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Abstract

Let G be a group (monoid) with identity e and R be
a commutative Krasner hyperring. In this paper, we in-
troduce the concepts of graded absorbing hyperideals of
a graded Krasner hyperring such as, graded 2-absorbing
hyperideals, graded n-absorbing hyperideals and graded
2-absorbing subhypermodules. Some basic properties of
these structures and characterizations of these graded
absorbing hyperideals and homogeneous components are
proved.

Article Information

Corresponding Author:
P. Ghiasvand;
Received: July 2022;
Revised: August 2022;
Accepted: August 2022;
Paper type: Original.

Keywords:
Graded Krasner hyperring,
graded hyperideal, graded n-
absorbing hyperideal, graded
2-absorbing subhypermodule.

A Title

  

1 Introduction
Algebraic hyperstructures represent a natural generalization of classical algebraic structures. Hy-
perstructure theory was born in 1934, when Marty, a French mathematician, at the 8th Congress
of Scandinavian Mathematicians gave the definition of hypergroup and illustrated some of their
applications, with utility in the study of groups, algebraic functions and rational fractions. The
first example of hypergroups, which motivated the introduction of these new algebraic structures,
was the quotient of a group by any, not necessary normal, subgroup. More exactly, if the subgroup
is not normal, then the quotient is not a group, but it is always a hypergroup with respect to a
certain hyperoperation. The notion of hyperrings was introduced by M. Krasner [18]. Prime,
primary, and maximal subhypermodules of a hypermodule were discussed by M. M. Zahedi and R.
Ameri in [23]. Also, R. Ameri et al introduced Krasner (m,n)-hyperrings in [1] and in [2] studied
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prime and primary subhypermodules of (m,n)-hypermodules. The principal notions of algebraic
hyperstructure theory can be found in [6, 7, 9, 10, 21].

Furthermore, the study of graded rings arises naturally out of the study of affine schemes and
allows them to formalize and unify arguments by induction [22]. However, this is not just an
algebraic trick. The concept of grading in algebra, in particular graded modules is essential in
the study of homological aspect of rings. Much of the modern development of the commutative
algebra emphasizes graded rings. Graded rings play a central role in algebraic geometry and
commutative algebra. Gradings appear in many circumstances, both in elementary and advanced
level. In recent years, rings with a group-graded structure have become increasingly important and
consequently, the graded analogues of different concepts are widely studied (see [5, 11, 12, 19] and
[20]). Theory of graded hyperrings and greded hypermodules can be considered as an extension
theory of hyperrings and hypermodules. In addition, graded hyperrings and graded hypermodules
are extensions of graded rings and graded modules [13, 14, 15, 16].

In 2007, Badawi [4] introduced the concept of 2-absorbing ideals of commutative rings with
identity, which is a generalization of prime ideals, and investigated some properties of them. He
defined a 2-absorbing ideal P of a commutative ring R with identity to be a proper ideal of R
and if whenever a, b, c ∈ R with abc ∈ P, then ab ∈ P or bc ∈ P or ac ∈ P. In 2011, Darani
and Soheilnia [8] introduced the concept of 2-absorbing submodules of modules over commutative
rings. A proper submodule P of a module M over a commutative ring R with identity is said
to be a 2-absorbing submodule of M if whenever a, b ∈ R and m ∈ M with abm ∈ P, then
abM ⊆ P or am ∈ P or bm ∈ P. One can see that 2-absorbing submodules are generalization of
prime submodules. Moreover, it is obvious that 2-absorbing ideals are special cases of 2-absorbing
submodules.

Recently, this notion is generalized to the hypercase by introducing the 2-absorbing hyper-
ideals in a multiplicative hyperring [3]. The notion of the 2-absorbing hyperideals on Krasner
hyperrings is introduced by Kamali Ardekani and B. Davvaz [17]. In this paper we introduce the
notions of graded n-absorbing hyperideals, graded 2-absorbing hyperideals and graded 2-absorbing
subhypermoudules in a graded Krasner hyperring and some properties are proved.

In the next section, we recall some preliminary definitions and results. In the third section,
we study the concept of a graded 2-absorbing hyperideal of a graded Krasner hyperring R and we
will investigate some properties of such graded hyperideals. Some examples of graded 2-absorbing
hyperideals are given. Moreover, we investigate the behavior of this structure under homogeneous
components, graded hyperring homomorphisms, Cartesian product. In continuing, we introduce
and study graded n-absorbing hyperideals of a graded krasner hyperring (R,+, ·). For example,
we proved that a graded n-absorbing hyperideal of a graded Krasner hyperring R for n ≥ 2 is
not necessarily a graded prime hyperideal of R. Also, we gave a sufficient condition for a graded
n-absorbing hyperideal to be graded primary hyperideal. Finally, we introduce and study graded
2-absorbing subhypermodules of a graded Krasner hyperring (R,+, ·). Also, we prove some basic
properties of graded 2-absorbing subhypermodules.

Throughout this work, all Krasner hyperrings are commutative Krasner hyperrings with iden-
tity and all hypermodules are unitary hypermodules.

2 Basic definitions and results
In this section we give some definitions and results of hyperstructures which we need to develop
our paper. We refer to [9, 13] for these basic properties and information on hyperstructures.
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Definition 2.1. [9] (a) Let H be a non-empty set and P∗(H) denotes the set of all non-empty
subsets of H. If + : H ×H −→ P∗(H) is a map such that the following conditions hold, then we
say that (H,+) is a canonical hypergroup.

(i) for every x, y, z ∈ H, x+ (y + z) = (x+ y) + z;

(ii) for every x, y ∈ H, x+ y = y + x;

(iii) there exists 0 ∈ H such that 0 + x = {x} for every x ∈ H;

(iv) for every x ∈ H there exists a unique element x′ ∈ R such that 0 ∈ x + x′, it is denoted by
−x;

(v) for every x, y, z ∈ H, z ∈ x+ y implies y ∈ −x+ z and x ∈ z − y.

(b) Let A ⊂ H. Then A is called a subhypergroup of H if 0 ∈ H and (A,+) is itself a
hypergroup.

Definition 2.2. [9] A Krasner hyperring is an algebraic hyperstructure (R,+, ·) which satisfies
the following axioms:

(1) (R,+) is a canonical hypergroup;

(2) (R, ·) is a semigroup having zero as a bilaterally absorbing element, i.e., x · 0 = 0 · x = 0;

(3) the operation “ ·” is distributive over the hyperoperation “+”, which means that for all x, y, z
of R we have:

x · (y + z) = x · y + x · z and (x+ y) · z = x · z + y · z.

A Krasner hyperring (R,+, ·) is called commutative with identity 1 ∈ R; if we have

(i) xy = yx for all x, y ∈ R,

(ii) 1x = x1 for all x ∈ R.

Definition 2.3. [9] (a) Let (R,+, ·) be a Krasner hyperring and S ⊂ R. Then S is said to be a
subhyperring of R if (S,+, ·) is itself a hyperring.

(b) A subhyperring I of a Krasner hyperring R is a left (right) hyperideal of R if rx ∈ I(xr ∈ I)
for all r ∈ R, x ∈ I. I is called a hyperideal if I is both a left and a right hyperideal.

Definition 2.4. [23] (a) Let (M,+) be a canonical hypergroup and (R,+, ·) be a Krasner hyperring
with identity. M is a left hypermodule over a hyperring R if there exists a map

· : R×M −→ M ; (a,m) 7→ a ·m

such that for all r1, r2 ∈ R and m1,m2,m ∈ M , the following are satisfied:

(1) r1 · (m1 +m2) = r1 ·m1 + r2 ·m2;

(2) (r1 + r2) ·m = (r1 ·m) + (r2 ·m);

(3) (r1 · r2) ·m = r1 · (r2 ·m);

(4) 1m = m and 0m = 0.
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(b) A non-empty subset N of an R-hypermodule M is called a subhypermodule if N is an
R-hypermodule with the operations of M .

Definition 2.5. [13] Let G be a group (monoid) with identity e. A Krasner hyperring (R,G) is
called a G-graded Krasner hyperring, if there exists a family {Rg}g∈G of canonical subhypergroups
of R indexed by the elements g ∈ G such that R =

⊕
g∈GRg and RgRh ⊆ Rgh for all g, h ∈ G.

For simplicity, we will denote the graded Krasner hyperring (R,G) by R. An element of a graded
Krasner hyperring R is called homogeneous if it belongs to

∪
g∈GRg and this set of homogeneous

elements is denoted by h(R). If x ∈ Rg for some g ∈ G, then we say that x is of degree g, and it
is denoted by deg x.

If x ∈ R, then there exist unique elements xg ∈ h(R) such that x ∈
∑

g∈G xg. In fact, every
Krasner hyperring is trivially a G-graded Krasner hyperring by letting Re = R and Rg = 0 for all
g 6= e.

Lemma 2.6. If R =
⊕

g∈GRg is a graded Krasner hyperring, then Re is a subhyperring of R
where e is the identity element of monoid G.

Example 2.7. In Definition 2.5, let G = (Z2, ·) be the monoid with identity e = 1 and R =
{0, 1, 2, 3}. Consider the Krasner hyperring (R,+, ·), where hyperoperation + and operation · are
defined on R as follows:

+ 0 1 2 3

0 {0} {1} {2} {3}
1 {1} {0, 1} {3} {2, 3}
2 {2} {3} {0} {1}
3 {3} {2, 3} {1} {0, 1}

. 0 1 2 3

0 0 0 0 0
1 0 0 0 0
2 0 0 2 2
3 0 0 2 2

It is easy to see that R0 = {0, 1} and R1 = {0, 2} are subhypergroups of (R,+). We have
0 ∈ 0 + 0, 1 ∈ 1 + 0, 2 ∈ 0 + 2 and 3 ∈ 1 + 2. Furthermore, we have RiRj ⊆ Ri+j for all i, j ∈ Z2.
Hence, R = R0 ⊕R1 and so R is a Z2-graded Krasner hyperring and h(R) = {0, 1, 2}.

Example 2.8. In Definition 2.5, let G = (Z4,+) be the cyclic group of order 4 and R =
{0, a, b, c, d}. Consider the Krasner hyperring (R,+, ·), where hyperoperation + and operation
· are defined on R as follows:

+ 0 a b c d

0 {0} {a} {b} {c} {d}
a {a} {0} {c} {b, d} {c}
b {b} {c} {0} {a} {0}
c {c} {b, d} {a} {0} {a}
d {d} {c} {0} {a} {0}

. 0 a b c d

0 0 0 0 0 0
a 0 a b c d
b 0 b 0 b 0
c 0 c b a d
d 0 d 0 d 0

Let R0 = {0, a}, R2 = {0, c} and R1 = R3 = {0}. Then it is easy to verify that R0, R1, R2

and R3 are canonical hypergroups of (R,+) and we can write 0 ∈ 0 + 0 + 0+ 0, a ∈ a+ 0+ 0+ 0,
b ∈ a+0+c+0, c ∈ 0+0+c+0 and d ∈ a+0+c+0 uniquely. Furthermore, we have RiRj ⊆ Ri+j

for all i, j ∈ Z4. Hence, R = R0 ⊕R1 ⊕R2 ⊕R3 and so (R,G) is a graded Krasner hyperring and
h(R) = {0, a, c}.

Definition 2.9. [13] (a) Let R =
⊕

g∈GRg be a graded Krasner hyperring. A subhyperring S of R
is called a graded subhyperring of R, if S =

⊕
g∈G(S ∩Rg). Equivalently, S is graded if for every

element f ∈ S, all the homogeneous components of f (as an element of R) are in S.
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(b) Let I be a hyperideal of a graded Krasner hyperring R. Then I is a graded hyperideal, if
I =

⊕
g∈G(I ∩Rg). For any a ∈ I and for some rg ∈ h(R) that a ∈

∑
g∈G rg ⊆ I, then rg ∈ I ∩Rg

for all g ∈ G.

Example 2.10. Consider the graded Krasner hyperring of Example 2.7. Take I = {0, 2}. It is
clear that I is a hyperideal. Since I = {0, 2} = ({0, 2} ∩R0)⊕ ({0, 2} ∩R1) where R0 = {0, 1} and
R1 = {0, 2}, then I is a graded hyperideal of R.

Let R =
⊕

g∈GRg be a graded Krasner hyperring and I a graded hyperideal of R. Then the
quotient hyperring (R/I,⊕, ◦) where (a+I)◦(b+I) = ab+I, for any a, b ∈ R and (a+I)⊕(b+I) =
{t + I|t ∈ a + b}, for any a, b ∈ R is also a graded Krasner hyperring with R/I =

⊕
g∈G(R/I)g,

where (R/I)g = (Rg + I)/I.

Definition 2.11. [13] (a) If P 6= R is a graded hyperideal of a graded Krasner hyperring R, then
P is called a graded prime hyperideal of R, if agbh ∈ P , then ag ∈ P or bh ∈ P for ag, bh ∈ h(R).

(b) A graded hyperring R =
⊕

g∈GRg is a graded hyperintegral domain, if agbh = 0, for
ag, bh ∈ h(R), then ag = 0 or bh = 0.

(c) The graded hyperideal M of a graded Krasner hyperring R is said to be maximal, if for
every graded hyperideal J of R; M ⊆ J ⊆ R, implies that J = M or J = R.

Definition 2.12. [13] A non-empty subset S of h(R) of a graded Krasner hyperring R is called
multiplicative closed subset if s1s2 ∈ S for all s1, s2 ∈ S.

Let G be a group and let R be a G-graded Krasner hyperring and S ⊆ h(R) a multiplicative
close subset of R. Then the hyperring of fractions S−1R is a graded Krasner hyperring which is
called the graded Krasner hyperring of fractions. Indeed, S−1R =

⊕
g∈G(S

−1R)g where (S−1R)g =

{r/s|r ∈ R, s ∈ S; g = (degs)−1(degr)}.

Definition 2.13. [13] Let I be a graded hyperideal in a commutative graded Krasner hyperring R
with identity. The graded radical of I (in abbreviation, Grad(I)) is the set of all x ∈ R such that
for each g ∈ G there exists a positive integer ng such that xng

g ∈ I where x
ng
g = xg · · ·xg(ng times).

Note that, if r is a homogeneous element of R, then r ∈ Grad(I) iff rn ∈ I for some positive
integer n.

Definition 2.14. [13] (a) Let R =
⊕

g∈GRg and S =
⊕

g∈G Sg be graded Krasner hyperrings. A
mapping ϕ from R into S is said to be a graded good homomorphism, if for all a, b ∈ R;

(1) ϕ(a+ b) = ϕ(a) + ϕ(b) and ϕ(0) = 0,

(2) ϕ(ab) = ϕ(a)ϕ(b),

(3) for any g ∈ G; ϕ(Rg) ⊆ Sg.

(b) A graded good homomorphism ϕ : R → S is a graded isomorphism, if ϕ is one to one and
onto and we write R ∼= S.

Definition 2.15. [13] Let M be an R-hypermodule. Then M is said to be a G-graded R-
hypermodule if there exists a family of canonical subhypergroups {Mg}g∈G of M such that

(1) M =
⊕

g∈GMg,

(2) RgMh ⊆ Mgh for all g, h ∈ G.
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The set of all homogeneous elements of M is denoted by h(M), and so h(M) =
∪

g∈GMg.

Definition 2.16. [13] (a) A non-empty subset N of a graded R-hypermodule M is called a graded
subhypermodule, if N is a graded R-hypermodule with the operations of M restricted to N.

(b) A proper graded subhypemodule N of a graded R-hypermodule M is said to be graded prime,
if rgmh ∈ N where rg ∈ h(R) and mh ∈ h(M), then mh ∈ N or rg ∈ (N : M).

3 Graded 2-absorbing hyperideals
In this section, we study the concept of a graded 2-absorbing hyperideal of a graded Krasner
hyperring R and we investigate some properties of such graded hyperideals.

Definition 3.1. Let R =
⊕

g∈GRg be a graded Krasner hyperring. A proper graded hyperideal I
is called a graded 2-absorbing hyperideal of R; if agbhck ∈ I, then agbh ∈ I or agck ∈ I or bhck ∈ I
for all ag, bh, ck ∈ h(R).

Example 3.2. Let G = (Z2, ·) be the monoid with identity e = 1 and R = {0, 1, 2, 3}. Consider
the hyperring (R,+, ·), where hyperoperation ”+” and operation ”·” are defined on R as follows:

+ 0 1 2 3

0 {0} {1} {2} {3}
1 {1} {0, 2} {1, 3} {2}
2 {2} {1, 3} {0, 2} {1}
3 {3} {2} {1} {0}

· 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 2 0
3 0 3 0 3

Let R0 = {0, 2} and R1 = {0, 3}. Then it is easy to verify that R0 and R1 are canonical hypergroups
of (R,+) and we can write 0 ∈ 0+0, 1 ∈ 2+3, 2 ∈ 2+0 and 3 ∈ 0+3 uniquely, hence R = R0

⊕
R1.

Also, RiRj ⊆ Rij for any i, j ∈ Z2 and so R is a Z2-graded Krasner hyperring. Let I = {0, 2}.
Then I is a graded 2-absorbing hyperideal of R.

Example 3.3. Let R = {0, a, b, c, d, f} and G = (Z2, ·). Consider the hyperring (R,+, ·), where
hyperoperation ”+” and operation ”·” are defined on R as follows:

+ 0 a b c d f

0 {0} {a} {b} {c} {d} {f}
a {a} {0} {a, b} {d} {a, d} {c}
b {b} {a, b} {0} {f} {b, d} {a}
c {c} {d} {f} {0} {f} {c}
d {d} {a, d} {b, d} {f} {0} {d, f}
f {f} {c} {a} {c} {d, f} {0}

· 0 a b c d f

0 0 0 0 0 0 0
a 0 a b 0 a b
b 0 b b a b a
c 0 0 a c c c
d 0 a b c d f
f 0 b a c f f

It is easy to see that R0 = {0, a, b} and R1 = {0, c} are subhypergroups of (R,+). We have R is
a Z2-graded Krasner hyperring. Let I = {0, a, b}. Then I is a graded 2-absorbing hyperideal of R.

Proposition 3.4. If P is a graded prime hyperideal of a graded Krasner hyperring R =
⊕

Rg,
then P is a graded 2-absorbing hyperideal of R.
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Proof. Assume that P is a graded prime hyperideal of a graded Krasner hyperring R. Let ag, bh, ck ∈
h(R) such that agbhck ∈ P. Since P is graded prime, we have agbh ∈ P or ck ∈ P. If agbh ∈ P then
we done. If ck ∈ P then agck ∈ P and it follows that P is a graded 2-absorbing hyperideal.

Proposition 3.4, guarantees that every graded prime hyperideal of a graded Krasner hyperring
R is a graded 2-absorbing hyperideal. The converse does not necessarily hold in general.

Example 3.5. Let R = {0, a, b, c, d} and G = (Z2, ·) be the monoid. Consider the hyperring
(R,+, ·), where hyperoperation ”+” and operation ”·” are defined on R as follows:

+ 0 a b c d

0 {0} {a} {b} {c} {d}
a {a} {0} {c, d} {b, d} {c}
b {b} {c, d} {0} {a} {c}
c {c} {b, d} {a} {0} {a}
d {d} {c} {c} {a} {0}

· 0 a b c d

0 0 0 0 0 0
a 0 a a a d
b 0 a 0 b 0
c 0 a b c d
d 0 d 0 d 0

It is easy to see that R0 = {0, a} and R1 = {0, b} are subhypergroups of (R,+). We have
0 ∈ 0 + 0, a ∈ a + 0, b ∈ 0 + b, c ∈ a + b and d ∈ a + b. Hence, R = R0

⊕
R1 also, RiRj ⊆ Rij

for any i, j ∈ Z2 and so R is a Z2-graded Krasner hyperring. Let I = {0, d}. Then I is a
graded 2-absorbing hyperideal of R, because, abd ∈ I → ad = d ∈ I, acd ∈ I → ad = d ∈ I and
bcd ∈ I → bd = 0 ∈ I. But it is not a graded prime hyperideal, because, b2 ∈ I and b 6∈ I.

Proposition 3.6. The intersection of each pair of graded prime hyperideals of a graded Krasner
hyperring R is a graded 2-absorbing hyperideal of R.

Proof. Let P and K be two graded prime hyperideals. If P = K; then P ∩K is a graded prime
hyperideal of R so that P ∩ K is a graded 2-absorbing hyperideal of R. Assume that P and K
are distinct. Since P and K are proper graded hyperideals of R, it follows that P ∩K is a proper
graded hyperideal. Next, let ag, bh, ck ∈ h(R) such that agbhck ∈ P ∩ K but agck 6∈ P ∩ K and
agbh 6∈ P ∩K. Then, we can conclude that:

(i) agck 6∈ P or agck 6∈ K, and
(ii) agbh 6∈ P or agbh 6∈ K.

These two conditions give four cases:

(1) agck 6∈ P and agbh 6∈ P ;

(2) agck 6∈ P and agbh 6∈ K;

(3) agck 6∈ K and agbh 6∈ P ;

(4) agck 6∈ K and agbh 6∈ K.

First, we consider Case (1). Since agbhck ∈ P ∩ K ⊆ P and agbh 6∈ P , we get ck ∈ P , hence
agck ∈ P , a contradiction. Similarly, Case (4) is not possible.
Now, Case (2) is considered. agbhck ∈ K and agbh 6∈ K implies ck ∈ K and so bhck ∈ K.
ag(bhck) ∈ P implies ag ∈ P or bhck ∈ P because P is a graded prime hyperideal. Since agck 6∈ P,
ag ∈ P is not possible. Hence bhck ∈ P ∩ K. The proof of Case (3) is similar to that of Case
(2).
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Proposition 3.7. Let P,W be two graded hyperideals of R and P ⊆ W. If P is a graded 2-absorbing
hyperideal of R, then P is a graded 2-absorbing hyperideal of W.

Proof. Note that we can write W =
⊕

Wg, where Wg = Rg∩W. Let agbhck ∈ P, where ag, bh, ck ∈
h(W ). Since ag, bh, ck ∈ h(W ) ⊆ h(R) and P is a graded 2-absorbing hyperideal of R, either
agck ∈ P or bhck ∈ P or agbh ∈ P. Hence P is a graded 2-absorbing hyperideal of W.

Lemma 3.8. Let P be a graded 2-absorbing hyperideal of a graded hyperring R. If ah, bh′ ∈ h(R)
and K = ⊕g∈GKg is a graded hyperideal of R such that ahbh′Kg ⊆ P, for some g ∈ G, then
ahbh′ ∈ P or ahKg ⊆ P or bh′Kg ⊆ P.

Proof. Let ahbh′Kg ⊆ P and ahbh′ 6∈ P , ahKg ⊈ P and bh′Kg ⊈ P. Then there exist kg, k
′
g in Kg

such that ahkg 6∈ P and bh′k′g 6∈ P. Since ahbh′kg ∈ ahbh′Kg ⊆ P and ahbh′ 6∈ P, ahkg 6∈ P, we get
bh′kg ∈ P. Also, since ahbh′k′g ∈ ahbh′Kg ⊆ P and ahbh′ 6∈ P, bh′k′g 6∈ P, we get ahk

′
g ∈ P. Now,

since ahbh′(kg + k′g) ⊆ ahbh′Kg ⊆ P , so ahbh′tg ⊆ P for any tg ∈ kg + k′g and as ahbh′ 6∈ P we
get ahtg ∈ P or bh′tg ∈ P . Thus ah(kg + k′g) ⊆ P or bh′(kg + k′g) ⊆ P. If ah(kg + k′g) ⊆ P, i.e.,
(ahkg + ahk

′
g) ⊆ P, then ahkg ∈ P which is contradiction. If bh′kg + bh′k′g ⊆ P , then bh′k′g ∈ P

which is a contradiction. Thus either ahbh′ ∈ P or ahKg ⊆ P or bh′Kg ⊆ P.

Theorem 3.9. Let P be a graded 2-absorbing hyperideal of a graded hyperring R = ⊕g∈GRg. Then
if I, J and K are graded hyperideals of R and g ∈ G such that IJKg ⊆ P, then IKg ⊆ P or
JKg ⊆ P or IJ ⊆ P.

Proof. Suppose IJKg ⊆ P and IJ ⊈ P. We show that IKg ⊆ P or JKg ⊆ P. Suppose IKg ⊈ P
and JKg ⊈ P. Then there exist ag1 ∈ h(R) ∩ I and ag2 ∈ h(R) ∩ J such that ag1Kg ⊈ P and
ag2Kg ⊈ P. But ag1ag2Kg ⊆ IJKg ⊆ P. Since P is a graded 2-absorbing hyperideal it follows from
Lemma 3.8 that ag1ag2 ∈ P. Since IJ ⊈ P, there exist bh1 ∈ h(R)∩ I and bh2 ∈ h(R)∩J such that
bh1bh2 6∈ P. Now, since P is graded 2-absorbing and bh1bh2Kg ⊆ IJKg ⊆ P and also bh1bh2 6∈ P it
follows from Lemma 3.8 that bh1Kg ⊆ P or bh2Kg ⊆ P. We have the following cases:

Case (1): bh1Kg ⊆ P and bh2Kg ⊈ P. Since ag1bh2Kg ⊆ IJKg ⊆ P and ag1Kg ⊈ P and
bh2Kg ⊈ P it follows from Lemma 3.8 that ag1bh2 ∈ P. Since bh1Kg ⊆ P and ag1Kg ⊈ P,
we conclude (ag1 + bh1)Kg ⊈ P. On the other hand since (ag1 + bh1)bh2Kg ⊆ P and neither
(ag1 + bh1)Kg ⊆ P nor bh2Kg ⊆ P, we get that (ag1 + bh1)bh2 ⊆ P by Lemma 3.8. Since (ag1 +
bh1)bh2 = (ag1bh2 + bh1bh2) ⊆ P and (ag1 + bh1)bh2 ⊆ P, we get bh1bh2 ∈ P which is a contradiction.

Case (2): bh2K ⊆ P and bh1Kg ⊈ P. By a similar argument to Case (1) we get a contradiction.
Case (3): bh1Kg ⊆ P and bh2Kg ⊆ P. bh2Kg ⊆ P and ag2Kg ⊈ P gives (ag2 + bh2)Kg ⊈ P.

But ag1(ag2 + bh2)Kg ⊆ P and neither ag1Kg ⊆ P nor (ag2 + bh2)Kg ⊆ P, hence ag1(ag2 + bh2) ⊆
P by Lemma 3.8. Since ag1ag2 ∈ P and (ag1ag2 + ag1bh2) ⊆ P, we have ag1bh2 ∈ P. Since
(ag1+bh1)ag2Kg ⊆ P and neither ag2Kg ⊆ P nor (ag1+bh1)Kg ⊆ P, we conclude (ag1+bh1)ag2 ⊆ P
by Lemma 3.8. But (ag1 + bh1)ag2 = ag1ag2 + bh1ag2 , so (ag1ag2 + bh1ag2) ⊆ P and since ag1ag2 ∈ P,
we get bh1ag2 ∈ P. Now, since (ag1 + bh1)(ag2 + bh2)Kg ⊆ P and neither (ag1 + bh1)Kg ⊆ P nor
(ag2 + bh2)Kg ⊆ P, we have (ag1 + bh1)(ag2 + bh2) = (ag1ag2 + ag1bh2 + bh1ag2 + bh1bh2) ⊆ P by
Lemma 3.8. But ag1ag2 , ag1bh2 , bh1ag2 ∈ P, so bh1bh2 ∈ P which is a contradiction. Consequently
IKg ⊆ P or JKg ⊆ P.

Proposition 3.10. Let P and K be graded hyperideals of a graded hyperring R with K ⊈ P. If P
is a graded 2-absorbing hyperideal of R, then K ∩ P is a graded 2-absorbing hyperideal of K.

Proof. Since P,K are graded hyperideals and K ⊈ P, it follows that K ∩ P is a proper graded
hyperideal of K. Assume that P is a graded 2-absorbing hyperideal of R. Let ag, bh, ck ∈ h(K) be
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such that agbhck ∈ K∩P. Since K is a graded hyperideal of R, we obtain that agbh ∈ K or agck ∈ K
or bhck ∈ K. Moreover, since agbhck ∈ K ∩ P ⊆ P and P is a graded 2-absorbing hyperideal of
R, it follows that agbh ∈ P or agck ∈ P or bhck ∈ P. Thus agbh ∈ K ∩ P or agck ∈ K ∩ P or
bhck ∈ K ∩ P. Therefore, K ∩ P is a graded 2-absorbing hyperideal of K.

Remark 3.11. It is well known that if P and K are graded hyperideals of any graded hyperring
R with K ⊈ P and P is a graded prime hyperideal of R, then K ∩ P is a graded prime hyperideal
and hence a graded 2-absorbing hyperideal of K.

Lemma 3.12. Let R =
⊕

Rg be a graded hyperring and I be a graded 2-absorbing hyperideal of
R. Then Grad(I) is a graded 2-absorbing hyperideal of R.

Proof. Suppose that agbhck ∈ Grad(I) where ag, bh, ck ∈ h(R). So, (agbhck)
n ∈ I for some

n ∈ N. Thus, ang b
n
hc

n
k ∈ I and this implies that (agbh)

n = ang b
n
h ∈ I or (agck)

n = ang c
n
k ∈ I or

(bhck)
n = bnhc

n
k ∈ I. Therefore, at least one of agbh, agck and bhck belongs to Grad(I).

Theorem 3.13. Let R and S be commutative graded hyperrings with unit element and φ : R → S
be a graded good homomorphism. Then the following hold:

(i) If J is a graded 2-absorbing hyperideal of S, then φ−1(J) is a graded 2-absorbing hyperideal
of R;

(ii) If φ is an epimorphism and I is a graded 2-absorbing hyperideal of R containing Kerφ, then
φ(I) is a graded 2-absorbing hyperideal of S.

Proof. (i) Let agbhck ∈ φ−1(J) for ag, bh, ck ∈ h(R). Thus φ(ag)φ(bh)φ(ck) = φ(agbhck) ∈ J .
Since J is a graded 2-absorbing hyperideal of S, so φ(agbh) = φ(ag)φ(bh) ∈ J or φ(bhck) =
φ(bh)φ(ck) ∈ J or φ(agck) = φ(ag)φ(ck) ∈ J . Therefore, agbh ∈ φ−1(J) or bhck ∈ φ−1(J) or
agck ∈ φ−1(J), as needed.

(ii) Let a′gb
′
hc

′
k ∈ φ(I) for some a′g, b

′
h, c

′
k ∈ h(S). Since φ is an epimorphism, a′g = φ(ag),

b′h = φ(bh) and c′k = φ(ck) for some ag, bh, ck ∈ h(R). Thus φ(agbhck) = φ(ag)φ(bh)φ(ck) ∈ φ(I),
so (agbhck − x) ∩ Ker(φ) 6= ∅ for some x ∈ I. Consider t ∈ (agbhck − x) ∩ Ker(φ). Hence
agbhck ∈ t + x ⊆ Ker(φ) + I ⊆ I. This implies that agbh ∈ I or bhck ∈ I or agck ∈ I, so
a′gb

′
h = φ(agbh) ∈ φ(I) or b′hc

′
k = φ(bhck) ∈ φ(I) or a′gc

′
k = φ(agck) ∈ φ(I), as required.

The following corollary is deduced directly from Theorem 3.13.

Corollary 3.14. Let I and J be distinct proper graded hyperideals of R. If J ⊆ I and I is a graded
2-absorbing hyperideal of R, then I/J is a graded 2-absorbing hyperideal of R/J.

Let R1 and R2, be two G-graded Krasner hyperrings where R1 =
⊕

g∈G(R1)g and R2 =⊕
g∈G(R2)g. Then (R1 ×R2,+, ·) is a Krasner hyperring with operation · and the hyperoperation

+ are defined respectively as (x, y) · (z, t) = (x · z, y · t) and (x, y) + (z, t) = {(a, b) ∈ R | a ∈
x+ z, b ∈ y+ t} for all (x, y), (z, t) ∈ R1×R2. Also, (R1×R2,+, ·) becomes a G-graded hyperring
with homogeneous elements h(R1 × R2) =

∪
g∈G(R1 × R2)g, where (R1 × R2)g = (R1)g × (R2)g

for all g ∈ G. Note that each graded hyperideal of R1 × R2 is the Cartesian product of graded
hyperideals of R1 and R2.

Example 3.15. Consider the Z2-graded hyperring of Example 3.5 with R1 that (R1)0 = {0, a},
(R1)1 = {0, b} and the Z2-graded hyperring of Example 3.2 with R2 that (R2)0 = {0, 2}, (R2)1 =
{0, 3}. Then R = R1 ×R2 is a Z2-graded Krasner hyperring with

(R1 ×R2)0 = {(0, 0), (0, 2), (a, 0), (a, 2)},
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(R1 ×R2)1 = {(0, 0), (0, 3), (b, 0), (b, 3)},

and
h(R1 ×R2) = {(0, 0), (0, 2), (a, 0), (a, 2), (0, 3), (b, 0), (b, 3)}.

We observe that (R1 ×R2)0 = (R1)0 × (R2)0 and (R1 ×R2)1 = (R1)1 × (R2)1.

Theorem 3.16. Let R1, R2 be G-graded Krasner hyperrings and R = R1 × R2. If I1 (I2, re-
spectively) is a graded 2-absorbing hyperideal of R1 (R2, respectively), then I1 × R2 (R1 × I2,
respectively) is a graded 2-absorbing hyperideal of R.

Proof. Let I1 be a graded 2-absorbing hyperideal of G-graded Krasner hyperring R1 and also
(ag, a

′
g)(bh, b

′
h)(ck, c

′
k) ∈ I1 × R2 where (ag, a

′
g)(bh, b

′
h)(ck, c

′
k) ∈ h(R1 × R2). Thus agbhck ∈ I1, so

agbh ∈ I1 or agck ∈ I1 or bhck ∈ I1 since I1 is a graded 2-absorbing hyperideal of R1. Therefore,
(ag, a

′
g)(bh, b

′
h) ∈ I1 × R2 or (ag, a

′
g)(ck, c

′
k) ∈ I1 × R2 or (bh, b

′
h)(ck, c

′
k) ∈ I1 × R2. Hence I1 × R2

is a graded 2-absorbing hyperideal of R. Similarly, if I2 is a graded 2-absorbing hyperideal of R2,
then R1 × I2 is a graded 2-absorbing hyperideal of R.

Theorem 3.17. Let I be a graded hyperring of a graded hyperring R and S ⊆ h(R) be a multi-
plicatively closed subset of R. Then the following statements hold:

(i) If I is a graded 2-absorbing hyperideal of R and S ∩ I = ∅, then S−1I is a graded 2-absorbing
hyperideal of S−1R.

(ii) If S−1I is a graded 2-absorbing hyperideal of S−1R and S ∩ZR(R/I) = ∅, where ZR(R/I) =
{r + I ∈ R/I | there exists s ∈ R \ I such that rs ∈ I}, then I is a graded 2-absorbing
hyperideal of R.

Proof. (i) Let I be a graded 2-absorbing hyperideal of R. Since S ∩ I = ∅, then S−1I 6= S−1R.
Assume that (a/s)(b/t)(c/k) ∈ S−1I where a/s, b/t, c/u ∈ h(S−1R). Then there exists s′ ∈ S
such that (s′a)bc ∈ I. Hence (s′a)b ∈ I or (s′a)c ∈ I or bc ∈ I because I is a graded 2-absorbing
hyperideal of R. Therefore, (a/s)(b/t) = (s′ab)/(s′st) ∈ S−1I or (a/s)(c/u) = (s′ac)/(s′su) ∈ S−1I
or (b/t)(c/u) = (bc)/(tu) ∈ S−1I. Thus S−1I is a graded 2-absorbing hyperideal of S−1R.

(ii) Let abc ∈ I where a, b, c ∈ h(R). We have (abc)/1 = (a/1)(b/1)(c/1) ∈ S−1I. Thus
(a/1)(b/1) ∈ S−1I or (a/1)(c/1) ∈ S−1I or (b/1)(c/1) ∈ S−1I since S−1I is a graded 2-absorbing
hyperideal of S−1R. Hence ab ∈ I or ac ∈ I or bc ∈ I since S ∩ ZR(R/I) = ∅. Consequently, I is
a graded 2-absorbing hyperideal of R.

4 Graded n-absorbing hyperideals
In this section, we introduce and study the concept of graded n-absorbing hyperideals of a graded
Krasner hyperring and investigate the basic properties of this notion in commutative graded Kras-
ner hyperrings.

Definition 4.1. A proper graded hyperideal I of a graded Krasner hyperring R is called a graded
n-absorbing hyperideal of R if whenever

ag1ag2 · · · agn+1 ∈ I, ag1 , ag2 , . . . , agn+1 ∈ h(R),

then there are n of the a,gis whose product is in I.
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Proposition 4.2. Let P1, . . . , Pn be graded prime hyperideals of a graded Krasner hyperring R.
Then P1 ∩ · · · ∩ Pn is a graded n-absorbing hyperideal of R.

Proof. It is straightforward.

The following example shows that a graded n-absorbing hyperideal of a graded Krasner hyper-
ring R for n ≥ 2 is not necessarily a graded prime hyperideal of R.

Example 4.3. (a) Let R = Z[i] be the Gaussian integers ring and G = (Z2,+) be the cyclic group of
order 2. Consider the Krasner hyperring (R,+, ·) with the hyperoperation ”+” and operation ”·” as
follows: (a+bi)+(c+di) = {t1+t2i | t1 ∈ a+c, t2 ∈ b+d} and (a+bi)·(c+di) = (ac−bd)+(ad+bc)i.
Let R0 = iZ and R1 = Z, R be the Z2-graded Krasner hyperring and I = {2a+ 2bi : a, b ∈ Z} is
a graded 2-absorbing hyperideal of R.

(b) In the graded Krasner hyperring R = (Z[i],+, ·), the graded hyperideal J = 〈6〉 ⊕ 〈0〉 of R
is a graded n-absorbing hyperideal for n ≥ 2, but it is not a graded prime hyperideal. Because
(2, 0) · (3i, 0) = 6i ∈ J , but (2, 0) 6∈ J and (3i, 0) 6∈ J .

Theorem 4.4. Let I be a graded n-absorbing hyperideal of a graded Krasner hyperring R. Then
Grad(I) is a graded n-absorbing hyperideal of R and for all xg ∈ h(R) such that xg ∈ Grad(I),
then xng ∈ I.

Proof. Let ag1ag2 · · · agn+1 ∈ I for some ag1 , ag2 , . . . , agn+1 ∈ h(R). Therefore (ag1ag2 · · · agn+1)
n =

ang1a
n
g2 · · · a

n
gn+1

∈ I. Since I is a graded n-absorbing hyperideal of R, we may assume that
ang1a

n
g2 · · · a

n
gn ∈ I. Hence (ag1ag2 · · · agn)n ⊆ I, so ag1ag2 · · · agn ∈ Grad(I). Thus Grad(I) is a

graded n-absorbing hyperideal of R. Now, let xg ∈ Grad(I). Then xtg ∈ I for some t ∈ N. If
t ≤ n, we are done. Let t ≥ n. By using the graded n-absorbing property on products xngx

t−n
g , we

conclude that xng ∈ I.

Let I be a proper graded hyperideal of a graded Krasner hyperring R. It is clear that a graded
n-absorbing hyperideal is also a graded m-absorbing hyperideal for all m ≥ n. If I is a graded n-
absorbing hyperideal of R, we define Gab(I) = min{n |I is a graded n-absorbing hyperideal of R},
otherwise, set Gab(I) = ∞. We define Gab(R) = 0. Hence Gab(I) = 1 if and only if I is a graded
prime hyperideal of R.

Example 4.5. In Example 3.2, the graded hyperideal I = {0, b}, Gab(I) = 1 and in Example 3.5,
the graded hyperideal I = {0, d}, Gab(I) = 2.

Proposition 4.6. Let I ⊆ P be graded hyperideals of a graded Krasner hyperring R such that P
is a graded prime hyperideal. Then the following statements are equivalent:

(i) P is a minimal graded prime hyperideal of R.

(ii) For any ag ∈ P ∩ h(R), there exist bg′ ∈ h(R) \ P and a non-negative integer n such that
bg′a

n
g ∈ I.

Proof. (i) ⇒ (ii) Let P be a minimal graded prime hyperideal of I and P ,
is be other minimal

graded prime hyperideals of I. Then Grad(I) = P ∩ (
∩

Pi∈Mingr(I)
Pi). Suppose that ag ∈ P

but ag 6∈ Grad(I). We may assume that ag ∈ P ∩ (
∩t

i=1 Pi) such that ag 6∈
∪

i≥t+1 Pi. Let
xh ∈

∩
i≥t+1 Pi \ P . Thus xhag ∈ P ∩ (

∩t
i=1 Pi) ∩ (

∩
i≥t+1 Pi) and so xhag ∈ Grad(I). Hence

(xhag)
n = xnha

n
g ∈ I. Let bhn ∈ xnh and set hn = g′. Therefore bg′a

n
g ∈ I.

(ii) ⇒ (i) Assume P is not a minimal graded prime hyperideal I of R. Hence I ⊆ Q ⊂ P for
some graded prime hyperideal Q of R. Let ag ∈ (P ∩ h(R)) \Q. Thus there exists bh ∈ h(R) \ P
and n ∈ N such that bha

n
g ∈ I ⊆ Q. This is a contradiction since ag, bh 6∈ Q.
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Theorem 4.7. Let P1, . . . , Pn be graded prime hyperideals of a graded Krasner hyperring R that
are pairwise coprime. Then I = P1 · · ·Pn is a graded n-absorbing hyperideal of R. Moreover,
Gab(I) = n.

Proof. We have I = P1 · · ·Pn = P1 ∩ · · · ∩ Pn since P1, . . . , Pn are pairwise coprime. Thus I is a
graded n-absorbing hyperideal of R by Proposition 4.2. Since P1, . . . , Pn are incomparable, then
for each 1 ≤ i ≤ n, there is agi ∈ (Pi ∩h(R)) \

∪
j ̸=i Pj . Hence ag1ag2 · · · agn ∈ P1 ∩ · · · ∩Pn, but no

proper subproduct of the a,gis is in P1 ∩ · · · ∩ Pn. Hence Gab(P1 · · ·Pn) = Gab(P1 ∩ · · · ∩ Pn) ≥ n.
On the other hand, we have Gab(P1 · · ·Pn) = Gab(P1 ∩ · · · ∩ Pn) ≤ n. Therefore, Gab(I) =
Gab(P1 · · ·Pn) = n.

Corollary 4.8. Let M1,M2, . . . ,Mn be distinct graded maximal hyperideals of a graded Krasner
hyperring R. Then I = M1 · · ·Mn is a graded n-absorbing hyperideal of R.

Proof. Apply Theorem 4.7.

Lemma 4.9. Let M be a graded maximal hyperideal of a graded Krasner hyperring R and n be
a positive integer. Then Mn is a graded n-absorbing hyperideal of R such that Gab(M) ≤ n.
Moreover, if Mn+1 ⊂ Mn, then Gab(Mn) = n.

Proof. Let ag1ag2 · · · agn+1 ∈ I where ag1 , . . . , agn+1 ∈ h(R). If we have ag1 , ag2 , . . . , agn+1 ∈ M ,
then we are done. We may assume that agn+1 6∈ M . Thus

⟨
M,agn+1

⟩
= R, hence there exist

m ∈ M and b ∈ R such that 1 ∈ m+ agn+1b. Therefore,

ag1ag2 · · · agn = ag1 · · · agn1 ∈ (ag1 · · · agn)m+ (ag1 · · · agn+1)b ⊂ Mn.

Hence Mn is a graded n-absorbing hyperideal of R. Now, let Mn+1 ⊂ Mn. Then there are
ag1 , . . . , agn+1 ∈ M ∩ h(R) such that ag1 · · · agn ∈ Mn \Mn+1. Thus all products of n − 1 of a,gis
are not in Mn, since otherwise ag1 · · · agn ∈ Mn+1 which is a contradiction. Therefore Mn is not a
graded (n− 1)-absorbing hyperideal of R. Thus Gab(Mn) = n since Mn is a graded n-absorbing
hyperideal of R.

Theorem 4.10. Let M1, . . . ,Mn be graded maximal hyperideals of a graded Krasner hyperring R.
Then I = M1 · · ·Mn is a graded n-absorbing hyperideal of R. Moreover, Gab(I) ≤ n.

Proof. Let M1, . . . ,Mn be distinct graded maximal hyperideals of R and n1, . . . , nk be positive
integers such that n = n1 + · · · + nk. We show that I = Mn1

1 · · ·Mnk
n is a graded n-absorbing

hyperideal of R. By Lemma 4.9, for all 1 ≤ i ≤ k, Mni
i is a graded ni-absorbing hyperideal of R.

Hence I = Mn1
1 · · ·Mnk

n = Mn1
1 ∩ · · · ∩Mnk

n is a graded n-absorbing hyperideal of R.

Theorem 4.11. Let P be a graded prime hyperideal of R and I be a graded P -primary hyperideal
of R such that Pn ⊆ I for some n ∈ N. Then I is a graded n-absorbing hyperideal of R with
Gab(I) ≤ n.

Proof. Let ag1ag2 · · · agn+1 ∈ I for ag1 , ag2 , . . . , agn+1 ∈ h(R). Suppose that one of the a,gis is not
in P . Since I is a graded P -primary hyperideal of R, then we conclude that the other a,gis is in
P . Hence we may assume that agi ∈ P for any 1 ≤ i ≤ n. Since Pn ⊆ I, we have ag1 · · · agn ∈ I.
Therefore I is a graded n-absorbing hyperideal of R.

We next give a sufficient condition for a graded n-absorbing hyperideal to be graded primary.

Definition 4.12. Let R be a graded Krasner hyperring. A proper graded prime hyperideal P of R
is called divided graded prime, if for all ag ∈ h(R)− P , P ⊂ Rag.
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Example 4.13. Consider the Z-graded Krasner hyperring (Z5,+, ·). Then the graded prime
hyperideal P = (0) is divided graded prime, because for all x ∈ h(Z5)− P = Z5 − {0}, P ⊂ Rx.

Theorem 4.14. Let P be a divided graded prime hyperideal of a graded Krasner hyperring R, and
let I be a graded n-absorbing hyperideal of R with Grad(I) = P . Then I is a graded P -primary
hyperideal of R.

Proof. Let agbh ∈ I for ag, bh ∈ h(R) and bh 6∈ Grad(I) = P . Then ag ∈ P since P is a graded
prime hyperideal. Since P is a divided graded prime hyperideal of R, we have P ⊂ Rbn−1

h because
bn−1
h 6∈ P . Thus ag = ckb

n−1
h for some ck ∈ h(R). As agbh = ckb

n
h ∈ I and bnh 6∈ I and I is a graded

n-absorbing hyperideal, we have ag = bn−1
h ck ∈ I. Therefore I is a graded n-absorbing hyperideal

of R.

Lemma 4.15. Let I be a graded hyperideal of a graded Krasner hyperring R. Then for any
xg ∈ h(R), (I :R xg) = {r ∈ R | rxg ∈ I} is a graded hyperideal of R.

Proof. It is clear.

Proposition 4.16. Let I be a graded n-absorbing hyperideal of a graded Krasner hyperring R.
Then (I :R xg) is a graded n-absorbing hyperideal of R containing I for all xg ∈ h(R)\I. Moreover,
Gab((I :R xg)) ≤ Gab(I) for all xg ∈ h(R).

Proof. Let xg1xg2 · · ·xgn+1 ∈ (I :R xg) for xg1 , xg2 , . . . , xgn+1 ∈ h(R). Then (xgxg1)xg2 · · ·xgn+1 ∈ I.
Thus either the product of xgxg1 with n−1 of the x,gis for 2 ≤ i ≤ n+1 is in I or xg2 · · ·xgn+1 ∈ I.
Hence there exists a product of n of the x,gis that is (I :R xg). Therefore (I :R xg) is a graded
n-absorbing hyperideal of R. If xg ∈ I, then (I :R xg) = R, so Gab((I :R xg)) = 0 ≤ Gab(I).

Definition 4.17. Let I be a proper graded hyperideal of a graded Krasner hyperring R and
g ∈ G such that Ig 6= Rg. Then I is said to be a g-n-absorbing hyperideal of R, if whenever
x1, x2, . . . , xn+1 ∈ Rg such that x1x2 · · ·xn+1 ∈ I, then there are n of the x,is whose product is in
I.

Theorem 4.18. Let I be a g-n-absorbing hyperideal of a graded Krasner hyperring R. Let x ∈ Rg\I
such that xk ⊆ I for some k ≥ 2. Then if (I :R xk−1)g 6= Rg, then (I :R xk−1) is a g-(n− k + 1)-
absorbing hyperideal of R.

Proof. Suppose that I is a g-n-absorbing hyperideal of R. Since 2 ≤ k ≤ n, then n − t + 1 ≥ 1.
It is clear that I ⊆ (I :R xk−1). Let x1 · · ·xn+1 ∈ (I :R xk−1) for x1, . . . , xn+1 ∈ Rg. Then
xk−1x1 · · ·xn+1 ∈ I and so either xk−2x1 · · ·xn−k+2 ∈ I or the product of xk−1 with some n−k+1
of the x,is is in I. In the second case, we are done. Now, let the product of xk−1 with any n−k+1
of the x,is is not in I. Thus xk−2x1 · · ·xn−k+2 ∈ I. We have xxk−2x1 · · ·xn−k+1(cn−k+2 + x) =
xk−1x1 · · ·xn−k+1cn−k+2+xkx1 · · ·xn−k+1cn−k+2 ⊆ I. Since I is a g-n-absorbing hyperideal of R, so
xk−2x1 · · ·xn−k+1(cn−k+2 + x) ⊆ I. Hence xk−1x1 · · ·xn−k+1 ∈ I because xk−2 ◦ x1 · · ·xn−k+2 ∈ I,
which is a contradiction. Hence the product of xk−1 with some n− k + 1 of the x,is is in I and so
(I :R xk−1) is a g-(n− k + 1)-absorbing hyperideal of R.

Theorem 4.19. Let R and S be graded Krasner hyperrings and let f : R → S be a graded good
homomorphism. Then the following statements hold:

(i) If J is a graded n-absorbing hyperideal of S, then f−1(J) is a graded n-absorbing hyperideal
of R.



78 P. Ghiasvand, M. Raeisi, S. Mirvakili, F. Farzalipour

(ii) If f is onto and I is a graded n-absorbing hyperideal of R containing Ker(f), then f(I) is
a graded n-absorbing hyperideal of S.

Proof. The proof is similar that Theorem 3.13.

Corollary 4.20. Let I, J be graded hyperideals of a graded Krasner hyperring R such that J ⊆ I.
If I is a graded n-absorbing hyperideal of R, then I/J is a graded n-absorbing hyperideal of R/J .

Proof. Consider the function f : R → R/J defined by f(r) = r + J . It is clear that f is a good
epimorphism. Since Ker(f) = J ⊆ I and I is a graded n-absorbing hyperideal of R, then the
proof follows from Theorem 4.19(ii).

Corollary 4.21. Let U be a graded subring of R. If I is a graded n-absorbing hyperideal of R
such that U ⊈ I, then I ∩ U is a graded n-absorbing hyperideal of U .

Proof. Define i : U → R by i(x) = x. It is clear that i−1(I) = I ∩ U . Hence I ∩ U is a graded
n-absorbing hyperideal of U by Theorem 4.19(i).

Theorem 4.22. Let R and S be graded Krasner hyperrings. Then the following statements hold:

(i) I is a graded n-absorbing hyperideal of R if and only if I×S is a graded n-absorbing hyperideal
of R× S.

(ii) J is a graded n-absorbing hyperideal of S if and only if R × J is a graded n-absorbing
hyperideal of R× S.

Proof. (i) (⇒) Let I be a graded n-absorbing hyperideal of R and (ag1 , bg1) · · · (agn+1 , bgn+1) ∈ I×S
for (ag1 , bg1), . . . , (agn+1 , bgn+1) ∈ h(R×S). Then ag1 · · · agn+1 ∈ I. Since I is a graded n-absorbing
hyperideal of R, there are n of a,gis is in I. We may assume that ag1 · · · agn ∈ I. This implies that
(ag1 , bg1) · · · (agn , bgn) ∈ I × S. Therefore I × S is a graded n-absorbing hyperideal of R× S.

(⇐) Assume that I × S is a graded n-absorbing hyperideal of R × S. Let ag1 · · · agn+1 ∈
I for ag1 , . . . , agn+1 ∈ h(R). Then (ag1 , 0) · · · (agn+1 , 0) ∈ I × S. Since I × S is a graded n-
absorbing hyperideal of R × S, then there are n of (agi , 0)

,s is in I × S. We may assume that
(ag1 , 0) · · · (agn , 0) ∈ I × S and so ag1 · · · agn ∈ I. Thus I is a graded n-absorbing hyperideal of R.

(ii) It is similar to that (i).

5 Graded 2-absorbing subhypermodules
In this section, we introduce the concept of graded 2-absorbing subhypermodules of a graded
Krasner R-hypermodule of M and we investigate some properties of such graded subhypermodules.

Definition 5.1. Let R be a graded hyperring and N be a proper graded subhypermodule of a graded
Krasner R-hypermodule M. Then N is a graded 2-absorbing subhypermodule of M if agbhmk ∈ N
implies agbh ∈ (N : M) or agmk ∈ N or bhmk ∈ N for all ag, bh ∈ h(R) and mk ∈ h(M).

Example 5.2. Let (R,+, ·) be the graded Krasner hyperring in Example 3.2. Set M = R and
⊕ = +, then (M,⊕) is an R-hypermodule with the following operation:

∀(r,m) ∈ R×M ; r ·m = rm.

We know that M0 = {0, b} and M1 = {0, c} are subhypergroups of (M,⊕) and M = M0
⊕

M1.
Moreover, R0M0 ⊆ M0, R0M1 ⊆ M0, R1M0 ⊆ M0, R1M1 ⊆ M1. Hence M is a graded Krasner
R-hypermodule. It is clear that {0} is a graded 2-absorbing subhypermodule of M and so it is a
graded 2-absorbing subhypermodule of M.
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The interested reader can easily prove the following lemma.

Lemma 5.3. Let M be a graded hypermodule over a graded Krasner hyperring R. Then the
following hold:

(i) If N is a graded subhypermodule of M, I a graded hyperideal of R, r ∈ h(R) and x ∈ h(M),
then Rx, IN and rN are graded subhypermodules of M .

(ii) If N and K are graded subhypermodules of M, then N + K and N ∩ K are also graded
subhypermodules of M and (N : M) is a graded hyperideal of R.

(iii) Let {Nλ} be a collection of graded subhypermodules of M. Then
∑

λNλ and
∩

λNλ are graded
subhypermodues of M.

Lemma 5.4. Let M =
⊕

g∈GMg be a graded Krasner R-hypermodule and N =
⊕

g∈GNg be a
proper graded subhypermodule of M. If N be a graded 2-absorbing subhypermodule of M, then Ng

is a g-2-absorbing Re-subhypermodule of Mg for all g ∈ G.

Proof. Let a, b ∈ Re and m ∈ Mg with abm ∈ Ng. Since N is a graded 2-absorbing subhypermodule
of M and Ng = N∩Mg ⊂ N, we get either ab ∈ (N :R M) or am ∈ N or bm ∈ N. If ab ∈ (N :R M),
then ab ∈ (Ng :Re Mg) as (N : M) ⊂ ((N ∩Mg) :Re Mg) = (Ng :Re Mg). Suppose that am ∈ N.
Since am ∈ Mg and am ∈ N, we have am ∈ N ∩Mg = Ng. If bm ∈ N, then similarly we conclude
bm ∈ Ng. Therefore Ng is a g-2-absorbing Re-subhypermodule of Mg.

Proposition 5.5. If N is a graded prime subhypermodule of a graded Krasner R-hypermodule M,
then N is a graded 2-absorbing subhypermodule of M.

Proof. Assume that N is a graded prime subhypermodule of M and let agbhmk ∈ N but agmk 6∈ N
for some ag, bh ∈ h(R) and mk ∈ h(M). Hence agM ⊆ N since N is a graded prime subhyper-
module of M . Therefore, agbhM ⊆ agM ⊆ N, so N is a graded 2-absorbing subhypermodule of
M.

Lemma 5.6. Let N be a proper graded subhypermodule of a graded Krasner R-hypermodule M.
Let g ∈ G. If Ng is a g-2-absorbing Re-subhypermodule of Mg, then (Ng :Re Mg) is a 2-absorbing
hyperideal of Re.

Proof. Let a, b, c ∈ Re with abc ∈ (Ng :Re Mg) and suppose that ac 6∈ (Ng :Re Mg) and bc 6∈ (Ng :Re

Mg). We show that ab ∈ (Ng :Re Mg). Since ac, bc 6∈ (Ng :Re Mg), there exist m1,m2 ∈ Mg such
that acm1 6∈ Ng and bcm2 6∈ Ng. Now abc(m1+m2) ∈ Ng. So ab ∈ (Ng :Re Mg) or ac(m1+m2) ∈ Ng

or bc(m1+m2) ∈ Ng. If ac(m1+m2) ∈ Ng, then acm1 6∈ Ng since acm1 6∈ Ng. Similarly, bcm2 6∈ Ng.
Since abcm2 ∈ Ng and bcm2 6∈ Ng and acm2 6∈ Ng we have ab ∈ (Ng :Re Mg). Hence (Ng :Re Mg)
is a 2-absorbing hyperideal of Re.

Proposition 5.7. The intersection of each pair of graded prime subhypermodules of a graded
Krasner R-hypermodule M is a graded 2-absorbing subhypermodule of M.

Proof. Let N and K be two graded prime subhypermodules of M. If N = K, then N ∩ K is a
graded prime subhypermodule of M, so that N ∩ K is a graded 2-absorbing subhypermodule of
M. Assume that N and K are distinct. Since N and K are proper subhypermodules of M, then
N ∩ K is a proper subhypermodule of M. Now, let ag, bg′ ∈ h(R) and mh ∈ h(M) be such that
agbg′mh ∈ N ∩K but agmh 6∈ N ∩K and agbg′M ⊈ N ∩K. Then we can conclude that
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(a) agmh 6∈ N or agmh 6∈ K, and
(b) agbg′M ⊈ N or agbg′M ⊈ K.

These two conditions give four cases:

(1) agmh 6∈ N and agbg′M ⊈ N ;
(2) agmh 6∈ N and agbg′M ⊈ K;
(3) agmh 6∈ K and agbg′M ⊈ N ;
(4) agmh 6∈ K and agbg′M ⊈ K.

We consider Case (1). Since agbg′mh ∈ N and N is graded prime, we have agM ⊆ N or
bg′mh ∈ N. If agM ⊆ N, then agbg′M ⊆ agM ⊆ N which is not possible. So suppose that
bg′mh ∈ N. Therefore bg′M ⊆ N or mh ∈ N. This is not possible and hence Case (1) does not occur.
Similarly, Case (4) is not possible. Next, Case (2) is considered. We have agbg′mh ∈ N ∩K ⊆ K
and since K is a graded prime subhypermodule of M, it follows that agM ⊆ K or bg′mh ∈ K.
If agM ⊆ K, then agbg′M ⊆ agM ⊆ K which contradicts agbg′M ⊈ K, thus bg′mh ∈ K. From
agbg′mh ∈ N ∩ K ⊆ N we have agM ⊆ N or bg′mh ∈ N. Since bg′mh 6∈ N, agM ⊆ N is not
possible. Hence bg′mh ∈ N ∩K.

The proof of Case (3) is similar to that of Case (2).

Proposition 5.8. Let N and K be two graded subhypermodules of a graded Krasner R-hypermodule
M and N ⊆ K. If N is a graded 2-absorbing subhypermodule of M , then N is a graded 2-absorbing
subhypermodule of K.

Proof. If K = M , then there is nothing to prove. Let agbg′mh ∈ N where ag, bg′ ∈ h(R) and
mh ∈ h(K). Since N is a graded 2-absorbing subhypermodule of M , so either agmh ∈ N or
bg′mh ∈ N or agbg′ ∈ (N : M). Since (N : M) ⊆ (N : K), implies either agmh ∈ N or bg′mh ∈ N
or agbg′ ∈ (N : K). Therefore N is a graded 2-absorbing subhypermodule of K.

Lemma 5.9. Let N be a proper graded subhypermodule of a graded Krasner R-hypermodule M .
Let g ∈ G. Ng is a g-2-absorbing Re-subhypermodule of Mg if and only if abK ⊆ Ng implies
ab ∈ (Ng :Re Mg) or aK ⊆ Ng or bK ⊆ Ng for each a, b ∈ Re and Re-subhypermodule K of Mg.

Proof. Let Ng be a g-2-absorbing subhypermodule of Mg and abK ⊆ Ng. Suppose that ab 6∈
(Ng :Re Mg) and aK ⊈ Ng and bK ⊈ Ng for some a, b ∈ Re and a subhypermodule K of
Mg. Then there exist mg,m

′
g ∈ K such that amg 6∈ Ng and bm′

g 6∈ Ng. Since abmg ∈ abK ⊆ Ng,
ab 6∈ (Ng :Re Mg) and amg 6∈ N we get bmg ∈ Ng. Also, since abm′

g ∈ abK ⊆ Ng, ab 6∈ (Ng :Re Mg)
and bm′

g 6∈ Ng we get am′
g ∈ Ng. Now, since ab(mg +m′

g) ∈ abK ⊆ Ng and ab 6∈ (Ng :Re Mg) we
have a(mg+m′

g) ∈ Ng or b(mg+m′
g) ∈ Ng. If a(mg+m′

g) ∈ Ng, i.e., (amg+am′
g) ∈ Ng, then since

am′
g ∈ Ng we get amg ∈ Ng which is a contradiction. If b(mg +m′

g) ∈ Ng, i.e., (bmg + bm′
g) ∈ Ng,

then since bmg ∈ Ng we get bm′
g ∈ Ng which is a contradiction. Thus ab ∈ (Ng :Re Mg) or

aK ⊆ Ng or bK ⊆ Ng. The converse is clear.

Theorem 5.10. If N is a proper graded subhypermodule of a graded Krasner R-hypermodule M .
Let g ∈ G. If Ng is a g-2-absorbing Re-subhypermodule of Mg and I and J are hyperideals of
Re and K an Re-subhypermodule of Mg such that IJK ⊆ Ng, then IK ⊆ Ng or JK ⊆ Ng or
IJ ⊆ (Ng :Re Mg).

Proof. Suppose IJK ⊆ Ng and IJ ⊈ (Ng : Mg). We show that IK ⊆ Ng or JK ⊆ Ng. Suppose
IK ⊈ Ng and JK ⊈ Ng. There exist a1 ∈ I and a2 ∈ J such that a1K ⊈ Ng and a2K ⊈ Ng.
But a1a2K ⊆ IJK ⊆ Ng. Since Ng is a g-2-absorbing Re-subhypermodule of Mg it follows from
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Lemma 5.9 that a1a2 ∈ (Ng : Mg). Since IJ ⊈ (Ng : Mg), there exist b1 ∈ I and b2 ∈ J such that
b1b2Mg ⊈ Ng. Now since Ng is a g-2-absorbing Re-subhypermodule of Mg and b1b2K ⊆ IJK ⊆ Ng

and also b1b2Mg ⊈ Ng it follows from Lemma 5.9 that b1K ⊆ Ng or b2K ⊆ Ng. We have the
following cases:

Case (1): b1K ⊆ Ng and b2K ⊈ Ng. Since a1b2K ⊆ IJK ⊆ Ng and a1K ⊈ Ng and b2K ⊈ Ng

it follows from Lemma 5.9 that a1b2 ∈ (Ng : Mg). Since b1K ⊆ Ng and a1K ⊈ Ng, we conclude
(a1+b1)K ⊈ Ng. On the other hand, (a1+b1)b2K ⊆ Ng and neither (a1+b1)K ⊆ Ng nor b2K ⊆ Ng,
we get that (a1+b1)b2 ∈ (Ng : Mg) by Lemma 5.9. But since (a1+b1)b2 = (a1b2+b1b2) ∈ (Ng : Mg)
and a1b2 ∈ (Ng : Mg), we get b1b2 ∈ (Ng : Mg) which is a contradiction.

Case (2): b2K ⊆ Ng and b1K ⊈ Ng. By a similar argument to Case (1), we get a contradiction.
Case (3): b1K ⊆ Ng and b2K ⊆ Ng. b2K ⊆ Ng and a2K ⊈ Ng gives (a2 + b2)K ⊈ Ng. But

a1(a2+b2)b2K ⊆ Ng and neither a1K ⊆ Ng nor (a2+b2)K ⊆ Ng, hence a1(a2+b2) ⊂ (Ng : Mg) by
Lemma 5.9. Since a1a2 ∈ (Ng : Mg) and (a1a2+b1b2) ∈ (Ng : Mg), we have a1b2 ∈ (Ng : Mg). Since
(a1+b1)a2K ⊆ Ng and neither a2K ⊆ Ng nor (a1+b1)K ⊆ Ng, we conclude (a1+b1)a2 ⊂ (Ng : Mg)
by Lemma 5.9. But (a1+ b1)a2 = a1a2+ b1a2, so (a1a2+ b1a2) ⊂ (Ng : Mg) and since a1a2 ∈ (Ng :
Mg), we get b1a2 ∈ (Ng : Mg). Now, since (a1 + b1)(a2 + b2)K ⊆ Ng and neither (a1 + b1)K ⊆ Ng

nor (a2 + b2)K ⊆ Ng, we have (a1 + b1)(a2 + b2) = (a1a2 + a1b2 + b1a2 + b1b2) ⊂ (Ng : Mg)
by Lemma 5.9. But a1a2, a1b2, b1a2 ∈ (Ng : Mg), so b1b2 ∈ (Ng : Mg) which is a contradiction.
Consequently, IK ⊆ Ng or JK ⊆ Ng.

Corollary 5.11. Let I and J be two hyperideals of Re and P a g-2-absorbing Re-subhypermodule
of Mg. If mg ∈ Mg such that IJmg ⊆ P , then Img ⊆ P or Jmg ⊆ P or IJ ⊆ (P :Re Mg).

Proof. Let IJmg ⊆ P . Then IJ(Remg) ⊆ P and consequently Img ⊆ I(Remg) ⊆ P or Jmg ⊆
J(Remg) ⊆ P or IJ ⊆ (P : Mg).

Theorem 5.12. Let I be a hyperideal of Re and Ng be a g-2-absorbing subhypermodule of Mg. If
a ∈ Re, mg ∈ Mg and Iamg ⊆ Ng, then amg ∈ Ng or Img ⊆ Ng or Ia ⊆ (Ng : Mg).

Proof. Suppose that amg 6∈ Ng and Ia ⊈ (Ng : Mg). Then there exists b ∈ I such that ba 6∈ (Ng :
Mg). Now, bamg ∈ Ng, implies that bmg ∈ Ng, since Ng is a g-2-absorbing Re-subhypermodule
of Mg. We show that Img ⊆ Ng. Let c ∈ I. Thus (b + c)amg ∈ Iamg ⊆ Ng. Hence either
(b+ c)mg ∈ Ng or (b+ c)a ∈ (Ng : Mg). If (b+ c)mg ∈ Ng, then by bmg it follows that cmg ∈ Ng.
If (b+ c)a ∈ (Ng : Mg), then ca 6∈ (Ng : Mg), but camg ∈ Ng. Thus cmg ∈ Ng. Hence we conclude
that Img ⊆ Ng.

Corollary 5.13. Let Ng be a g-2-absorbing subhypermodule of Mg. Then (Ng :Mg I) is a g-2-
absorbing subhypermodule of Mg for every hyperideal I of Re.

Proof. Let a, b ∈ Re and mg ∈ Mg be such that abmg ⊆ (Ng :Mg I). Since Iabmg ⊆ Ng and Ng

is g- 2-absorbing, so by Theorem 5.12 we have abmg ∈ Ng or Img ⊆ Ng or Iab ⊆ (Ng : Mg). If
abmg ∈ Ng, then amg ∈ Ng or bmg ∈ Ng or ab ∈ (Ng : Mg). Hence for amg ∈ Ng it follows that
Iamg ⊆ INg ⊆ Ng and we have amg ∈ (Ng : Mg). For bmg ∈ Ng it follows that Ibmg ⊆ INg ⊆ Ng

and we have bmg ∈ (Ng : Mg). For ab ∈ (Ng : Mg), we have ab ∈ ((Ng :Re Mg) :Re I) =
((Ng :Mg I) :Re Mg). For Img ⊆ Ng, we have mg ∈ (Ng :Mg I) and thus amg ∈ (Ng :Mg I). For
Iab ⊆ (Ng : Mg), we have ab ∈ ((Ng :Re Mg) :Re I) = ((Ng :Mg I) :Re Mg) and (Ng :Mg I) is a
g-2-absorbing subhypermodule of Mg.

Theorem 5.14. Let N be a proper graded subhypermodule of a graded Krasner R-hypermodule
M . Let g ∈ G. Let Ng be a g-2-absorbing Re-subhypermodule of Mg. Then (Ng :Re Mg) is a prime
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hyperideal of Re if and only if (Ng :Re P ) is a prime hyperideal of Re for every subhypermodule P
of Mg containing Ng.

Proof. Let I and J be hyperideals of Re such that IJ ⊆ (Ng :Re P ). Hence IJP ⊆ Ng. Since
Ng is a g-2-absorbing Re-subhypermodule of Mg it follows from Theorem 5.10 that IP ⊆ Ng or
JP ⊆ Ng or IJ ⊆ (Ng :Re P ). For IJ ⊆ (Ng :Re P ), by assumption that (Ng :Re Mg) is a
prime hyperideal of Re, we get IP ⊆ IMg ⊆ Ng or JP ⊆ JMg ⊆ Ng. Hence I ⊆ (Ng :Re P ) or
J ⊆ (Ng :Re P ) and so (Ng :Re P ) is a prime hyperideal of Re.

Proposition 5.15. Let N and K be graded subhypermodules of a graded Krasner R-hypermodule
M with K ⊈ N . If N is a graded 2-absorbing subhypermodule of M , then N ∩ K is a graded
2-absorbing subhypermodule of K.

Proof. Since N and K are graded subhypermodules of M and K ⊈ N , K ∩N is a proper graded
subhypermodule of K. Assume that N is a graded 2-absorbing subhypermodule of M . Let
ag, bg′ ∈ h(R) and xh ∈ h(K) be such that agbg′mh ∈ N . Since K is a graded subhypermodule
of M , agbg′K ⊆ K and agxh, bg′xh ∈ K. Moreover, since agbg′mh ∈ N ∩ K ⊆ N and N is
a graded 2-absorbing subhypermodule of M , agbg′M ⊆ N or agxh ∈ N or bg′xh ∈ N . Thus
agbg′K ⊆ agbg′K ∩ agbg′M ⊆ K ∩N or agxh ∈ K ∩N or bg′xh ∈ K ∩N . Therefore, N ∩K is a
graded 2-absorbing subhypermodule of K.

Proposition 5.16. Let N and K be graded subhypermodules of a graded Krasner R-hypermodule
M with K ⊆ N . Then N is a graded 2-absorbing subhypermodule of M if and only if N/K is a
graded 2-absorbing subhypermodule of M/K.

Proof. Assume that N is a graded 2-absorbing subhypermodule of M . Then N/K is a proper
graded subhypermodule of M/K. Let ag, bg′ ∈ h(R) and (mh + K) ∈ h(M/K) be such that
agbg′(mh + K) ∈ N/K. Let s, t ∈ R. Hence agsbg′tmh + K = agsbg′t(mh + K) ∈ N/K. Then
there exists n ∈ N such that agsbg′tmh + K = n + K so that agsbg′tmh − n ∈ K ⊆ N and so
agsbg′tmh ∈ N . This shows that agbg′mh ∈ N . As a result, agmh ∈ N or bg′mh ∈ N or agbg′M ⊆
N because N is a graded 2-absorbing subhypermodule of M . Therefore, ag(mh +K) ∈ N/K or
bg′(mh+K) ∈ N/K or agbg′(M/K) ⊆ N/K. Hence N/K is a graded 2-absorbing subhypermodule
of M/K. Conversely, assume that N/K is a graded 2-absorbing subhypermodule of M/K. Then
N is a proper graded subhypermodule of M . Let ag, bg′ ∈ h(R) and mh ∈ h(M) be such that
agbg′mh ∈ N . Then agbg′(mh +K) ∈ N/K. Since N/K is a graded 2-absorbing subhypermodule
of M/K, we obtain ag(mh + K) ∈ N/K or bg′(mh + K) ∈ N/K or agbg′(M/K) ⊆ N/K. That
is agmh ∈ N or bg′mh ∈ N or agbg′M ⊆ N . This implies that N is a graded 2-absorbing
subhypermodule of M .

Let R1 and R2 be two G-graded hyperrings. Then R = R1×R2 becomes a G-graded hyperring
with homogeneous elements h(R) =

∪
g∈GRg, where Rg = (R1)g × (R2)g for all g ∈ G. Let M1 be

a graded R1-hypermodule and M2 be a graded R2-hypermodule. Then M = M1 ×M2 is a graded
R = R1 ×R2-hypermodule.

Theorem 5.17. Let M1 be a graded Krasner R1-hypermodule, M2 be a graded Krasner R2-
hypermodule, R = R1 ×R2 and M = M1 ×M2. Then

(i) N1 is a graded 2-absorbing subhypermodule of M1 if and only if N1 × M2 is a graded 2-
absorbing subhypermodule of M .
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(ii) N2 is a graded 2-absorbing subhypermodule of M2 if and only if M1 × N2 is a graded 2-
absorbing subhypermodule of M .

Proof. (i) Let N1 be a graded 2-absorbing subhypermodule of M1. Let (ag, bg)(ch, dh)(mk,m
′
k) ∈

N1 × M2 where (ag, bg′), (ch, dh) ∈ h(R) and (mk,m
′
k) ∈ h(M). Then (agchmk, bgdhm

′
k) =

(ag, bg)(ch, dh)(mk,m
′
k) ∈ N1 × M2, i.e., agchmk ∈ N1 and bgdhm

′
k ∈ M2. Since N1 is a graded

2-absorbing R1-subhypermodule of M1, it follows that agchM1 ⊆ N1 or agmk ∈ N1 or chmk ∈ N1.
That is (ag, bg)(ch, dh)M = (agchM1, bgdhM2) ⊆ N1 × M2 or (ag, bg)(mk,m

′
k) = (agmk, bgm

′
k) ∈

N1 × M2 or (ch, dh)(mk,m
′
k) = (chmk, dhm

′
k) ∈ N1 × M2. Therefore N1 × M2 is a graded 2-

absorbing subhypermodule of M . Conversely, assume that N1 × M2 is a graded 2-absorbing
subhypermodule of M . Let ag, bh ∈ h(R1) and mk ∈ h(M1) be such that agbhmk ∈ N1. Let
xg, yh ∈ h(R2) and m′

k ∈ h(M2). Then (ag, xg′)(bh, yh′)(mk,m
′
k) = (agbhmk, xgyhm

′
k) ∈ N1 ×M2.

Since N1 ×M2 is a graded 2-absorbing R-subhypermodule of M , (ag, xg)(bh, yh)M ⊆ N1 ×M2 or
(ag, xg)(mk,m

′
k) ∈ N1 ×M2 or (bh, yh)(mk,m

′
k) ∈ N1 ×M2. Hence agbhM1 ⊆ N1 or agmk ∈ N1

or bhmk ∈ N1. Thus N1 is a graded 2-absorbing subhypermodule of M1.
(ii) The proof is similar to that (i).

6 Conclusions
In this article, we introduced the concepts of graded 2-absorbing hyperideals and graded n-
absorbing hyperideals of a graded Krasner hyperring as a generalization of prime hyperideals.
Also, we introduced and studied graded 2-absorbing subhypermodules of a graded krasner hyper-
ring. We showed that 2-absorbing (n-absorbing) hyperideals and graded 2-absorbing (n-absorbing)
hyperideals are totally different. Furthermore, several properties, examples and characterizations
of graded 2-absorbing (n-absorbing) hyperideals have been investigated. Moreover, we investigated
the properties and the behaviour of this structure under homogeneous components, graded hyper-
ring homomorphisms, Cartesian product. Finally, we introduced the concept of graded 2-absorbing
subhypermodules of a graded Krasner R-hypermodule and we investigate some properties of such
graded subhypermodules.
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