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Abstract

This paper aims is to introduce states, Bosbach states
and state-morphism operators on Bl-algebras. We de-
fine state ideals on Bl-algebras and give a characteriza-
tion of the least state ideal of a Bl-algebra. It is proved
that the kernel of a Bosbach state on a Bl-algebra X is
an ideal of X. Further, by these concepts, we introduce
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the notions of state Bl-algebras and state-morphism BI-
algebras. The notion of complement pairs of a Bl-algebra
X is defined, and proves that under suitable conditions,
there is a one-to-one correspondence between comple-
ment pairs of Bl-algebras and state-morphism operators
on Bl-algebras.
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1 Introduction

As a generalization of dual implication algebras and implicative BCK-algebras, Borumand Saeid
et al. introduced a new notion of logical algebras namely, Bl-algebras, and gave basic properties of
Bl-algebras and investigated ideals and congruence relations on this new algebra. Bl-algebras are
weaker than some well-known algebras, such as implicative BCK-algebras and Boolean lattices.
Indeed, these algebras are Bl-algebra, but the converse does not hold (see, [2]). For more details
and other comparisons with the other algebras, ideals, normal subalgebras in Bl-algebras and the
quotient Bl-algebras are studied in [1].

It is known that the notion of state was firstly defined on an MV-algebra by Kopka and
Chovane in [B2], and then has been studied and applied to other algebraic structures, since they
have important roles in studying logical algebras (see, for instance, Borzooei et al. [3, 4, 5], Busneag
[8. 9], Ciungu [13, 14, 15], Ciungu and Dvurecenskij [17], Ciungu et al. [16, [L§], Chen and Dudek
[10], Cheng et al. [11], Di Nola and Dvurecenskij [21], Di Nola et al. [22], Dvurecenskij and Zahiri
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[26], Ghasemi et al. [30], Hua [31], Lee and Kim [B3], Mertanen [34], Qing and Long [36], Rezaei
et al. [38], Turunen and Mertanen [B9], Xin et al. [40], Xin and Davvaz [41] and Xin et al. [42]).

Since states can be thought of in another way, the Bosbach state was defined in [6], [7], [12],
and [28]. Georgescu and Muresan, by replacing the MV-algebra [0,1] with an arbitrary residuated
lattice L, defined a new concept of state were named generalized Bosbach state in [29], and extended
it to type I and type 1II states. Then the Bosbach states defined on residuated lattices with values
in residuated lattices were investigated by Ciungu et al. in [19] and [20]. Flaminio and Montagna
introduced MV-state algebras in [27]. The notion of state-morphism MV-algebra, which is a
stronger variation of a state MV-algebra, is introduced by Di Nola and Dvureéenskij in [21] and
[22]. The notion of a state operator was extended to the cases of fuzzy structures, bounded
(non-) commutative R¢-monoids, and GMV-algebras (pseudo-MV-algebras) by Dvurecenckij and
Rachunek in [23] and [24], Dvurecenckij et al. in [25], Rachunek and Salounova in [37].

In this paper, we introduce the notions of states, Bosbach states and state-morphism operators
on Bl-algebras. Also, we define state ideals on Bl-algebras and give a characterization of the least
state ideal of a Bl-algebra. It is proven that the kernel of a Bosbach state on a Bl-algebra X is
an ideal of X. Further, by these concepts, we introduce the notions of state Bl-algebras and state-
morphism Bl-algebras. The notion of complement pairs of a Bl-algebra X is defined, and prove
that under suitable conditions, there is one-to-one correspondence between complement pairs of
Bl-algebras and state-morphism operators on Bl-algebras.

2 Preliminaries

We recalled some definitions and results which will be used in the sequel. Throughout this paper,
we will denote N for the set of all positive integers and R for the set of real numbers.

Definition 2.1. [2] An algebra (X;*,0) of type (2,0) is called a Bl-algebra if satisfying the following
azioms: for all x,y € X,

(B) zx2 =0,
(BI) % (yxx) = x.

From now on, by X, we mean that it is a Bl-algebra (X;*,0).

We introduce the binary relation “ <” on X by x < y if and only if x xy = 0. Notice that the
relation < is not a partial order, since it is only reflexive.

A Bl-algebra X is said to be right distributive or self distributive (briefly, distributive) if

(rxy)xz=(x*x2)x*(y=*z2),
for all z,y,z € X (see, [2]).
Proposition 2.2. [2] The following statements hold: for all z,y,z,u € X,
(i) 20 =u,

)

(1i1) zxy = (z*xy) *y,
) if yxx ==z, then X = {0},
)

ifxx(yxz)=yx*(zx*z), then X = {0},
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(vi) ifxxy =2z, then zxy =2z andy*z =y,
(vit) if (xxy)* (z*u) = (x*2)*(y*u), then X = {0}.
Remark 2.3. Notice that, if zx (v xy) = (2 xx) * (2 xy), for all x,y,z € X, then X = {0}. Since

if we take y := x, for all z € X, and using Proposition |2.4(i) and (B), we obtain z = z x 0 =
zx(xxx)=(zxx)*(2x2)=0.

Proposition 2.4. [2] Let X be distributive. Then for all x,y,z € X,
(i) yxx <y,

(i1) @ * (zxy) <y,

ifrx <y, thenxxz<yxz,

)
)
(iid) (z*2)* (yxz) <z*y,
(iv)
)

(xxy)*z<z*(y*z),

(v
(vi) if xxy = zx*vy, then (x *z)xy = 0.

A subset I of X is called an ideal of X if (I1) 0 € [ and (I2) y € I and x xy € I imply = € I,

for all z,y € X (see, [2]).
Denote the set of all ideals on X by Z(X).

U

Theorem 2.5. [2] Let X be distributive, and I € Z(X). Then the binary relation“~;” where

defined by
x~yifandonlyif zxy el and yxx el

s a Tight congruence relation on X.

Analytic constructions for Bl-algebras are considered in [1].
Let X := {z € R: 2z > 0}. Define the binary operation “«” on X as follows:

zxy =max{0, f (z,y) (x —y)} = max{0,\(x,y)x},

where f (x,y) and A(z,y) are non-negative real valued functions, with A (0,y) =0, for all y € X.

If we define
1 ify=0;

Mx’y):{ 0 ify+#£0,

w47 if y =0;
YT 0 ify#£0,

then

Thus (X;*,0) is a Bl-algebra (see, [1]).
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3 State operators on BI-Algebras

In this section, we introduce the notion of states on Bl-algebras and investigate their properties.

Definition 3.1. A map o : X — X s called state operator on X if it satisfying the following
conditions: for all x,y € X,

(SO1) z <y implies o () < o (y),
(SO2) o (x*xy) =0 (x)*x0(x*(xx*xy)),
(S03) o (o (z)x0(y)) =0 (x)*0o(y).

A state Bl-algebra is a pair (X, o).
Denote kero = {x € X : 0 (z) = 0}, that is the kernel of 0. A state operator o is faithful if
ker o = {0}.

Example 3.2. (i) Let X be a Bl-algebra, and ¢ : X — X be a map defined by ¢ (z) = 0, for all
x € X. Then it is easy to see that o is a state operator on X.
(ii)) Let X = {0,a,b}. Define the binary operation “x;” in Table 1 and define 0 : X — X by

Table 1: Bl-algebra (X;x1,0)

*

1

e OO
o2 oo

R O
> O O R

0(0) =0 and o(a) = o(b) = b. Then (X, 0) is a state Bl-algebra.
(iii) Let X be a Bl-algebra. Define two operators “o1” and “o2” on the direct product Bl-algebra
X x X as follows:

o1(x,y) = (z,x) and o9(x,y) = (y,y), for all (z,y) € X x X.
Then o7 and o9 are two state operators on X x X.

Denote the set of all state operators on X by S(X).
Now, we give some properties of state operators on Bl-algebras.

Proposition 3.3. Let 0 € §(X). Then the following hold: for all x € X,
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Proof. (i) If we take z := y in (SO3) and using (B), we get
o(0) = 0 (0 (2) * 0 (2)) = o (2) % & () = 0.
(ii) By (i) and Proposition .J(i), we have
o (0 (x) % 0 (0)) = o (o () ¥ 0) = o( ().
On the other hand, if we take y := 0 in (SO3), then
o (0 (2) %0 (0)) = 0 (x) ¥ 7(0) = 0 () .

Therefore (ii) holds.
(iii) Clearly, {x € X : o (x) = 2} C img 0. Now, suppose x € img o. Then there exists 2/ € X
such that o (2') = . Then by (ii), we have

z= o (2) =0(c(2)) =0(x).

This shows that x € img o, and so img ¢ C {x € X : o (x) = z}. Hence (iii) holds.
(iv) From (i), 0 € img o. For all z,y € X by (SO3), we have o (z) x o(y) € img o. Thus img o is
a subalgebra of X.
(v) Suppose y € kero and xz xy € kero. Then o (y) = o (z*y) = 0. On the other hand, using
(S02), we get

O=oc(xx*xy)=oc(x)xo(xx(x*xy)).
Now, by Proposition @(ii), since z * (z x y) <y, using (SO1), we get

o(xx*(x*y)) <o(y) =0.
Hence o (z % (x xy)) = 0, and so o (z) = 0. This means that x € kero, and so kero € Z(X). O

Proposition 3.4. Let X be distributive and o € S(X). Then the following statements hold: for
all z,y € X,

(1) ifx <y and for any z € X, zxy < zxxz, then o (y) xo(x) < oy x x),
(77) kero Nimg o = {0}.

Proof. (i) Given z,y € X. Using Proposition @(ii), we have y* (y*xz) < z. Hence o(y* (y x z)) <
o(x). Then o (y)*x o (z) <o (y)xo (y* (y*x)) = o(y * z), by hypothesis and (SO2).

(ii) Suppose = € kero Nimg o. It follows that o(x) = 0. Moreover, x € img o, so there exists
2’ € X such that o (2/) = x. Then by Proposition @(ii), 0=o0(z) =0(c(2)) =0(a)) = a.
Thus z = 0, and so (ii) holds. O

The following example shows that in Proposition @(i), the distributive law and condition
zxy < zxx, for any z € X, are necessary.

Example 3.5. Let X = {0,a,b,c}. Define the binary operation “xs” in Table 2. Then (X x2,0)
is a Bl-algebra (see, [2]), but is not distributive, since

(axab)kac=ax*gc=0b7# (a*gc)*y (bkac) =bxgb=0.

Define 0 : X — X by 0(0) = o(b) = g(¢) = 0 and o(a) = a. Then (X,0) is a state BI-
algebra, but not satisfies in Proposmon , since 0 < ¢, but a*x3 ¢ =b £ a %2 0 = a. Further,
o(a)*20(c) =ax*x20=1a £ o(a*c) —J(b)
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Table 2: Bl-algebra (X;x2,0)

¥ |0 a b c
0[O0 O 0 O
ala 0 a b
b|b b 0 b
clc b ¢ O

Proposition 3.6. Let X be commutative (i.e., xx (zxy) = yx* (y*x) for allz,y € X), 0 € S(X)
andy < z. Then o (xxy) = o (z) x o(y).

Proof. Given z,y € X with y < z. Using the commutative law and Proposition @(i), we have
o(xxy)=o(@)xo(x*x(xxy)) =0 (x)*xo(y*(y*x))
=o(z)*xo(y*x0)=o0(x)*o(y).
This completes the proof. ]
The following example shows that the commutative law in Proposition @ is necessary.
Example 3.7. Consider Example @ It is not commutative, since
axg(a*pc) =axab=a#cxy(c*kaa) =cx*xb=c.

Define 0 : X — X by o(a) = o(a) = o(b) = 0 and o(c) = ¢. Then (X, 0) is a state Bl-algebra and
we can see that
o(cxga)=0(b) =0+#o(c)*20(a) =cx0=rc.

Remark 3.8. Notice that, if o (x xy) = o(y) or o (z xy) = o(x), for any xz,y € X, then o is zero
map. By contrary, if there is x € X such that o(z) # 0, then we have o (0) = o (z % 0) = o(x).
By Proposition (z), o (0) = 0, this implies o (x) = 0, a contradiction. Then o is zero map.
Further, 0(0) = o (x * x) = o(x), using Proposition @(’L}, we get o(z) =0, for all x € X.

Proposition 3.9. Let X = {x € R: x> 0}. Then there exists non-zero non-negative real valued
function A(x,y) such that (X;*x,0) becomes a Bl-algebra, where

z #y\ y = max{0, A (z,y) =}
and for every state operator o on X, we have o (x *yy) =0, for all 0 # z,y € X.
Proof. Assume X = {x € R:x > 0}. Define A : X x X — X by

|1 ity=0;

for all (z,y) € X x X. Then (X;x*,,0) is a Bl-algebra (see, [1]). Let z,y € X, since X is linearly
ordered, we have x < y or y < z. If x <y, then x x5 y = 0. Thus the proof completes. Now,
suppose y < x. Then

£y (0 ) = 26y (max {0, A () 2}) = 75, <max{0’ {3" 120 })

s z ify=0;\ [ xzxz ify=0, [ 0 ify=0;
PRV 0 ify£0. )T\ ax0 ify£0. |z ify£0.
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If y =0, then o (z ) 0) = o (x), and if y # 0, then
o(z*xyy) =0(x)*yo(x ) (x*)y)) =0 (x)*\0(x) =0.
This completes the proof. O
Definition 3.10. Let 0 € S(X). An ideal I of X is called a state ideal if o(I) C I.
We denote the set of all state ideals on X by SZ(X).

Example 3.11. Consider Example @(ii) and take [ :={0,b} and J := {0,a}. Then I € ST(X),
but J ¢ SZ(X), since o (a) =b ¢ J.

Proposition 3.12. Let 0 € S(X) and {I;};ca be a family of states ideals of X, then ﬂ I;, is too.

FISHN

Proof. Assume o € S(X) and {I;}iea is a family of states ideals of X. Since I; € Z(X), we get
ﬂ I; e Z(X). Now, let z € ﬂ I;. Then z € I;, for all i € A, and so o(z) € o(I;) C I;, since I; is
ieA i€A

a state ideal of X. Hence o(x) € ﬂ I;. It follows that a(ﬂ I;) C ﬂ I;. Thus ﬂ I e SI(X). O

ieA ieA ieA ieA

Since the set SZ(X) is closed under arbitrary intersections, we have the following theorem.
Theorem 3.13. (SZ(X); Q) is a complete lattice.

The following example shows that the union of two state ideals may not be a state ideal, in
genaral.

Example 3.14. Let X = {0, a,b,c}. Define the binary operation “x3” in Table 3. Then (X x3,0)

Table 3: Bl-algebra (X;x3,0)

x3 |0 a b c
0{0 O 0 O
ala 0 a a
blb b 0 a
cl|lc ¢ a O

is a Bl-algebra. Define 0 : X — X by 0(0) = o(a) = 0 and o(b) = o(c) = ¢. Then 0 € S(X)
and (X, o) is a state Bl-algebra. If we take I; := {0,a} and I := {0, c}, then I, Is € SZ(X), but
LUI, = {0,a,c} is not an ideal of X, since ¢, bxgc € I1Uly, but b € Iy Uly. Thus [1UI, ¢ ST(X).

Definition 3.15. Let 0 € S(X) and I € Z(X). For any x,y € X, define
I (5,y) = {t € X : (t+2) % o(y) € T}

Notice that, by Proposition @(ii), since 0 x z = 0, for all z € X, we get 0 € I,(x,y), for
all z,y € X. Hence I, (z,y) # 0. Also, for all x € X, [, (0,z) := {t € X : txo(z) € I} and
I, (2,0):={t € X : t*xx € [}, since g(0) = 0.

The following example shows that for 0 € S(X) and I € Z(X), I,(z,y) # I,(y,z), and may
I,(z,y) & ST(X), in general.
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Example 3.16. (i) Consider Example @ If we take I := {0,a,c}, then I € Z(X). One can
easily see that I,(c,a) = {0,¢} # I,(a,c) = I and I,(b,c) = X.

(ii) In Example , take I :=={0,c}. Then I € SZ(X) and I,(a,b) = {0,a,c} & SZ(X), since
c,bxgc=a € I;(a,b), but b & I,(a,b).

Proposition 3.17. Let X be distributive, 0 € S(X) and I € Z(X). Then I, (z,y) € Z(X).

Proof. Assume I € Z(X) and x,y € X. Using Proposition @(ii) and (I1), we get
(Oxx)*x0(y) =0%x0(y)=0€ 1.

Hence 0 € I,(z,y), and so I,(z,y) # 0.
Let b,axb € I,(x,y). Then (bxx)xo(y) € I and ((a *b) *x)*o(y) € I. Using distributive law,
we obtain

((axx)xo(y))*x((bxz)*xo(y)) = ((axz)* (bxz))*x0(y) = ((axb)*xx)x0o(y) € I.

Since I € Z(X) and (b* x) xo(y) € I, we get (a*x)*o(y) € I. It follows that a € I,(x,y). Thus
I, (z,y) € Z(X). O

The following example shows that the distributive law in Proposition M is necessary.

Example 3.18. Consider Example @ If we take I := {0, a,c}, then I € Z(X). We can see that
I,(b,a) = {0,b,a}, where I,(b,a) &€ Z(X), since a, c*ga =b € I,(b,a), but ¢ & I,(b,a).

Proposition 3.19. Let [ € SI(X) and 0 € S(X). Then I = U 1,(0, ).
xzel

Proof. Assume I € SI(X), 0 € S(X) and t € I. Let z € I. Hence o(z) € o(f) C I. Then
txo(x)el,andsot € 1,(0,z) C U I,(0,x) It follows that t € U I,(0,x). Thus I C U 1,(0,x).

zel xel xel
On the other hand, let ¢ € U I,(0,z). Then there exists x € I such that t € I,(0,z). Hence
zel
txo(x) € I. Since I € SZ(X) and z € I, we have o(z) € o(I) C I, and so o(z) € I. Thus t € I.
It shows that U I,(0,2) C 1. O

xzel

Corollary 3.20. Let X be distributive, I € Z(X), 0 € S(X) and a € X. If we take
M, ={teX:(txa)xo(a) €I}, then M, € Z(X).

Proof. Similar to the proof Proposition , if we take M, := I,(a,a). O
The following example shows that there is I € SZ(X) and a € X, where M, ¢ SZ(X).

Example 3.21. Consider the state ideal Iy = {0, c} in Example . One can easily see that
M, =1{0,a,c} & SI(X), since ¢, bxzc=a € M, but b € M,.

Open problem. Consider status Proposition or Corollary , if 0 € S(X) and
I € ST(X), then I,(z,y) € SI(X) or M, € SZ(X)? Under what condition/conditions is/are it
possible?

Theorem 3.22. Let X be distributive, I € Z(X) and o € S(X). Then ~p, where defined in
Theorem 2.4, is a congruence relation on X, and [0]; € SZ(X).
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Proof. By [2, Lemma 5.6], [0]; € Z(X). Let « € [0];. Then x~0. This implies that o (x) ~;0 (0).
By Proposition B.3(i), o (z) ~70. It shows that o(z) € [0],. Thus [0];, € SZ(X). O

Definition 3.23. Let 0 € S(X) and O # I C X. Define the state ideal generated by I as follows:

(Ds = L

Icr
where 0 € S(X) and I C I; € SI(X), fori e A.

Notice that, in Definition , ﬂ I; € SI(X), by Proposition . Also, if I € SZ(X), then
Ic
(Hs=1.
Borumand Saeid et al. defined the set A(x,y) := {t € X : (t xx) *y = 0}, and it was shown
that if X is distributive, then A(x,y) € Z(X), where z,y € X.
Also, we can see that A(x,0) = A(0,x), for all z € X. Further, it is shown that if I € Z(X), then
(see for details, Proposition 4.10 and Theorem 4.11 (see, [2]))

I= UA(O,x) = U Al(z,y).
zel z,yel

The following example shows that if X is distributive and () # I C X, then

(s # ) Aly).

zyel

Example 3.24. Consider Example @(11) Then (X, 0) is a state Bl-algebra. If we take I = {b},
then I ¢ Z(X) and < I >g= {0, b}.
Also, we can see that A(0,0) = {0} and A(0,b) = A(b,0) = A(b,b) = {0,b}, where

(Hs={0,0} # () Alx,y) ={0}.

z,yelU{0}

Also, If we take I := {0, a}, then we can see that I € Z(X) and

(Ns=T={0,a}# (] Az,y)={0}.

z,yeIU{0}
The following theorem show that a representation of (I)g.

Theorem 3.25. Let ) # 1 C X. Then (I)g = ﬂ U I, (0,z), where 0 € S(X) and I; € ST(X),
ICI; z€l;
foralli e A.

Proof. By Definition and Proposition , the proof is obvious.
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4 Bosbach states on Bl-algebras

In this section, we introduce the notion of Bosbach states and show that there exists a Bosbach
state via % where ~; is a congruence relation induced by an ideal I of distributive Bl-algebra X.

Definition 4.1. Let 0 : X — [0,1] be a map. We say that o is a Bosbach state on X, if the
following conditions hold: for all x,y € X

(BS1) o(0) = 0,
(BS2) o(x) +o(y*z) =o(y) +o(zxy).
Example 4.2. (i) Consider Example @ Define 0 : X — [0, 1] as follows:
0(0) =0 and o(a) = o(b) =0o(c) = =.

Then o is a Bosbach state on X.
(ii) Let X = {0, a,b}. Define the binary operation “x4” in Table 4. Then (X;x*4,0) is a Bl-algebra

Table 4: Bl-algebra (X;x4,0)

*
'y

Qe OO
o2 oo

R O
> O O R

(see, [2]). Define o : X — [0,1] by 0(0) =0, o(a) = 3 and o(b) = 1. Then o is a Bosbach state on
X.

Denote the set of all Bosbach states on X by BS(X).
Proposition 4.3. Let 0 € BS(X). Then
(i) x <y implies o(x) < o(y) and o(y * z) < o(y),
(i1) kero € Z(X).
Proof. (i) Given z,y € X, if x <y, then x * y = 0. Hence
o(@) +o(yxx)=o(y) +o(rxy) =oay) +0(0) =0o(y) +0=0(y).

Since o(t) > 0, for all t € X, and o(z) + o(y *z) = o(y), we get o(z) < o(y) and o(y *xx) < o(y).
(ii) Clearly, 0 € kero. If y,x x y € ker o, then o(y) = o(x *y) = 0. Since o € BS(X), we have

0=04+0=0(y)+o(xxy)=0(x)+o(y*x).

Since o(z), o(y xx) € [0,1] and o(z) + o(y x ) = 0, we get o(x) = 0 and o(y * ) = 0. Thus
z € kero. O

Definition 4.4. Let (X;%,0) and (Y;0,0) be two Bl-algebras. A map 6 : X — Y is called a
homomorphism if 0(x xy) = 0(x) o 0(y), for all x,y € X.
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Notice that, if we take y := x, than by (B), (0) = 0(x x z) = 6(z) ¢ 6(z) = 0.

Example 4.5. (i) The identity map from any Bl-algebra is a homomorphism.

(ii) Consider Bl-algebra X in Example {1.9(ii) and Y is the Bl-algebra in Example @ Define
6:X =Y by60)=0,0(a) =band 8(b) = c. Then 6 is a homomorphism.

(iii) Every map 6 : X — Y between Bl-algebras defined by 6(x) = 0, for all 2 € X is a homomor-
phism.

Lemma 4.6. Let (X;*,0) and (Y;©,0) be two Bl-algebras and 6 : X — Y be a homomorphism.
Then

(1) 6(0) =0,
(17) x <y implies O(x) < O(y),

(iii) ker € I(X).

Proof. (i) From (BS1), we have 6(0) = (0% 0) = 6(0) ¢ 0(0) =
(ii) If # <y, then x *y = 0. Using (i), we have 0 = (0) = 6(z xy) = 0(x) ©6(y). This means that
0(x) < 6(y).

iii) Clearly, 0 € ker §. Now, let y,x*y € ker. Then f(zxy) = 0 and #(y) = 0. Using Proposition
E)(ii), we obtain 0 = 0(x xy) = 0(z) ¢ 0(y) = O(x) ©0 = O(x). This means that x € kerf, and so
kerf € Z(X). O

Theorem 4.7. Let (X;%,0) and (Y;¢,0) be two Bl-algebras, 8 : X — Y be a homomorphism and
oy € BS(Y). Then there is a unique ox € BS(X) such that the following diagram is commutative
(i.e., ox = oy 00).

X Y
A ox loy
[0,1]

Proof. Define ox : X — [0,1] by ox(x) = oy o 0(z). Since oy and 6 are well-defined, ox is
well-defined. By Lemma [.6(i) and (BS1), we get ox(0) = oy (6(0)) = oy (0) = 0. Moreover, since
oy € BS(Y), for all x,y € X, we have

ox(x)+ox(yxx) =0y ob(x)+oyob(y*xz)=oy(0(x))+oy(B(y)ob(x))
=0y (0(y)) + oy (0(z) 0 0(y)) = oy 0 0(y) + oy 0 Bz *y)
=ox(y) +ox(zxy).

Thus ox € BS(X). Now, let ¢/ € BS(X) such that o/ = oy 0. Then ¢'(z) = (oy 00)(z) = ox(z),
for all x € X. This means that ¢/ = ox. Hence ox is a unique Bosbach state on X. ]

Let (X;*,0) and (Y;¢,0) be two Bl-algebras, and 6 : X — Y be a homomorphism. Then we say
that 6 is injective, if ker § = {0}. The homomorphisms defined in Example §.5(i)-(ii) are injective
and the homomorphism defined in Example @.5(iii) is not injective. As usual, a homomorphism is
called bijective, if it is injective and surjective.
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Theorem 4.8. Let (X;%,0) and (Y;0,0) be two Bl-algebras, 0 : X —'Y be a bijective homomor-
phism and ox € BS(X). Then there is a unique oy € BS(Y) such that the following diagram is
commutative (i.e., ox = oy o).

Proof. Assume y € Y is an arbitrary element. Then from surjectivity of 6, there exists x € X
such that 6(x) = y. Thus for any y € Y there exists z € X such that x is depend on y. If we take
oy (y) := o(x), where z is depend on y, then o(z) = oy (y) = oy (6(z)) = oy o 0(x) and since 6 is
injective, we have o(z) = oy o 0(x), for all z € X. Now, we show that oy € BS(Y).

(BS1) From Lemma @(i), injectivity of # and (BS1) property on ox, we have

oy (0) = oy (0(0)) = ox(0) = 0.
(BS2) Given y,y" € Y, then there exist 2,2’ € X such that (z) = y and 0(2’) = 3. Thus

oy (y) + oy (¥ oy) fay( (%)) + oy (0(2") 0 0())
= oy (0(z)) + oy (0(z" * z))
= Y09( )+ oy o (z’ * x)
=ox(z) +ox(z' *x)
=ox(2) +ox(z*a)
=oyof(x') +oyof(xx2)
=oy(y) +oy(yoy).

Then oy € BS(Y). Suppose ¢’ € BS(Y) such that ox(z) = ¢’ 0 0(x), for all z € X. Let y € Y.
Then there exists € X such that 6(x) =y, and so o’(y) = o/ (6(z)) = ¢’ 0 0(z) = ox (). On the
other hand, according to the definition of oy, we have oy (y) = ox. Hence o/(y) = ox(z) = oy (y),
for all y € Y. It follows that ¢/ = oy. Thus oy is unique and this completes the proof. ]

Let X be a distributive Bl-algebra and I € Z(X). Consider relation “~;” in Theorem @, we
denote by C, the congruence class of z and let X = {Cy : v € X}. Also, we define p : X — i

by o(z) = Cy. Then (X ;x,Cp) is a Bl-algebra, Where Cy *x Cy = Cyuy. Notice that, if € I, then
Cy = Cy.

~r )

Corollary 4.9. Let X be distributive Bl-algebra, I € I(X) and o € BS(X). Then there exists a
unique Bosbach state t : % — [0, 1] such that the following diagram is commutative (i.e., 0 = sop),
in fact, ~1 is a congruence relation induced by ideal I.

X*Q>X

~I

N

[0,1]

Proof. Using Theorem @, if we take Y := %, then the proof is complete. O
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Corollary 4.10. Let X be distributive Bl-algebra and o € BS(X). Then there exists a unique
Bosbach state t : —X— — [0,1] such that the following diagram is commutative (i.c., o = s0 9), in

~ker o

fact, ~5 is a congruence relation induced by ker o.

[0,1]

Proof. Using Proposition @(ii) and Corollary @, if we take I := ker o, then the proof is complete.
O

5 State-morphism operators on Bl-algebras

In this section, we introduce the notion of state-morphism operators on Bl-algebras. By this new
notion, we introduce the notion of state-morphism Bl-algebras.

Definition 5.1. A homomorphism o : X — X 1is called a state-morphism operator if o o o = o,
and the pair (X ;o) is called a state-morphism Bl-algebra.

Example 5.2. (i) Let Idx be the identity map on X. Then, clearly Idx is a state-morphism
operator. Notice that, Idx is not a state operator on X.

(ii) Consider Example @E(ii), for any =,y € X, we have x %1y = (x*1y)*1y. Define f, : X — X by
fo(x) = x*1 b, for all x € X. Then by easy calculations, one can show that f; is a homomorphism.
Moreover,

(foofo) (@) = fo(xx1b) = (x %1 b) x1 b=x b= fip(2),
for all x € X. Thus f, is a state-morphism operator on X and (X, f;) becomes a state-morphism
Bl-algebra.

From Example @(i)7 we can see that any state-morphism operator may not be a state operator.
Moreover, the converse may not be true, i.e., any state operator may not be a state-morphism
operator. For example, consider the state ¢ in Example @(u) Then ¢ is not a state-morphism
operator, since

b=o(a)=0c(a*x1b)#o(a)*0(b) =bx b=0.
We denote the set of all state-morphism operators on X by SMO(X).
Proposition 5.3. Let X be distributive. Then SMO(X) # (.

Proof. Assume X is distributive and x,y € X. Define o : X — X by o, (x) = x *xy. Then for
any z € X,

ox (wxy) = (xxy)xz=(*2)*(y*2)=0.(z) *0:(y).
Hence o, is a homomorphism. We show that o, o 0, = ¢,. Using the distributive law, we get

(0,00,)(x) =0.(0, (x)) =0, (xx2)=(z*2)*x2z=xx2z=o0,(z).

Thus 0, € SMO(X), and so SMO(X) # 0. O
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It was shown that if z <y and X satisfies the following condition:
(zxx)*(2%xy)=yxx (%)
Then zxy < z x x (see, [2, Prop. 3.13]).

Proposition 5.4. Let X be distributive and satisfies (x). Then (x*xy) xz < (z*z) xy, for all
x’ y7 z e X'

Proof. Using the distributive law, (x) and Proposition @(ii), we get
((zxy)x2)* ((2x2) xy) = (2 xy) *2) x (2 xy) * (2 % y))

=(zxy)*xz=(2%2)*(y*2z)
=0x*(yx*z)=0.

Thus (z*y) * 2 < (z % 2) x y. O
The following example shows that the distributive law in Proposition @ is necessary.

Example 5.5. Let X = {0,a,b, c,d}. Define the binary operation “x¢” in Table 6. Then (X xg,0)

Table 5: Bl-algebra (X;xg,0)

6 |0 a b ¢ d
010 O O O O
ala 0 d d c
b|lb 0 0 b b
clc 0 ¢ 0 ¢
d|d 0 d d 0

is a Bl-algebra and satisfies (x), but not distributive, since
(axgd)*6b=cx¢b=c#0=dxgd = (ax*sb)* (d*gb).
Also, ((a *g d) *¢ b) x6 ((a *¢ b) %6 d) = (cxg b) *¢ (d 6 d) = cx6 0 =c# 0.

Proposition 5.6. Let X be distributive and 0 € SMO(X), where satisfies (x), and I € IT(X).
Then

(Hg={reX:((zxo(z1))*x0(x2))*-)*0o(xy) € ,IneN,Ixy,...,2, € X}.

Proof. We denote the right hand by M. Clearly, I C M. We show that M € Z(X).
Assume z,y *x x € M. Then there exist m,n € N, and x1,...,2Zn,¥1,---,Ym € X such that

(((zxo(21)) x o (x2)) %+ ) xo(xn) € T and ((((y * 2) * o (y1)) * 0 (y2)) * -+ ) * 0 (ym) € 1.
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Then by Proposition @(iii)-(iv) and Proposition @,

(((yxa(yr)) xo(y2)) * -+ ) * 0 (ym)) * o (21)) % - - * 0 (2n))
(@ xa(z1)) xo(@2)) %) o(zn)) + ((y x ) x o (y1)) ¥ 0(y2)) * - ) * 0 (Yym))
(Y a(yr)) xo(y2)) * -+ ) x o (ym)) * o (21)) % -+ % 0 (2n-1))

((zxo(@1)) xo(w2)) * - ) x o(zn1) * ((y ¥ ) x o (y1)) * o (y2)) * - ) * 7 (ym))

*
<

This means that y € M, and so M € Z(X). Now, let z € M. Then there exist n € N and
Z1,22,...,Tn € X such that y = (((r * o (z1)) * 0 (22)) *--+) x 0 (x,) € I. Then

o (y) = (((o () xo (21)) * 0 (22)) * -+ ) * 0 (2n) .
Hence
(0 (@) ¥ (21) % 0 (22) % ++-) 0 (2a)) %0 (y) =0 (0) = 0 € 1.
Thus there exist n € N and x1,...,2,,7,,, € X, where x,41 = y, such that

(o (z) %o (z1)) %0 (x2)) %) %0 (zy) € I

This means that o(z) € M, and hence M is a state ideal of X. Now, let K be a state ideal of
X containing I and x € M. Then according to definition of M, we conclude that x € K. Hence
M C K. Thus M is the least ideal of X containing I. This means that M = (I)g. O

Proposition 5.7. Let X be distributive and o € SMO(X). Then the following statments hold:
(i) kero ={zxxo(x):x e X} ={o(z)*xx:2x € X},
(i) X = (kero Uimg 0)g.
Proof. (i) Clearly, {z *xo (z) : x € X} Ckero. Let x € kero. Then
r=xx0=xx0(z)ef{rxo(z):ze X}

Thus kero C {xx o (x): 2 € X}, and so kero = {x * o (z) : € X}. By a similar argument, we
have kero = {o (z) xx : z € X}.

(ii) Clearly, (kero Uimg o)s € X. Let 2 € X, we show that € (kero Uimg o)s. By (i),
xxo(x) € kero, for any © € X. Moreover, o(z) € img o, for any x € X. Then z € (ker cUimg o)g.
Thus X C (kero Uimg o)g. This shows that (ii) holds. O

Definition 5.8. Let I € Z(X), and T be a subalgebra of X. We say T and I are complement sets
of X if,
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(C1) TnI=/{0},
(C2) (Tul)s =X,
(C3) for any x € X, there exists a, € T such that x~jay.

Example 5.9. Consider Example @ Defineo : X — X by 0(0) = 0(b) = o(¢) =0 and o(a) = a.
Then (X, 0) is a state Bl-algebra. If we take I := {0,c} and T := {0, a,b}, then we can see that
I € Z(X) and (C1)-(C3) hold.

If T and I are complement pair sets of X, then we denote these by (7,1) and we call it
complement pair of X. We denote the set of all complement pairs of X by C (X).

Proposition 5.10. Let (T,1) € C(X). Then ay is a unique element of T, for any x € X.

Proof. Let x € X and a,b € T such that x~ja and x~;b. Since ~; is an equivalence relation on
X, we have a~yb. This means that a xb,b*a € I. On the other hand, a xb,b*xa € T, since T is
a subalgebra of X. Hence a*b,bxa € INT. But from (C1), we have I N'T = {0}. This implies
that a = b. Thus a, is a unique element of T, for any x € X. O

Theorem 5.11. Let X be distributive such that for any ideal I, ~; is a right congruence relation.
Then there is a one-to-one correspondence between complement pairs of X and state-morphism
operators on X.

Proof. Assume ¢ € SMO(X). Set I = kero and T' = img 0. Then I € Z(X) and T is a
subalgebra of X. Now, we show that (7,I) € C(X). Clearly, (C1) holds and by Proposition

(ii), (C2) holds. Let z € X. Then o(z) € img ¢ = T. Moreover, by Proposition @(i),
x*o(x), o(x)*x € kero = I. Thus z~ro(x). Therefore, for any x € X, there exists o(x) € T
such that z~jo(z). This shows that (T,1) € C (X).

Conversely, we show that for any complement pair of X, one can define a state-morphism. Let
(T',I) € C(X). Define o1 : X — X by or,1(z) = as, for all z € X. Proposition follows that
or,r well defined. Let z,y € X. Then o(z) = a, and o71(y) = ay. Thus z~a, and y~ra,. Since
~1 is a congruence relation, we have x * y~ra; * a,. Moreover, a, *a, € T, since T' is a subalgebra
of X, then by Proposition , o7, 1(T*Y) = Agsy. Since x*y~ra, * ay, again by Propositiong@
ag * Gy is unique, and SO gy = a, * ay. This implies that

)

o7, (T *Y) = Agay = Qg * ay = o7,1 (T) * 07, 1(Y).
Hence o7 1 is a homomorphism on X. Moreover, for any a € T', axa = 0 € I, so by Proposition ,
or,1 (a) = aq = a. This follows that or 1 (o7,1()) = o7 1(x), for all z € X. Thus or; € SMO(X).
Now, define a : C (X) - SMO (X), by a(T,1) = o1, and f: SMO(X) = C(X) by
B (o) = (img o,kero). Also, we have
kerop; ={z € X : o (x) =0}
={reX:a, =0}.

It is obvious that I C keror ;. On the other hand, assume x € keror ;. Hence a, = 0. Since
z*a; € I and a; =0 € I, we obtain x € I, and so keror; C I. Thus kerop; = I. Moreover, it
is easy to cheek that o (z) =img o7 ; = T. Then

(a o 6) (O'TJ) = (img UT’I,ker O'TJ) = (T, I) = O'TJ
and

(/8 o a) (T, I) = B (O’TJ) = (img O'TJ,keI‘ UT,[) = (T, I) .
These complete the proof. O
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6 Conclusions and future works

In this paper, we have studied various versions of maps that we called Bosbach states and state-
morphism operators in a Bl-algebra. Essential properties of the above mentioned mappings and
examples for clarifying these new notions are given. Besides, we defined state ideals on Bl-algebras
and gave a characterization of the least state ideal of a Bl-algebra. It is proved that, the kernel
of a Bosbach state on a Bl-algebra X is an ideal of X. Further, by these concepts, we have
introduced the notions of complement pairs of a Bl-algebra. It is proved that under suitable
conditions, there is a one-to-one correspondence between complement pairs of a Bl-algebra and
state-morphism operators in a Bl-algebra. In our next research, we will consider the notions of
measures, generalized states, RieCan states, modal operators, and internal states on Bl-algebras.
Hyper Bl-algebras were defined by Niazian in [35]. As another direction of research, we will extend
and investigate these results to hyper Bl-algebras.
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