X, ∗, +, 0 ) is said to be a φ-leftoid ringoid if (X, ∗ ) is a leftoid over φ. A mapping
f : Xn → Xn is said to be additive if f(x1 + · · ·+ xn) = f(x1) + · · ·+ f(xn) for all x1, · · · , xn ∈ X
where n ≥ 1.

Theorem 3.9. Let (X, ∗, +, 0 ) be a φ-leftoid ringoid. If φ is additive, then h(
→
x,

→
y ) = 0 for all

→
x,

→
y∈ Xn.
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Proof. Given →
x= (x1, · · · , xn),

→
y= (y1, · · · , yn) ∈ Xn, we have

→
x ⊗ →

y= (x1 ∗ y1, · · · , xn ∗ yn) = (φ(x1), · · · , φ(xn)).

It follows from φ is additive that

π(
→
x ⊗ →

y ) = π((φ(x1), · · · , φ(xn)))
= φ(x1) + · · ·+ φ(xn)

= φ(x1 + · · ·+ xn)

= (x1 + · · ·+ xn) ∗ (y1 + · · ·+ yn)

= π(
→
x) ∗ π(→y ).

This shows that h(
→
x,

→
y ) = π(

→
x ⊗ →

y )− π(
→
x) ∗ π(→y ) = 0, proving the theorem.

4 Distributive ringoids
A ringoid (X, ∗, +, 0) is said to be

• left distributive if x ∗ (y + z) = (x ∗ y) + (x ∗ z),

• right distributive if (x+ y) ∗ z = (x ∗ z) + (y ∗ z)

for all x, y, z ∈ X. A ringoid (X, ∗, +, 0 ) is said to be a distributive ringoid if it is both left
distributive and right distributive.

Example 4.1. (i) Every ring is a distributive ringoid.
(ii) Consider the abelian group (Z2, +, 0 ). Define a binary operation “∗” on Z2 with the following
Table 2. Then (Z2, ∗, +, 0 ) is a left distributive ringoid.

Table 2: Groupoid (Z2, ∗ )

∗ 0 1
0 0 1
1 0 0

(iii) Consider the ringoid (Z4, ∗, +, 0 ) in Example 3.1(iii). It is not a left distributive, since

2 ∗ (1 + 3) = 2 ∗ 0 = 0 ̸= 2 ∗ 1 + 2 ∗ 3 = 1 + 2 = 3.

(iv) The ringoid ([0, 1], ∗, +, 0 ) in Example 3.1(iv) is not a left distributive, since

0.1 ∗ (0.2 + 0.4) = 0.1 ∗ 0.6 = 0.60.2 ̸= 0.1 ∗ 0.2 + 0.1 ∗ 0.4 = 0.20.1 + 0.40.1.

(v) The d-algebra ringoid in Example 3.7 is not a left distributive, since

2 ∗ (5 + 3) = 2 ∗ 8
= (2− 8)(2− e) + e

= −12 + 7e

̸= 2 ∗ 5 + 2 ∗ 3
= (2− 5)(2− e) + e+ (2− 3)(2− e) + e

= −8 + 6e.
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In this section, we assume that (K, ·, +, 0, 1 ) is a field, and that A,B,C, α, β, γ ∈ K. Define
two binary operations “ ∗ ” and “⊕” on K by

x ∗ y := A+Bx+ Cy, (1)
x⊕ y := α+ βx+ γy, (2)

for all x, y ∈ K. In this section, we discuss left and right distributive ringoids related to linear
groupoids over a field K.

Lemma 4.2. Let (K, ∗, ⊕ ) be an algebra defined as (1) and (2). If it satisfies the left distributive
law and β + γ ̸= 1, then x ∗ y = α(1−C)

1−(β+γ) + Cy and x⊕ y = α+ βx+ γy for all x, y ∈ K.

Proof. Given x, y, z ∈ K, we have

x ∗ (y ⊕ z) = A+Bx+ C(y ⊕ z)

= A+Bx+ C(α+ βy + γz)

= (A+ Cα) +Bx+ Cβy + Cγz, (3)

and

(x ∗ y)⊕ (x ∗ z) = α+ β(x ∗ y) + γ(x ∗ z)
= α+ β(A+Bx+ Cy) + γ(A+Bx+ Cz)

= α+A(β + γ) +B(β + γ)x+ Cβy + Cγz. (4)

Since the left distributive law holds, by (3) and (4), we obtain

A+ Cα = α+ (β + γ)A, (5)
B = B(β + γ). (6)

It follows that A(1− β − γ) = α(1− C) and B(1− β − γ) = 0.
Since β + γ ̸= 1, we obtain B = 0 and A = α(1−C)

1−(β+γ) . Hence we obtain

x ∗ y =
α(1− C)

1− (β + γ)
+ Cy, (7)

x⊕ y = α+ βx+ γy, (8)

proving the lemma.

Example 4.3. Let (Q, +, ·, 0, 1 ) be the field of rational numbers. Define two binary operations
“∗1” and “⊕1” on Q by x∗1 y = −5

2−y and x⊕1 y = 5+2x+3y for all x, y ∈ Q. Then (Q, ∗1, ⊕1 )
is a left distributive. Now, if we define x ∗2 y = 1+x− y and x⊕2 y = 5+2x+3y for all x, y ∈ Q.
Then (Q, ∗2, ⊕2 ) is not a left distributive, since

2 ∗2 (4⊕2 1) = 2 ∗2 16 = −13 ̸= (2 ∗2 4)⊕2 (2 ∗2 1) = (−1)⊕2 2 = 9.

Theorem 4.4. Let (K, ∗, ⊕ ) be an algebra with (1) and (2). Then (K, ∗, ⊕, −α ) is a left
distributive ringoid if and only if

x ∗ y = (C − 1)α+ Cy, (9)
x⊕ y = α+ x+ y, (10)

for all x, y ∈ K.
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Proof. Assume (K, ⊕, ξ ) be an abelian group. Then x ⊕ ξ = ξ ⊕ x = x for all x ∈ K. It follows
that

α+ βx+ γξ = α+ βξ + γx = x. (11)

for all x ∈ K. Hence βx+ γξ = βξ + γx, and hence β(x− ξ) = γ(x− ξ), i.e., (β − γ)(x− ξ) = 0
for all x ∈ K. This proves that β = γ. If we let β = γ in (11), then

α+ β(x+ ξ) = x. (12)

for all x ∈ K. If we put x := −ξ in (12), then we obtain α = −ξ. Hence x ⊕ y = −ξ + β(x + y)
for all x, y ∈ K. Now, for any x ∈ K, we have

x = x⊕ ξ

= −ξ + β(x+ ξ)

= βx+ ξ(β − 1).

It follows that β = γ = 1. Hence x ⊕ y = α + x + y for all x, y ∈ K. Since β + γ ̸= 1, we obtain
x ∗ y = α(1−C)

1−(β+γ) + Cy = −α(1− C) + Cy = (C − 1)α+ Cy.
Conversely, since the conditions (9) and (10) are special cases of (7) and (8) respectively, the

algebra (K, ∗, ⊕ ) satisfies the left distributive law and (K, ⊕, −α ) is an abelian group. Hence
(K, ∗, ⊕, −α ) is a left distributive ringoid.

Remark 4.5. The left distributive ringoid (K, ∗, ⊕, −α ) discussed in Theorem 4.4 need not be a
ring in general. It is enough to show that (K, ∗ ) is not a semigroup. Given x, y, z ∈ K, we have
(x ∗ y) ∗ z = (C − 1)α+Cz and x ∗ (y ∗ z) = (C − 1)α+C(y ∗ z) = (C − 1)α+C[(C − 1)α+Cz] =
(C + 1)(C − 1)α+ C2z. If C ̸= 1 or α ̸= 0, then (K, ∗ ) is not a semigroup.

Example 4.6. Consider the left distributive algebra (Q, ∗2, ⊕2 ) in Example 4.3. Then (Q, ∗2, ⊕2, 0 )
is not a ringoid, since 2⊕2 5 = 24 ̸= 5⊕2 2 = 21 and so (Q, ⊕2, 0 ) is not an abelian group.
Now, if we define x ∗3 y = 2 + 3y and x⊕3 y = 1 + x+ y, then by using Lemma 4.1, (Q, ∗3, ⊕3 )
is a left distributive algebra and by Theorem 4.3, (Q, ∗3, ⊕3, −1 ) is a left distributive ringoid, but
not a ring, since

(3 ∗3 5) ∗3 2 = 17 ∗3 2 = 8 ̸= 3 ∗3 (5 ∗3 2) = 3 ∗3 8 = 26,

so (Q, ∗3 ) is not a semigroup.

In Lemma 4.2 and Theorem 4.4, we have discussed the case of β + γ ̸= 1. From now on, we
discuss the case of β + γ = 1.

Theorem 4.7. Let (K, ∗, ⊕ ) be an algebra defined as (1) and (2). If β + γ = 1, then there is no
left distributive ringoid over K.

Proof. If we assume β + γ = 1, then, by (5) and (6), we obtain α(1 − C) = 0 and B is arbitrary.
Hence we have two cases: (i) α = 0; (ii) C = 1. Consider α = 0. Then x ⊕ y = βx + γy =
βx + (1 − β)y. Assume that (K, ⊕, ξ ) is an abelian group with zero ξ. Then x ⊕ ξ = x for all
x ∈ K, and hence βx+ (1− β)ξ = x, i.e., (1− β)(x− ξ) = 0 for all x ∈ K. It follows that β = 1,
which shows that x⊕ y = x. This means (K, ⊕ ) is a left zero semigroup which is not a group, a
contradiction.
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Consider C = 1. Then x⊕ y = α+ βx+(1− β)y and x ∗ y = A+Bx+ y for all x, y ∈ K. Assume
(K, ⊕, ξ ) is an abelian group with zero ξ. Then x⊕ ξ = ξ ⊕ x = x for all x ∈ K. It follows that

α+ βx+ (1− β)ξ = α+ βξ + (1− β)x, (13)

and hence (2β − 1)(x− ξ) = 0 for all x ∈ K. We obtain β = 1
2 , and apply it to (13). Then

α+
1

2
x+

1

2
ξ = x, (14)

for all x ∈ K. If we let x := ξ, then α+ ξ = ξ, i.e., α = 0. This x⊕ y = 1
2(x+ y) for all x, y ∈ K.

It follows that x = x ⊕ ξ = 1
2(x + ξ), i.e., 2x = x + ξ for all x ∈ K. Hence x = ξ for all x ∈ K,

which proves that |K| = 1, a contradiction. This proves the theorem.

Example 4.8. Let (R, +, ·, 0, 1 ) be a field of real numbers. Define a binary operations “∗” and
“⊕” on R by x ∗ y := 2 + 3y and x⊕ y = 1 + 3

4x+ 1
4y for all x, y ∈ R. Then (R, ∗, ⊕ ) is a left

distributive algebra by Lemma 4.2, but (R, ⊕ ) is not an abelian group, since

2⊕ 3 =
13

4
̸= 3⊕ 2 =

15

4
.

Thus (R, ∗, ⊕, 0 ) is not a left distributive ringoid over R.

By applying Theorem 4.4, we see that there are many left distributive ringoids which are linear
groupoids. Moreover, we see that those left distributive ringoids are not rings in general.

5 (r, s)-ringoids

Given an abelian group (X, +, 0 ) and integers r, s ∈ Z, the expression rx+ sy is well-defined for
all x, y ∈ X, since abelian groups are naturally Z-modules. Thus, if we define x ∗ y := rx+ sy for
fixed r, s ∈ Z and for all x, y ∈ X, then (X, ∗ ) is a groupoid and hence (X, ∗, +, 0 ) is a ringoid.
We call it an (r, s)-ringoid. Thus the (1, 1)-ringoid has x ∗ y = x+ y, while the (1,−1)-ringoid has
x ∗ y = x− y for all x, y ∈ X.

We construct an (m,n)-ringoid which is not a ring as follows:

Example 5.1. Let (X, +, 0 ) be an abelian group. Assume 26x = 0 for all x ∈ X. Define a
binary operation “∗” on X by x ∗ y := 13x + 14y for all x, y ∈ X. Then (X, ∗, +, 0 ) is clearly
(13, 14)-ringoid. We claim that (X, ∗ ) is a semigroup. For all x, y, z ∈ X, we have (x ∗ y) ∗ z =
13(13x+ 14y) + 14x = 169x+ 182y+ 14x = 13x+ 14z = 13x+ 14(13y+ 14z) = x ∗ (y ∗ z). Given
x, y, z ∈ X, we have x∗ (y+z) = 13x+14y+14z, while x∗y+x∗z = 26x+14y+14z = 14y+14z,
proving that x ∗ (y+ z) ̸= x ∗ y+x ∗ z. Thus (13, 14)-ringoid (X, ∗, +, 0 ) is not a left distributive.

Theorem 5.2. Let (X, ∗, +, 0 ) be an (m,n)-ringoid. Then (X, ∗ ) is a semigroup if and only if
(m2 −m)x = 0 = (n− n2)z for all x, z ∈ X.

Proof. Given x, y, z ∈ X, we consider the expressions (x ∗ y) ∗ z and x ∗ (y ∗ z):

(x ∗ y) ∗ z = m(x ∗ y) + nz

= m(mx+ ny) + nz

= m2x+mny + nz, (15)
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and

x ∗ (y ∗ z) = mx+ n(y ∗ z)
= mx+ n(my + nz)

= mx+mny + n2z. (16)

By (15) and (16), we obtain

x ∗ (y ∗ z)− x ∗ (y ∗ z) = (m2 −m)x+ (n− n2)z, (17)

for all x, y, z ∈ X. Assume (X, ∗ ) is a semigroup. Then

(m2 −m)x+ (n− n2)z = 0, (18)

for all x, z ∈ X. If we let x := 0 and z := 0 in (18), then we obtain (m2−m)x = 0 and (n−n2)z = 0
for all x, z ∈ X. Conversely, if we assume (m2 −m)x = 0 and (n− n2)z = 0 for all x, z ∈ X, then,
by (17) and (18), we obtain x ∗ (y ∗ z)− x ∗ (y ∗ z) = 0, proving that (X, ∗ ) is a semigroup.

Example 5.3. Let (Z, +, 0 ) be the abelian group of integers. Consider (1,−1)-ringoid (Z, ∗, +, 0 )
where x ∗ y = x− y for all x, y ∈ Z. Then (Z, ∗ ) is not a semigroup, since

(x ∗ y) ∗ z = (x− y)− z ̸= x ∗ (y ∗ z) = x− (y − z).

Moreover, we have −5 ∗ 5 = −5− 5 = −2 · 5 = (−1− (−1)2) · 5 = −10 ̸= 0.

6 Geometric interpretations

Consider a field (X, +, ·, 0, 1 ) and its Cartesian product Xn consisting of vectors →
x= (x1, · · · , xn)

with its natural vector addition ⊕. The natural scalar product →
x ⋆

→
y is defined by the ordinary

inner product of →
x and →

y . The square of the cosine of the angle θ between →
x and →

y in Xn can be
represented as

cos2 θ =
(
→
x ⊗ →

y ) ⋆ (
→
y ⊗ →

x)

(
→
x ⊗ →

x) ⋆ (
→
y ⊗ →

y )
.

Since
√→

x ⊗ →
x may not be defined in the field X, we avoid difficulties by doing it this way. In

particular, if this ratio is 1, then we consider the cosine to be +1 or −1 and thus we have reason
to consider →

x and →
y to be parallel. Given →

x,
→
y∈ Xn, we define two functions as follows:

S(
→
x,

→
y ) = (

→
x ⊗ →

y ) ⋆ (
→
y ⊗ →

x) + (
→
y ⊗ →

x) ⋆ (
→
x ⊗ →

y ),

and
T (

→
x,

→
y ) = (

→
x ⊗ →

x) ⋆ (
→
y ⊗ →

y ) + (
→
y ⊗ →

y ) ⋆ (
→
x ⊗ →

x).

Two vectors →
x,

→
y∈ Xn are said to be parallel if S(→x,→y ) = T (

→
x,

→
y ). Observe that S(

→
x,

→
x) =

T (
→
x,

→
x) and that S(

→
x,

→
y ) = T (

→
x,

→
y ) implies S(

→
y ,

→
x) = T (

→
y ,

→
x). A transitivity relationship may

or may not exist.

Proposition 6.1. If (X, ∗, +, e ) is a d-algebra ringoid, then T (
→
x,

→
y ) = 2ne for all →

x,
→
y∈ Xn.
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Proof. Since (X, ∗, e ) is a d-algebra, we have
→
x ⊗ →

x= (x1, · · · , xn)⊗ (x1, · · · , xn) = (x1 ∗ x1, · · · , xn ∗ xn) = (e, · · · , e),

for all →
x∈ Xn. It follows that

T (
→
x,

→
y ) = (

→
x ⊗ →

x) ⋆ (
→
y ⊗ →

y ) + (
→
y ⊗ →

y ) ⋆ (
→
x ⊗ →

x)

= (e, · · · , e) ⋆ (e, · · · , e) + (e, · · · , e) ⋆ (e, · · · , e)
= ne+ ne = 2ne.

Example 6.2. Consider the d-algebra ringoid (R, ∗, +, e ) in Example 3.7. Let n := 2 and
→
x= (a, b) ∈ R2. Using (I), we get

→
x ⊗ →

x= (a, b)⊗ (a, b) = (a ∗ a, b ∗ b) = (e, e).

It follows that

T (
→
x,

→
y ) = (

→
x ⊗ →

x) ⋆ (
→
y ⊗ →

y ) + (
→
y ⊗ →

y ) ⋆ (
→
x ⊗ →

x)

= (e, e) ⋆ (e, e) + (e, e) ⋆ (e, e)

= e ∗ e+ e ∗ e+ e ∗ e+ e ∗ e
= e+ e+ e+ e = 4e.

Corollary 6.3. Let (X, ∗, +, 0 ) be a d-algebra ringoid. If S(→x,→y ) = 0 for some →
x,

→
y∈ Xn, then

→
x and →

y are parallel.

Proof. If we let e := 0 in Proposition 6.1, then T (
→
x,

→
y ) = 0. By assumption we obtain S(

→
x,

→
y ) =

0 = T (
→
x,

→
y ). Hence →

x are →
y are parallel.

Proposition 6.4. Let (X, ∗, +, 0 ) be a left-zero ringoid. Then →
x and →

y are parallel for all
→
x,

→
y∈ Xn.

Proof. Given →
x,

→
y∈ Xn, since (X, ∗, +, 0 ) is a left-zero ringoid, we obtain →

x ⊗ →
y= (x1 ∗

y1, · · · , xn ∗ yn) = (x1, · · · , xn) =
→
x . It follows that

S(
→
x,

→
y ) = (

→
x ⊗ →

y ) ⋆ (
→
y ⊗ →

x) + (
→
y ⊗ →

x) ⋆ (
→
x ⊗ →

y )

=
→
x ⋆

→
y +

→
y ⋆

→
x

= x1 ∗ y1 + · · ·+ xn ∗ yn + y1 ∗ x1 + · · ·+ yn ∗ xn
= x1 + · · ·+ xn + y1 + · · ·+ yn

= π(
→
x) + π(

→
y )

= π(
→
x ⊕ →

y ).

Similarly, we compute

T (
→
x,

→
y ) = (

→
x ⊗ →

x) ⋆ (
→
y ⊗ →

y ) + (
→
y ⊗ →

y ) ⋆ (
→
x ⊗ →

x) =
→
x ⋆

→
y +

→
y ⋆

→
x= π(

→
x ⊕ →

y ),

which shows that S(
→
x,

→
y ) = T (

→
x,

→
y ). Hence →

x and →
y are parallel.
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Theorem 6.5. Let (X, ∗, +, 0 ) be an (r, s)-ringoid where r, s ∈ Z. Then →
x and →

y are parallel
for all →

x,
→
y∈ Xn.

Proof. Let (X, ∗, +, 0 ) be an (r, s)-ringoid and let →
x,

→
y∈ Xn. Then

→
x ⊗ →

y= (x1 ∗ y1, · · · , xn ∗ yn) = (rx1 + sy1, · · · , rxn + syn).

It follows that

(
→
x ⊗ →

y ) ⋆ (
→
y ⊗ →

x) = (x1 ∗ y1, · · · , xn ∗ yn) ⋆ (y1 ∗ x1, · · · , yn ∗ xn)
= (rx1 + sy1, · · · , rxn + syn) ⋆ (ry1 + sx1, · · · , ryn + sxn)

= (rx1 + sy1) ∗ (ry1 + sx1) + · · ·+ (rxn + syn) ∗ (ryn + sxn)

= r(rx1 + sy1) + s(ry1 + sx1) + · · ·+ r(rxn + syn) + s(ryn + sxn)

= r2x1 + 2rsy1 + s2x1 + · · ·+ r2xn + 2rsyn + s2xn

= r2(x1 + · · ·+ xn) + 2rs(y1 + · · ·+ yn) + s2(x1 + · · ·+ xn)

= r2π(
→
x) + 2rsπ(

→
y ) + s2π(

→
x).

By a similar argument, we obtain

(
→
y ⊗ →

x) ⋆ (
→
x ⊗ →

y ) = r2(y1 + · · ·+ yn) + 2rs(x1 + · · ·+ xn) + s2(y1 + · · ·+ yn)

= r2π(
→
y ) + 2rsπ(

→
x) + s2π(

→
y ).

Using this results, we have

S(
→
x,

→
y ) = (

→
x ⊗ →

y ) ⋆ (
→
y ⊗ →

x) + (
→
y ⊗ →

x) ⋆ (
→
x ⊗ →

y )

= r2π(
→
x) + 2rsπ(

→
y ) + s2π(

→
x) + r2π(

→
y ) + 2rsπ(

→
x) + s2π(

→
y )

= (r2 + 2rs+ s2)π(
→
x) + (r2 + 2rs+ s2)π(

→
y )

= (r + s)2[π(
→
x) + π(

→
y )]

= (r + s)2π(
→
x ⊕ →

y ).

Similarly, we obtain

(
→
x ⊗ →

x) ⋆ (
→
y ⊗ →

y ) = (x1 ∗ x1, · · · , xn ∗ xn) ⋆ (y1 ∗ y1, · · · , yn ∗ yn)
= (rx1 + sx1, · · · , rxn + sxn) ⋆ (ry1 + sy1, · · · , ryn + syn)

= (rx1 + sx1) ∗ (ry1 + sy1) + · · ·+ (rxn + sxn) ∗ (ryn + syn)

= r(rx1 + sx1) + s(ry1 + sy1) + · · ·+ r(rxn + sxn) + s(ryn + syn)

= r2x1 + rsx1 + sry1 + s2y1 + · · ·+ r2xn + rsxn + sryn + s2yn

= r2(x1 + · · ·+ xn) + rs(x1 + · · ·+ xn) + sr(y1 + · · ·+ yn) + s2(y1 + · · ·+ yn)

= r2π(
→
x) + rs[π(

→
x) + π(

→
y )] + s2π(

→
y ).

If we change →
x and →

y in the above equation, then

(
→
y ⊗ →

y ) ⋆ (
→
x ⊗ →

x) = r2π(
→
y ) + rs[π(

→
y ) + π(

→
x)] + s2π(

→
x).
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Using this results, we obtain

T (
→
x,

→
y ) = (

→
x ⊗ →

x) ⋆ (
→
y ⊗ →

y ) + (
→
y ⊗ →

y ) ⋆ (
→
x ⊗ →

x)

= r2π(
→
x) + rs(π(

→
x) + π(

→
y )) + s2π(

→
y ) + r2π(

→
y ) + rs(π(

→
y ) + π(

→
x)) + s2π(

→
x)

= r2[π(
→
x) + π(

→
y )] + 2rs[π(

→
y ) + π(

→
x)] + s2[π(

→
x) + π(

→
y )]

= (r2 + 2rs+ s2)[π(
→
x) + π(

→
y )]

= (r + s)2π(
→
x ⊕ →

y ).

This shows that S(
→
x,

→
y ) = T (

→
x,

→
y ), and hence →

x and →
y are parallel.

Corollary 6.6. If (X, ∗, +, 0 ) is an (1, 0)-ringoid, then S(→x,→y ) = π(
→
x ⊕ →

y ) for all →
x,

→
y∈ Xn.

Proof. Let r := 1, s := 0 in the proof of Theorem 6.5.

7 Conclusions
In this paper, a new algebraic structure as a generalization of a ring has been introduced, and
called it ringoid, and discussed several properties of d-algebra ringoids, left zero ringoids, and left
distributive ringoids. It is shown that there are many left distributive ringoids over a field which
are linear groupoids, but not rings in general. Beside, the notion of an (r, s)-ringoid is defined,
and we investigated geometric interpretations of the parallelism of vectors in several ringoids.
In this fashion we will discuss a study of the right distributivity law in linear groupoids, and
will combine with the previous obtained results on the left distributive ringoids which are linear
groupoids. This future research will investigate the existence of distributive ringoids which are not
rings. Moreover, we will investigate other cases of polynomial algebras (K, ∗, ⊕, ξ ) as follows: (i)
(K, ∗ ) is linear and (K, ⊕ ) is quadratic; (ii) (K, ∗ ) is quadratic and (K, ⊕ ) is linear; (iii) (K, ∗ )
and (K, ⊕ ) are quadratic. Notice that x∗y := xy, x⊕y := x+y is an example of a quadratic-linear
distributive ringoid. Polynomially defined ringoids may have interesting properties.
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