

Journal of Algebraic Hyperstructures and Logical Algebras

Volume 3, Number 3, (2022), pp. 45-63

Applications of states to BI-algebras

A. Rezaei¹ and S. Soleymani²

^{1,2}Department of Mathematics, Payame Noor University, P.O. Box 19395-4697, Tehran, Iran

rezaei@pnu.ac.ir, soleymani17@yahoo.com

Abstract

This paper aims is to introduce states, Bosbach states and state-morphism operators on BI-algebras. We define state ideals on BI-algebras and give a characterization of the least state ideal of a BI-algebra. It is proved that the kernel of a Bosbach state on a BI-algebra X is an ideal of X. Further, by these concepts, we introduce the notions of state BI-algebras and state-morphism BI-algebras. The notion of complement pairs of a BI-algebra X is defined, and proves that under suitable conditions, there is a one-to-one correspondence between complement pairs of BI-algebras and state-morphism operators on BI-algebras.

Article Information

Corresponding Author:

A. Rezaei;

Received: May 2022; Revised: July 2022; Accepted: August 2022; Paper type: Original.

Keywords:

BI-algebra, distributive, Bosbach state, state-morphism operator.

1 Introduction

As a generalization of dual implication algebras and implicative BCK-algebras, Borumand Saeid et al. introduced a new notion of logical algebras namely, BI-algebras, and gave basic properties of BI-algebras and investigated ideals and congruence relations on this new algebra. BI-algebras are weaker than some well-known algebras, such as implicative BCK-algebras and Boolean lattices. Indeed, these algebras are BI-algebra, but the converse does not hold (see, [2]). For more details and other comparisons with the other algebras, ideals, normal subalgebras in BI-algebras and the quotient BI-algebras are studied in [1].

It is known that the notion of *state* was firstly defined on an MV-algebra by Kõpka and Chovane in [32], and then has been studied and applied to other algebraic structures, since they have important roles in studying logical algebras (see, for instance, Borzooei et al. [3, 4, 5], Buşneag [8, 9], Ciungu [13, 14, 15], Ciungu and Dvurečenskij [17], Ciungu et al. [16, 18], Chen and Dudek [10], Cheng et al. [11], Di Nola and Dvurečenskij [21], Di Nola et al. [22], Dvurečenskij and Zahiri

[26], Ghasemi et al. [30], Hua [31], Lee and Kim [33], Mertanen [34], Qing and Long [36], Rezaei et al. [38], Turunen and Mertanen [39], Xin et al. [40], Xin and Davvaz [41] and Xin et al. [42]).

Since states can be thought of in another way, the Bosbach state was defined in [6], [7], [12], and [28]. Georgescu and Mureşan, by replacing the MV-algebra [0,1] with an arbitrary residuated lattice L, defined a new concept of state were named generalized Bosbach state in [29], and extended it to type I and type II states. Then the Bosbach states defined on residuated lattices with values in residuated lattices were investigated by Ciungu et al. in [19] and [20]. Flaminio and Montagna introduced MV-state algebras in [27]. The notion of state-morphism MV-algebra, which is a stronger variation of a state MV-algebra, is introduced by Di Nola and Dvurečenskij in [21] and [22]. The notion of a state operator was extended to the cases of fuzzy structures, bounded (non-) commutative $R\ell$ -monoids, and GMV-algebras (pseudo-MV-algebras) by Dvurečenskij and Rachunek in [23] and [24], Dvurečenskij et al. in [25], Rachunek and Salounova in [37].

In this paper, we introduce the notions of states, Bosbach states and state-morphism operators on BI-algebras. Also, we define state ideals on BI-algebras and give a characterization of the least state ideal of a BI-algebra. It is proven that the kernel of a Bosbach state on a BI-algebra X is an ideal of X. Further, by these concepts, we introduce the notions of state BI-algebras and state-morphism BI-algebras. The notion of complement pairs of a BI-algebra X is defined, and prove that under suitable conditions, there is one-to-one correspondence between complement pairs of BI-algebras and state-morphism operators on BI-algebras.

2 Preliminaries

We recalled some definitions and results which will be used in the sequel. Throughout this paper, we will denote \mathbb{N} for the set of all positive integers and \mathbb{R} for the set of real numbers.

Definition 2.1. [2] An algebra (X; *, 0) of type (2, 0) is called a BI-algebra if satisfying the following axioms: for all $x, y \in X$,

(B)
$$x * x = 0$$
,

(BI)
$$x * (y * x) = x$$
.

From now on, by X, we mean that it is a BI-algebra (X; *, 0).

We introduce the binary relation " \leq " on X by $x \leq y$ if and only if x * y = 0. Notice that the relation \leq is not a partial order, since it is only reflexive.

A BI-algebra X is said to be right distributive or self distributive (briefly, distributive) if

$$(x * y) * z = (x * z) * (y * z).$$

for all $x, y, z \in X$ (see, [2]).

Proposition 2.2. [2] The following statements hold: for all $x, y, z, u \in X$,

- (i) x * 0 = x,
- (*ii*) 0 * x = 0,
- $(iii) \ x * y = (x * y) * y,$
- (iv) if y * x = x, then $X = \{0\}$,
- (v) if x * (y * z) = y * (x * z), then $X = \{0\}$,

(vi) if x * y = z, then z * y = z and y * z = y,

(vii) if
$$(x * y) * (z * u) = (x * z) * (y * u)$$
, then $X = \{0\}$.

Remark 2.3. Notice that, if z * (x * y) = (z * x) * (z * y), for all $x, y, z \in X$, then $X = \{0\}$. Since if we take y := x, for all $z \in X$, and using Proposition 2.2(i) and (B), we obtain z = z * 0 = z * (x * x) = (z * x) * (z * x) = 0.

Proposition 2.4. [2] Let X be distributive. Then for all $x, y, z \in X$,

- (i) $y * x \leq y$,
- (ii) $x * (x * y) \leq y$,
- (iii) $(x*z)*(y*z) \le x*y$,
- (iv) if $x \leq y$, then $x * z \leq y * z$,
- $(v) (x * y) * z \le x * (y * z),$
- (vi) if x * y = z * y, then (x * z) * y = 0.

A subset I of X is called an ideal of X if (I1) $0 \in I$ and (I2) $y \in I$ and $x * y \in I$ imply $x \in I$, for all $x, y \in X$ (see, [2]).

Denote the set of all ideals on X by $\mathcal{I}(X)$.

Theorem 2.5. [2] Let X be distributive, and $I \in \mathcal{I}(X)$. Then the binary relation " \sim_I " where defined by

$$x \sim_I y$$
 if and only if $x * y \in I$ and $y * x \in I$

is a right congruence relation on X.

Analytic constructions for BI-algebras are considered in [1]. Let $X := \{x \in \mathbb{R} : x \geq 0\}$. Define the binary operation "*" on X as follows:

$$x * y = \max\{0, f(x, y)(x - y)\} = \max\{0, \lambda(x, y)x\},\$$

where f(x,y) and $\lambda(x,y)$ are non-negative real valued functions, with $\lambda(0,y)=0$, for all $y\in X$. If we define

$$\lambda(x,y) = \begin{cases} 1 & \text{if } y = 0; \\ 0 & \text{if } y \neq 0, \end{cases}$$

then

$$x * y = \begin{cases} x & \text{if } y = 0; \\ 0 & \text{if } y \neq 0, \end{cases}$$

Thus (X; *, 0) is a BI-algebra (see, [1]).

3 State operators on BI-Algebras

In this section, we introduce the notion of states on BI-algebras and investigate their properties.

Definition 3.1. A map $\sigma: X \to X$ is called state operator on X if it satisfying the following conditions: for all $x, y \in X$,

- (SO1) $x \le y$ implies $\sigma(x) \le \sigma(y)$,
- (SO2) $\sigma(x * y) = \sigma(x) * \sigma(x * (x * y)),$
- (SO3) $\sigma(\sigma(x) * \sigma(y)) = \sigma(x) * \sigma(y)$.

A state BI-algebra is a pair (X, σ) .

Denote $\ker \sigma = \{x \in X : \sigma(x) = 0\}$, that is the kernel of σ . A state operator σ is faithful if $\ker \sigma = \{0\}$.

Example 3.2. (i) Let X be a BI-algebra, and $\sigma: X \to X$ be a map defined by $\sigma(x) = 0$, for all $x \in X$. Then it is easy to see that σ is a state operator on X.

(ii) Let $X = \{0, a, b\}$. Define the binary operation "*1" in Table 1 and define $\sigma: X \to X$ by

Table 1: BI-algebra $(X; *_1, 0)$

*1	0	a	b
0	0	0	0
a	a	0	a
b	b	b	0

 $\sigma(0) = 0$ and $\sigma(a) = \sigma(b) = b$. Then (X, σ) is a state BI-algebra.

(iii) Let X be a BI-algebra. Define two operators " σ_1 " and " σ_2 " on the direct product BI-algebra $X \times X$ as follows:

$$\sigma_1(x,y) = (x,x)$$
 and $\sigma_2(x,y) = (y,y)$, for all $(x,y) \in X \times X$.

Then σ_1 and σ_2 are two state operators on $X \times X$.

Denote the set of all state operators on X by S(X).

Now, we give some properties of state operators on BI-algebras.

Proposition 3.3. Let $\sigma \in \mathcal{S}(X)$. Then the following hold: for all $x \in X$,

- $(i) \ \sigma(0) = 0,$
- (ii) $\sigma(\sigma(x)) = \sigma(x)$,
- (iii) img $\sigma = \{x \in X : \sigma(x) = x\},\$
- (iv) imq σ is a subalgebra of X,
- (v) $\ker \sigma \in \mathcal{I}(X)$.

Proof. (i) If we take x := y in (SO3) and using (B), we get

$$\sigma(0) = \sigma\left(\sigma\left(x\right) * \sigma\left(x\right)\right) = \sigma\left(x\right) * \sigma\left(x\right) = 0.$$

(ii) By (i) and Proposition 2.2(i), we have

$$\sigma\left(\sigma\left(x\right)*\sigma\left(0\right)\right) = \sigma\left(\sigma\left(x\right)*0\right) = \sigma(\sigma\left(x\right)).$$

On the other hand, if we take y := 0 in (SO3), then

$$\sigma\left(\sigma\left(x\right)*\sigma\left(0\right)\right) = \sigma\left(x\right)*\sigma\left(0\right) = \sigma\left(x\right).$$

Therefore (ii) holds.

(iii) Clearly, $\{x \in X : \sigma(x) = x\} \subseteq img \ \sigma$. Now, suppose $x \in img \ \sigma$. Then there exists $x' \in X$ such that $\sigma(x') = x$. Then by (ii), we have

$$x = \sigma(x') = \sigma(\sigma(x')) = \sigma(x).$$

This shows that $x \in img \ \sigma$, and so $img \ \sigma \subseteq \{x \in X : \sigma(x) = x\}$. Hence (iii) holds.

(iv) From (i), $0 \in img \ \sigma$. For all $x, y \in X$ by (SO3), we have $\sigma(x) * \sigma(y) \in img \ \sigma$. Thus $img \ \sigma$ is a subalgebra of X.

(v) Suppose $y \in \ker \sigma$ and $x * y \in \ker \sigma$. Then $\sigma(y) = \sigma(x * y) = 0$. On the other hand, using (SO2), we get

$$0 = \sigma(x * y) = \sigma(x) * \sigma(x * (x * y)).$$

Now, by Proposition 2.4(ii), since $x * (x * y) \le y$, using (SO1), we get

$$\sigma\left(x*\left(x*y\right)\right) \le \sigma\left(y\right) = 0.$$

Hence $\sigma(x*(x*y))=0$, and so $\sigma(x)=0$. This means that $x\in\ker\sigma$, and so $\ker\sigma\in\mathcal{I}(X)$.

Proposition 3.4. Let X be distributive and $\sigma \in \mathcal{S}(X)$. Then the following statements hold: for all $x, y \in X$,

- (i) if $x \le y$ and for any $z \in X$, $z * y \le z * x$, then $\sigma(y) * \sigma(x) \le \sigma(y * x)$,
- (ii) $\ker \sigma \cap img \ \sigma = \{0\}.$

Proof. (i) Given $x, y \in X$. Using Proposition 2.4(ii), we have $y * (y * x) \le x$. Hence $\sigma(y * (y * x)) \le \sigma(x)$. Then $\sigma(y) * \sigma(x) \le \sigma(y) * \sigma(y * (y * x)) = \sigma(y * x)$, by hypothesis and (SO2).

(ii) Suppose $x \in \ker \sigma \cap img \ \sigma$. It follows that $\sigma(x) = 0$. Moreover, $x \in img \ \sigma$, so there exists $x' \in X$ such that $\sigma(x') = x$. Then by Proposition 3.3(ii), $0 = \sigma(x) = \sigma(\sigma(x')) = \sigma(x') = x$. Thus x = 0, and so (ii) holds.

The following example shows that in Proposition 3.4(i), the distributive law and condition $z * y \le z * x$, for any $z \in X$, are necessary.

Example 3.5. Let $X = \{0, a, b, c\}$. Define the binary operation " $*_2$ " in Table 2. Then $(X; *_2, 0)$ is a BI-algebra (see, [2]), but is not distributive, since

$$(a *_{2} b) *_{2} c = a *_{2} c = b \neq (a *_{2} c) *_{2} (b *_{2} c) = b *_{2} b = 0.$$

Define $\sigma: X \to X$ by $\sigma(0) = \sigma(b) = \sigma(c) = 0$ and $\sigma(a) = a$. Then (X, σ) is a state BI-algebra, but not satisfies in Proposition 3.4(i), since $0 \le c$, but $a *_2 c = b \not\le a *_2 0 = a$. Further, $\sigma(a) *_2 \sigma(c) = a *_2 0 = a \not\le \sigma(a *_2 c) = \sigma(b) = 0$.

Table 2: BI-algebra $(X; *_2, 0)$

*2	0	a	b	c
0	0	0	0	0
a	a	0	a	b
b	b	b	0	b
c	c	b	c	0

Proposition 3.6. Let X be commutative (i.e., x*(x*y) = y*(y*x) for all $x, y \in X$), $\sigma \in \mathcal{S}(X)$ and $y \leq x$. Then $\sigma(x*y) = \sigma(x)*\sigma(y)$.

Proof. Given $x, y \in X$ with $y \leq x$. Using the commutative law and Proposition 2.2(i), we have

$$\sigma(x * y) = \sigma(x) * \sigma(x * (x * y)) = \sigma(x) * \sigma(y * (y * x))$$
$$= \sigma(x) * \sigma(y * 0) = \sigma(x) * \sigma(y).$$

This completes the proof.

The following example shows that the commutative law in Proposition 3.6 is necessary.

Example 3.7. Consider Example 3.5. It is not commutative, since

$$a *_2 (a *_2 c) = a *_2 b = a \neq c *_2 (c *_2 a) = c *_2 b = c.$$

Define $\sigma: X \to X$ by $\sigma(a) = \sigma(a) = \sigma(b) = 0$ and $\sigma(c) = c$. Then (X, σ) is a state BI-algebra and we can see that

$$\sigma(c *_2 a) = \sigma(b) = 0 \neq \sigma(c) *_2 \sigma(a) = c *_2 0 = c.$$

Remark 3.8. Notice that, if $\sigma(x * y) = \sigma(y)$ or $\sigma(x * y) = \sigma(x)$, for any $x, y \in X$, then σ is zero map. By contrary, if there is $x \in X$ such that $\sigma(x) \neq 0$, then we have $\sigma(0) = \sigma(x * 0) = \sigma(x)$. By Proposition 3.3(i), $\sigma(0) = 0$, this implies $\sigma(x) = 0$, a contradiction. Then σ is zero map. Further, $\sigma(0) = \sigma(x * x) = \sigma(x)$, using Proposition 3.3(i), we get $\sigma(x) = 0$, for all $x \in X$.

Proposition 3.9. Let $X = \{x \in \mathbb{R} : x \geq 0\}$. Then there exists non-zero non-negative real valued function $\lambda(x,y)$ such that $(X;*_{\lambda},0)$ becomes a BI-algebra, where

$$x *_{\lambda} y = \max\{0, \lambda(x, y) x\}$$

and for every state operator σ on X, we have $\sigma(x *_{\lambda} y) = 0$, for all $0 \neq x, y \in X$.

Proof. Assume $X = \{x \in \mathbb{R} : x \geq 0\}$. Define $\lambda : X \times X \to X$ by

$$\lambda(x,y) = \begin{cases} 1 & \text{if } y = 0; \\ 0 & \text{if } y \neq 0, \end{cases}$$

for all $(x,y) \in X \times X$. Then $(X; *_{\lambda}, 0)$ is a BI-algebra (see, [1]). Let $x, y \in X$, since X is linearly ordered, we have $x \leq y$ or y < x. If $x \leq y$, then $x *_{\lambda} y = 0$. Thus the proof completes. Now, suppose y < x. Then

$$x *_{\lambda} (x *_{\lambda} y) = x *_{\lambda} (\max \{0, \lambda (x, y) x\}) = x *_{\lambda} \left(\max \left\{0, \begin{cases} x & \text{if } y = 0; \\ 0 & \text{if } y \neq 0. \end{cases}\right\}\right)$$
$$= x *_{\lambda} \left(\begin{cases} x & \text{if } y = 0; \\ 0 & \text{if } y \neq 0. \end{cases}\right) = \begin{cases} x *_{\lambda} x & \text{if } y = 0; \\ x *_{\lambda} 0 & \text{if } y \neq 0. \end{cases} = \begin{cases} 0 & \text{if } y = 0; \\ x & \text{if } y \neq 0. \end{cases}$$

If y = 0, then $\sigma(x *_{\lambda} 0) = \sigma(x)$, and if $y \neq 0$, then

$$\sigma\left(x\ast_{\lambda}y\right) = \sigma(x)\ast_{\lambda}\sigma(x\ast_{\lambda}(x\ast_{\lambda}y)) = \sigma\left(x\right)\ast_{\lambda}\sigma\left(x\right) = 0.$$

This completes the proof.

Definition 3.10. Let $\sigma \in \mathcal{S}(X)$. An ideal I of X is called a state ideal if $\sigma(I) \subseteq I$.

We denote the set of all state ideals on X by $\mathcal{SI}(X)$.

Example 3.11. Consider Example 3.2(ii) and take $I := \{0, b\}$ and $J := \{0, a\}$. Then $I \in \mathcal{SI}(X)$, but $J \notin \mathcal{SI}(X)$, since $\sigma(a) = b \notin J$.

Proposition 3.12. Let $\sigma \in \mathcal{S}(X)$ and $\{I_i\}_{i \in \Lambda}$ be a family of states ideals of X, then $\bigcap_{i \in \Lambda} I_i$, is too.

Proof. Assume $\sigma \in \mathcal{S}(X)$ and $\{I_i\}_{i \in \Lambda}$ is a family of states ideals of X. Since $I_i \in \mathcal{I}(X)$, we get $\bigcap_{i \in \Lambda} I_i \in \mathcal{I}(X)$. Now, let $x \in \bigcap_{i \in \Lambda} I_i$. Then $x \in I_i$, for all $i \in \Lambda$, and so $\sigma(x) \in \sigma(I_i) \subseteq I_i$, since I_i is

a state ideal of X. Hence
$$\sigma(x) \in \bigcap_{i \in \Lambda} I_i$$
. It follows that $\sigma(\bigcap_{i \in \Lambda} I_i) \subseteq \bigcap_{i \in \Lambda} I_i$. Thus $\bigcap_{i \in \Lambda} I_i \in \mathcal{SI}(X)$. \square

Since the set $\mathcal{SI}(X)$ is closed under arbitrary intersections, we have the following theorem.

Theorem 3.13. $(\mathcal{SI}(X);\subseteq)$ is a complete lattice.

The following example shows that the union of two state ideals may not be a state ideal, in general.

Example 3.14. Let $X = \{0, a, b, c\}$. Define the binary operation " $*_3$ " in Table 3. Then $(X; *_3, 0)$

Table 3: BI-algebra $(X; *_3, 0)$

*3	0	a	b	c
0	0	0	0	0
a	a	0	a	a
b	b	b	0	a
c	c	c	a	0

is a BI-algebra. Define $\sigma: X \to X$ by $\sigma(0) = \sigma(a) = 0$ and $\sigma(b) = \sigma(c) = c$. Then $\sigma \in \mathcal{S}(X)$ and (X, σ) is a state BI-algebra. If we take $I_1 := \{0, a\}$ and $I_2 := \{0, c\}$, then $I_1, I_2 \in \mathcal{SI}(X)$, but $I_1 \cup I_2 = \{0, a, c\}$ is not an ideal of X, since $c, b *_3 c \in I_1 \cup I_2$, but $b \notin I_1 \cup I_2$. Thus $I_1 \cup I_2 \notin \mathcal{SI}(X)$.

Definition 3.15. Let $\sigma \in \mathcal{S}(X)$ and $I \in \mathcal{I}(X)$. For any $x, y \in X$, define

$$I_{\sigma}(x,y) := \{t \in X : (t * x) * \sigma(y) \in I\}.$$

Notice that, by Proposition 2.2(ii), since 0 * x = 0, for all $x \in X$, we get $0 \in I_{\sigma}(x, y)$, for all $x, y \in X$. Hence $I_{\sigma}(x, y) \neq \emptyset$. Also, for all $x \in X$, $I_{\sigma}(0, x) := \{t \in X : t * \sigma(x) \in I\}$ and $I_{\sigma}(x, 0) := \{t \in X : t * x \in I\}$, since $\sigma(0) = 0$.

The following example shows that for $\sigma \in \mathcal{S}(X)$ and $I \in \mathcal{I}(X)$, $I_{\sigma}(x,y) \neq I_{\sigma}(y,x)$, and may $I_{\sigma}(x,y) \notin \mathcal{SI}(X)$, in general.

Example 3.16. (i) Consider Example 3.5. If we take $I := \{0, a, c\}$, then $I \in \mathcal{I}(X)$. One can easily see that $I_{\sigma}(c, a) = \{0, c\} \neq I_{\sigma}(a, c) = I$ and $I_{\sigma}(b, c) = X$.

(ii) In Example 3.14, take $I := \{0, c\}$. Then $I \in \mathcal{SI}(X)$ and $I_{\sigma}(a, b) = \{0, a, c\} \notin \mathcal{SI}(X)$, since $c, b *_3 c = a \in I_{\sigma}(a, b)$, but $b \notin I_{\sigma}(a, b)$.

Proposition 3.17. Let X be distributive, $\sigma \in \mathcal{S}(X)$ and $I \in \mathcal{I}(X)$. Then $I_{\sigma}(x,y) \in \mathcal{I}(X)$.

Proof. Assume $I \in \mathcal{I}(X)$ and $x, y \in X$. Using Proposition 2.2(ii) and (I1), we get

$$(0*x)*\sigma(y)=0*\sigma(y)=0\in I.$$

Hence $0 \in I_{\sigma}(x, y)$, and so $I_{\sigma}(x, y) \neq \emptyset$.

Let $b, a * b \in I_{\sigma}(x, y)$. Then $(b * x) * \sigma(y) \in I$ and $((a * b) * x) * \sigma(y) \in I$. Using distributive law, we obtain

$$((a*x)*\sigma(y))*((b*x)*\sigma(y)) = ((a*x)*(b*x))*\sigma(y) = ((a*b)*x)*\sigma(y) \in I.$$

Since $I \in \mathcal{I}(X)$ and $(b * x) * \sigma(y) \in I$, we get $(a * x) * \sigma(y) \in I$. It follows that $a \in I_{\sigma}(x,y)$. Thus $I_{\sigma}(x,y) \in \mathcal{I}(X).$

The following example shows that the distributive law in Proposition 3.17 is necessary.

Example 3.18. Consider Example 3.5. If we take $I := \{0, a, c\}$, then $I \in \mathcal{I}(X)$. We can see that $I_{\sigma}(b,a) = \{0,b,a\}, \text{ where } I_{\sigma}(b,a) \notin \mathcal{I}(X), \text{ since } a, c *_2 a = b \in I_{\sigma}(b,a), \text{ but } c \notin I_{\sigma}(b,a).$

Proposition 3.19. Let $I \in \mathcal{SI}(X)$ and $\sigma \in \mathcal{S}(X)$. Then $I = \bigcup_{x \in I} I_{\sigma}(0, x)$.

Proof. Assume $I \in \mathcal{SI}(X)$, $\sigma \in \mathcal{S}(X)$ and $t \in I$. Let $x \in I$. Hence $\sigma(x) \in \sigma(I) \subseteq I$. Then $t*\sigma(x) \in I$, and so $t \in I_{\sigma}(0,x) \subseteq \bigcup_{x \in I} I_{\sigma}(0,x)$ It follows that $t \in \bigcup_{x \in I} I_{\sigma}(0,x)$. Thus $I \subseteq \bigcup_{x \in I} I_{\sigma}(0,x)$. On the other hand, let $t \in \bigcup_{x \in I} I_{\sigma}(0,x)$. Then there exists $x \in I$ such that $t \in I_{\sigma}(0,x)$. Hence

 $t*\sigma(x) \in I$. Since $I \in \mathcal{SI}(X)$ and $x \in I$, we have $\sigma(x) \in \sigma(I) \subseteq I$, and so $\sigma(x) \in I$. Thus $t \in I$. It shows that $\bigcup I_{\sigma}(0,x) \subseteq I$.

Corollary 3.20. Let X be distributive, $I \in \mathcal{I}(X)$, $\sigma \in \mathcal{S}(X)$ and $a \in X$. If we take $M_a := \{t \in X : (t * a) * \sigma(a) \in I\}, then M_a \in \mathcal{I}(X).$

Proof. Similar to the proof Proposition 3.17, if we take $M_a := I_{\sigma}(a, a)$.

The following example shows that there is $I \in \mathcal{SI}(X)$ and $a \in X$, where $M_a \notin \mathcal{SI}(X)$.

Example 3.21. Consider the state ideal $I_2 = \{0, c\}$ in Example 3.14. One can easily see that $M_a = \{0, a, c\} \notin \mathcal{SI}(X)$, since $c, b *_3 c = a \in M_a$, but $b \notin M_a$.

Open problem. Consider status Proposition 3.17 or Corollary 3.20, if $\sigma \in \mathcal{S}(X)$ and $I \in \mathcal{SI}(X)$, then $I_{\sigma}(x,y) \in \mathcal{SI}(X)$ or $M_a \in \mathcal{SI}(X)$? Under what condition/conditions is/are it possible?

Theorem 3.22. Let X be distributive, $I \in \mathcal{I}(X)$ and $\sigma \in \mathcal{S}(X)$. Then \sim_I , where defined in Theorem 2.5, is a congruence relation on X, and $[0]_I \in \mathcal{SI}(X)$.

Proof. By [2, Lemma 5.6], $[0]_I \in \mathcal{I}(X)$. Let $x \in [0]_I$. Then $x \sim_I 0$. This implies that $\sigma(x) \sim_I \sigma(0)$. By Proposition 3.3(i), $\sigma(x) \sim_I 0$. It shows that $\sigma(x) \in [0]_I$. Thus $[0]_I \in \mathcal{SI}(X)$.

Definition 3.23. Let $\sigma \in \mathcal{S}(X)$ and $\emptyset \neq I \subseteq X$. Define the state ideal generated by I as follows:

$$\langle I \rangle_S := \bigcap_{I \subseteq I_i} I_i,$$

where $\sigma \in \mathcal{S}(X)$ and $I \subseteq I_i \in \mathcal{SI}(X)$, for $i \in \Lambda$.

Notice that, in Definition 3.23, $\bigcap_{I\subseteq I_i}I_i\in\mathcal{SI}(X)$, by Proposition 3.12. Also, if $I\in\mathcal{SI}(X)$, then $\langle I\rangle_S=I$.

Borumand Saeid et al. defined the set $A(x,y) := \{t \in X : (t*x) * y = 0\}$, and it was shown that if X is distributive, then $A(x,y) \in \mathcal{I}(X)$, where $x,y \in X$.

Also, we can see that A(x,0) = A(0,x), for all $x \in X$. Further, it is shown that if $I \in \mathcal{I}(X)$, then (see for details, Proposition 4.10 and Theorem 4.11 (see, [2]))

$$I = \bigcup_{x \in I} A(0, x) = \bigcup_{x,y \in I} A(x, y).$$

The following example shows that if X is distributive and $\emptyset \neq I \subseteq X$, then

$$\langle I \rangle_S \neq \bigcap_{x,y \in I} A(x,y).$$

Example 3.24. Consider Example 3.2(ii). Then (X, σ) is a state BI-algebra. If we take $I = \{b\}$, then $I \notin \mathcal{I}(X)$ and $\langle I \rangle_S = \{0, b\}$.

Also, we can see that $A(0,0) = \{0\}$ and $A(0,b) = A(b,0) = A(b,b) = \{0,b\}$, where

$$\langle I \rangle_S = \{0, b\} \neq \bigcap_{x, y \in I \cup \{0\}} A(x, y) = \{0\}.$$

Also, If we take $I := \{0, a\}$, then we can see that $I \in \mathcal{I}(X)$ and

$$\langle I \rangle_S = I = \{0, a\} \neq \bigcap_{x, y \in I \cup \{0\}} A(x, y) = \{0\}.$$

The following theorem show that a representation of $\langle I \rangle_S$.

Theorem 3.25. Let $\emptyset \neq I \subseteq X$. Then $\langle I \rangle_S = \bigcap_{I \subseteq I_i} \bigcup_{x \in I_i} I_{i\sigma}(0,x)$, where $\sigma \in \mathcal{S}(X)$ and $I_i \in \mathcal{SI}(X)$, for all $i \in \Lambda$.

Proof. By Definition 3.23 and Proposition 3.19, the proof is obvious.

4 Bosbach states on BI-algebras

In this section, we introduce the notion of Bosbach states and show that there exists a Bosbach state via $\frac{X}{\sim_I}$ where \sim_I is a congruence relation induced by an ideal I of distributive BI-algebra X.

Definition 4.1. Let $\sigma: X \to [0,1]$ be a map. We say that σ is a Bosbach state on X, if the following conditions hold: for all $x, y \in X$

(BS1)
$$\sigma(0) = 0$$
,

(BS2)
$$\sigma(x) + \sigma(y * x) = \sigma(y) + \sigma(x * y)$$
.

Example 4.2. (i) Consider Example 3.5. Define $\sigma: X \to [0,1]$ as follows:

$$\sigma(0) = 0$$
 and $\sigma(a) = \sigma(b) = \sigma(c) = \frac{1}{2}$.

Then σ is a Bosbach state on X.

(ii) Let $X = \{0, a, b\}$. Define the binary operation " $*_4$ " in Table 4. Then $(X; *_4, 0)$ is a BI-algebra

Table 4: BI-algebra $(X; *_4, 0)$

*4	0	a	b
0	0	0	0
a	a	0	a
b	b	b	0

(see, [2]). Define $\sigma: X \to [0,1]$ by $\sigma(0) = 0$, $\sigma(a) = \frac{1}{2}$ and $\sigma(b) = 1$. Then σ is a Bosbach state on X.

Denote the set of all Bosbach states on X by $\mathcal{BS}(X)$.

Proposition 4.3. Let $\sigma \in \mathcal{BS}(X)$. Then

- (i) $x \le y$ implies $\sigma(x) \le \sigma(y)$ and $\sigma(y * x) \le \sigma(y)$,
- (ii) $\ker \sigma \in \mathcal{I}(X)$.

Proof. (i) Given $x, y \in X$, if $x \leq y$, then x * y = 0. Hence

$$\sigma(x) + \sigma(y * x) = \sigma(y) + \sigma(x * y) = \sigma(y) + \sigma(0) = \sigma(y) + 0 = \sigma(y).$$

Since $\sigma(t) \geq 0$, for all $t \in X$, and $\sigma(x) + \sigma(y * x) = \sigma(y)$, we get $\sigma(x) \leq \sigma(y)$ and $\sigma(y * x) \leq \sigma(y)$. (ii) Clearly, $0 \in \ker \sigma$. If $y, x * y \in \ker \sigma$, then $\sigma(y) = \sigma(x * y) = 0$. Since $\sigma \in \mathcal{BS}(X)$, we have

$$0 = 0 + 0 = \sigma(y) + \sigma(x * y) = \sigma(x) + \sigma(y * x).$$

Since $\sigma(x)$, $\sigma(y*x) \in [0,1]$ and $\sigma(x) + \sigma(y*x) = 0$, we get $\sigma(x) = 0$ and $\sigma(y*x) = 0$. Thus $x \in \ker \sigma$.

Definition 4.4. Let (X; *, 0) and $(Y; \diamond, 0)$ be two BI-algebras. A map $\theta : X \to Y$ is called a homomorphism if $\theta(x * y) = \theta(x) \diamond \theta(y)$, for all $x, y \in X$.

Notice that, if we take y := x, than by (B), $\theta(0) = \theta(x * x) = \theta(x) \diamond \theta(x) = 0$.

Example 4.5. (i) The identity map from any BI-algebra is a homomorphism.

- (ii) Consider BI-algebra X in Example 4.2(ii) and Y is the BI-algebra in Example 3.5. Define $\theta: X \to Y$ by $\theta(0) = 0$, $\theta(a) = b$ and $\theta(b) = c$. Then θ is a homomorphism.
- (iii) Every map $\theta: X \to Y$ between BI-algebras defined by $\theta(x) = 0$, for all $x \in X$ is a homomorphism.

Lemma 4.6. Let (X; *, 0) and $(Y; \diamond, 0)$ be two BI-algebras and $\theta : X \to Y$ be a homomorphism. Then

- (i) $\theta(0) = 0$,
- (ii) $x \le y$ implies $\theta(x) \le \theta(y)$,
- (iii) $\ker \theta \in \mathcal{I}(X)$.

Proof. (i) From (BS1), we have $\theta(0) = \theta(0 * 0) = \theta(0) \diamond \theta(0) = 0$.

- (ii) If $x \le y$, then x * y = 0. Using (i), we have $0 = \theta(0) = \theta(x * y) = \theta(x) \diamond \theta(y)$. This means that $\theta(x) \le \theta(y)$.
- (iii) Clearly, $0 \in \ker \theta$. Now, let $y, x * y \in \ker \theta$. Then $\theta(x * y) = 0$ and $\theta(y) = 0$. Using Proposition 2.2(ii), we obtain $0 = \theta(x * y) = \theta(x) \diamond \theta(y) = \theta(x) \diamond 0 = \theta(x)$. This means that $x \in \ker \theta$, and so $\ker \theta \in \mathcal{I}(X)$.

Theorem 4.7. Let (X; *, 0) and $(Y; \diamond, 0)$ be two BI-algebras, $\theta : X \to Y$ be a homomorphism and $\sigma_Y \in \mathcal{BS}(Y)$. Then there is a unique $\sigma_X \in \mathcal{BS}(X)$ such that the following diagram is commutative $(i.e., \sigma_X = \sigma_Y \circ \theta)$.

Proof. Define $\sigma_X: X \to [0,1]$ by $\sigma_X(x) = \sigma_Y \circ \theta(x)$. Since σ_Y and θ are well-defined, σ_X is well-defined. By Lemma 4.6(i) and (BS1), we get $\sigma_X(0) = \sigma_Y(\theta(0)) = \sigma_Y(0) = 0$. Moreover, since $\sigma_Y \in \mathcal{BS}(Y)$, for all $x, y \in X$, we have

$$\begin{split} \sigma_X(x) + \sigma_X(y*x) &= \sigma_Y \circ \theta(x) + \sigma_Y \circ \theta(y*x) = \sigma_Y(\theta(x)) + \sigma_Y(\theta(y) \diamond \theta(x)) \\ &= \sigma_Y(\theta(y)) + \sigma_Y(\theta(x) \diamond \theta(y)) = \sigma_Y \circ \theta(y) + \sigma_Y \circ \theta(x*y) \\ &= \sigma_X(y) + \sigma_X(x*y). \end{split}$$

Thus $\sigma_X \in \mathcal{BS}(X)$. Now, let $\sigma' \in \mathcal{BS}(X)$ such that $\sigma' = \sigma_Y \circ \theta$. Then $\sigma'(x) = (\sigma_Y \circ \theta)(x) = \sigma_X(x)$, for all $x \in X$. This means that $\sigma' = \sigma_X$. Hence σ_X is a unique Bosbach state on X.

Let (X; *, 0) and $(Y; \diamond, 0)$ be two BI-algebras, and $\theta : X \to Y$ be a homomorphism. Then we say that θ is *injective*, if ker $\theta = \{0\}$. The homomorphisms defined in Example 4.5(i)-(ii) are injective and the homomorphism defined in Example 4.5(iii) is not injective. As usual, a homomorphism is called bijective, if it is injective and surjective.

Theorem 4.8. Let (X; *, 0) and $(Y; \diamond, 0)$ be two BI-algebras, $\theta : X \to Y$ be a bijective homomorphism and $\sigma_X \in \mathcal{BS}(X)$. Then there is a unique $\sigma_Y \in \mathcal{BS}(Y)$ such that the following diagram is commutative (i.e., $\sigma_X = \sigma_Y \circ \theta$).

$$X \xrightarrow{\theta} Y$$

$$\downarrow^{\exists ! \ \sigma_Y}$$

$$[0,1]$$

Proof. Assume $y \in Y$ is an arbitrary element. Then from surjectivity of θ , there exists $x \in X$ such that $\theta(x) = y$. Thus for any $y \in Y$ there exists $x \in X$ such that x is depend on y. If we take $\sigma_Y(y) := \sigma(x)$, where x is depend on y, then $\sigma(x) = \sigma_Y(y) = \sigma_Y(\theta(x)) = \sigma_Y \circ \theta(x)$ and since θ is injective, we have $\sigma(x) = \sigma_Y \circ \theta(x)$, for all $x \in X$. Now, we show that $\sigma_Y \in \mathcal{B}S(Y)$. (BS1) From Lemma 4.6(i), injectivity of θ and (BS1) property on σ_X , we have

$$\sigma_Y(0) = \sigma_Y(\theta(0)) = \sigma_X(0) = 0.$$

(BS2) Given $y, y' \in Y$, then there exist $x, x' \in X$ such that $\theta(x) = y$ and $\theta(x') = y'$. Thus

$$\sigma_{Y}(y) + \sigma_{Y}(y' \diamond y) = \sigma_{Y}(\theta(x)) + \sigma_{Y}(\theta(x') \diamond \theta(x))$$

$$= \sigma_{Y}(\theta(x)) + \sigma_{Y}(\theta(x' * x))$$

$$= \sigma_{Y} \diamond \theta(x) + \sigma_{Y} \diamond \theta(x' * x)$$

$$= \sigma_{X}(x) + \sigma_{X}(x' * x)$$

$$= \sigma_{X}(x') + \sigma_{X}(x * x')$$

$$= \sigma_{Y} \diamond \theta(x') + \sigma_{Y} \diamond \theta(x * x')$$

$$= \sigma_{Y}(y') + \sigma_{Y}(y \diamond y').$$

Then $\sigma_Y \in \mathcal{BS}(Y)$. Suppose $\sigma' \in \mathcal{BS}(Y)$ such that $\sigma_X(x) = \sigma' \circ \theta(x)$, for all $x \in X$. Let $y \in Y$. Then there exists $x \in X$ such that $\theta(x) = y$, and so $\sigma'(y) = \sigma'(\theta(x)) = \sigma' \circ \theta(x) = \sigma_X(x)$. On the other hand, according to the definition of σ_Y , we have $\sigma_Y(y) = \sigma_X$. Hence $\sigma'(y) = \sigma_X(x) = \sigma_Y(y)$, for all $y \in Y$. It follows that $\sigma' = \sigma_Y$. Thus σ_Y is unique and this completes the proof.

Let X be a distributive BI-algebra and $I \in \mathcal{I}(X)$. Consider relation " \sim_I " in Theorem 2.5, we denote by C_x the congruence class of x and let $\frac{X}{\sim_I} = \{C_x : x \in X\}$. Also, we define $\varrho : X \to \frac{X}{\sim_I}$ by $\varrho(x) = C_x$. Then $(\frac{X}{\sim_I}; \star, C_0)$ is a BI-algebra, where $C_x \star C_y = C_{x*y}$. Notice that, if $x \in I$, then $C_x = C_0$.

Corollary 4.9. Let X be distributive BI-algebra, $I \in \mathcal{I}(X)$ and $\sigma \in \mathcal{BS}(X)$. Then there exists a unique Bosbach state $t: \frac{X}{\sim_I} \to [0,1]$ such that the following diagram is commutative (i.e., $\sigma = s \circ \varrho$), in fact, \sim_I is a congruence relation induced by ideal I.

$$X \xrightarrow{\varrho} \frac{X}{\sim_I}$$

$$\downarrow^{\exists ! \ s}$$

$$[0,1]$$

Proof. Using Theorem 4.8, if we take $Y := \frac{X}{\sim I}$, then the proof is complete.

Corollary 4.10. Let X be distributive BI-algebra and $\sigma \in \mathcal{BS}(X)$. Then there exists a unique Bosbach state $t: \frac{X}{\sim_{\ker \sigma}} \to [0,1]$ such that the following diagram is commutative (i.e., $\sigma = s \circ \varrho$), in fact, \sim_I is a congruence relation induced by $\ker \sigma$.

Proof. Using Proposition 4.3(ii) and Corollary 4.9, if we take $I := \ker \sigma$, then the proof is complete.

5 State-morphism operators on BI-algebras

In this section, we introduce the notion of state-morphism operators on BI-algebras. By this new notion, we introduce the notion of state-morphism BI-algebras.

Definition 5.1. A homomorphism $\sigma: X \to X$ is called a state-morphism operator if $\sigma \circ \sigma = \sigma$, and the pair $(X; \sigma)$ is called a state-morphism BI-algebra.

Example 5.2. (i) Let Id_X be the identity map on X. Then, clearly Id_X is a state-morphism operator. Notice that, Id_X is not a state operator on X.

(ii) Consider Example 3.2(ii), for any $x, y \in X$, we have $x *_1 y = (x *_1 y) *_1 y$. Define $f_b : X \to X$ by $f_b(x) = x *_1 b$, for all $x \in X$. Then by easy calculations, one can show that f_b is a homomorphism. Moreover,

$$(f_b \circ f_b)(x) = f_b(x *_1 b) = (x *_1 b) *_1 b = x *_1 b = f_b(x),$$

for all $x \in X$. Thus f_b is a state-morphism operator on X and (X, f_b) becomes a state-morphism BI-algebra.

From Example 5.2(i), we can see that any state-morphism operator may not be a state operator. Moreover, the converse may not be true, i.e., any state operator may not be a state-morphism operator. For example, consider the state σ in Example 3.2(ii). Then σ is not a state-morphism operator, since

$$b = \sigma(a) = \sigma(a *_1 b) \neq \sigma(a) *_1 \sigma(b) = b *_1 b = 0.$$

We denote the set of all state-morphism operators on X by $\mathcal{SMO}(X)$.

Proposition 5.3. Let X be distributive. Then $\mathcal{SMO}(X) \neq \emptyset$.

Proof. Assume X is distributive and $x, y \in X$. Define $\sigma_y : X \to X$ by $\sigma_y(x) = x * y$. Then for any $z \in X$,

$$\sigma_z(x * y) = (x * y) * z = (x * z) * (y * z) = \sigma_z(x) * \sigma_z(y).$$

Hence σ_z is a homomorphism. We show that $\sigma_z \circ \sigma_z = \sigma_z$. Using the distributive law, we get

$$(\sigma_z \circ \sigma_z)(x) = \sigma_z(\sigma_z(x)) = \sigma_z(x * z) = (x * z) * z = x * z = \sigma_z(x).$$

Thus $\sigma_z \in \mathcal{SMO}(X)$, and so $\mathcal{SMO}(X) \neq \emptyset$.

It was shown that if $x \leq y$ and X satisfies the following condition:

$$(z*x)*(z*y) = y*x \tag{*}$$

Then $z * y \le z * x$ (see, [2, Prop. 3.13]).

Proposition 5.4. Let X be distributive and satisfies (\star) . Then $(x * y) * z \le (x * z) * y$, for all $x, y, z \in X$.

Proof. Using the distributive law, (\star) and Proposition 2.2(ii), we get

$$((x*y)*z)*((x*z)*y) = ((x*y)*z)*((x*y)*(z*y))$$
$$= (z*y)*z = (z*z)*(y*z)$$
$$= 0*(y*z) = 0.$$

Thus
$$(x * y) * z \le (x * z) * y$$
.

The following example shows that the distributive law in Proposition 5.4 is necessary.

Example 5.5. Let $X = \{0, a, b, c, d\}$. Define the binary operation " $*_6$ " in Table 6. Then $(X; *_6, 0)$

Table 5: BI-algebra $(X; *_6, 0)$

*6	0	a	b	c	d
0	0	0	0	0	0
a	$\mid a \mid$	0	d	d	c
b	b	0	0	b	b
c	c	0	c	0	c
d	d	0	d	d	0

is a BI-algebra and satisfies (\star) , but not distributive, since

$$(a *_6 d) *_6 b = c *_6 b = c \neq 0 = d *_6 d = (a *_6 b) *_6 (d *_6 b).$$

Also,
$$((a *_6 d) *_6 b) *_6 ((a *_6 b) *_6 d) = (c *_6 b) *_6 (d *_6 d) = c *_6 0 = c \neq 0.$$

Proposition 5.6. Let X be distributive and $\sigma \in \mathcal{SMO}(X)$, where satisfies (\star) , and $I \in \mathcal{I}(X)$. Then

$$\langle I \rangle_S = \{x \in X : (((x * \sigma(x_1)) * \sigma(x_2)) * \cdots) * \sigma(x_n) \in I, \exists n \in \mathbb{N}, \exists x_1, \dots, x_n \in X\}.$$

Proof. We denote the right hand by M. Clearly, $I \subseteq M$. We show that $M \in \mathcal{I}(X)$. Assume $x, y * x \in M$. Then there exist $m, n \in \mathbb{N}$, and $x_1, \ldots, x_n, y_1, \ldots, y_m \in X$ such that

$$(((x*\sigma(x_1))*\sigma(x_2))*\cdots)*\sigma(x_n) \in I \text{ and } ((((y*x)*\sigma(y_1))*\sigma(y_2))*\cdots)*\sigma(y_m) \in I.$$

Then by Proposition 2.4(iii)-(iv) and Proposition 5.4,

This means that $y \in M$, and so $M \in \mathcal{I}(X)$. Now, let $x \in M$. Then there exist $n \in \mathbb{N}$ and $x_1, x_2, \ldots, x_n \in X$ such that $y = (((x * \sigma(x_1)) * \sigma(x_2)) * \cdots) * \sigma(x_n) \in I$. Then

$$\sigma\left(y\right) = \left(\left(\left(\sigma\left(x\right) * \sigma\left(x_{1}\right)\right) * \sigma\left(x_{2}\right)\right) * \cdots\right) * \sigma\left(x_{n}\right).$$

Hence

$$\left(\left(\left(\left(\sigma\left(x\right)*\sigma\left(x_{1}\right)\right)*\sigma\left(x_{2}\right)\right)*\cdots\right)*\sigma\left(x_{n}\right)\right)*\sigma\left(y\right)=\sigma\left(0\right)=0\in I.$$

Thus there exist $n \in \mathbb{N}$ and $x_1, \ldots, x_n, x_{n+1} \in X$, where $x_{n+1} = y$, such that

$$(((\sigma(x) * \sigma(x_1)) * \sigma(x_2)) * \cdots) * \sigma(x_n) \in I.$$

This means that $\sigma(x) \in M$, and hence M is a state ideal of X. Now, let K be a state ideal of X containing I and $x \in M$. Then according to definition of M, we conclude that $x \in K$. Hence $M \subseteq K$. Thus M is the least ideal of X containing I. This means that $M = \langle I \rangle_S$.

Proposition 5.7. Let X be distributive and $\sigma \in \mathcal{SMO}(X)$. Then the following statements hold:

- (i) $\ker \sigma = \{x * \sigma(x) : x \in X\} = \{\sigma(x) * x : x \in X\},\$
- (ii) $X = \langle \ker \sigma \cup \operatorname{img} \sigma \rangle_S$.

Proof. (i) Clearly, $\{x * \sigma(x) : x \in X\} \subseteq \ker \sigma$. Let $x \in \ker \sigma$. Then

$$x = x * 0 = x * \sigma(x) \in \{x * \sigma(x) : x \in X\}.$$

Thus $\ker \sigma \subseteq \{x * \sigma(x) : x \in X\}$, and so $\ker \sigma = \{x * \sigma(x) : x \in X\}$. By a similar argument, we have $\ker \sigma = \{\sigma(x) * x : x \in X\}$.

(ii) Clearly, $\langle \ker \sigma \cup \operatorname{img} \sigma \rangle_S \subseteq X$. Let $x \in X$, we show that $x \in \langle \ker \sigma \cup \operatorname{img} \sigma \rangle_S$. By (i), $x * \sigma(x) \in \ker \sigma$, for any $x \in X$. Moreover, $\sigma(x) \in \operatorname{img} \sigma$, for any $x \in X$. Then $x \in \langle \ker \sigma \cup \operatorname{img} \sigma \rangle_S$. Thus $X \subseteq \langle \ker \sigma \cup \operatorname{img} \sigma \rangle_S$. This shows that (ii) holds.

Definition 5.8. Let $I \in \mathcal{I}(X)$, and T be a subalgebra of X. We say T and I are complement sets of X if,

- (C1) $T \cap I = \{0\},\$
- (C2) $\langle T \cup I \rangle_S = X$,
- (C3) for any $x \in X$, there exists $a_x \in T$ such that $x \sim_I a_x$.

Example 5.9. Consider Example 3.5. Define $\sigma: X \to X$ by $\sigma(0) = \sigma(b) = \sigma(c) = 0$ and $\sigma(a) = a$. Then (X, σ) is a state BI-algebra. If we take $I := \{0, c\}$ and $T := \{0, a, b\}$, then we can see that $I \in \mathcal{I}(X)$ and (C1)-(C3) hold.

If T and I are complement pair sets of X, then we denote these by (T, I) and we call it complement pair of X. We denote the set of all complement pairs of X by $\mathcal{C}(X)$.

Proposition 5.10. Let $(T, I) \in \mathcal{C}(X)$. Then a_x is a unique element of T, for any $x \in X$.

Proof. Let $x \in X$ and $a, b \in T$ such that $x \sim_I a$ and $x \sim_I b$. Since \sim_I is an equivalence relation on X, we have $a \sim_I b$. This means that $a * b, b * a \in I$. On the other hand, $a * b, b * a \in T$, since T is a subalgebra of X. Hence $a * b, b * a \in I \cap T$. But from (C1), we have $I \cap T = \{0\}$. This implies that a = b. Thus a_x is a unique element of T, for any $x \in X$.

Theorem 5.11. Let X be distributive such that for any ideal I, \sim_I is a right congruence relation. Then there is a one-to-one correspondence between complement pairs of X and state-morphism operators on X.

Proof. Assume $\sigma \in \mathcal{SMO}(X)$. Set $I = \ker \sigma$ and $T = \operatorname{img} \sigma$. Then $I \in \mathcal{I}(X)$ and T is a subalgebra of X. Now, we show that $(T,I) \in \mathcal{C}(X)$. Clearly, (C1) holds and by Proposition 5.7(ii), (C2) holds. Let $x \in X$. Then $\sigma(x) \in \operatorname{img} \sigma = T$. Moreover, by Proposition 5.7(i), $x * \sigma(x), \sigma(x) * x \in \ker \sigma = I$. Thus $x \sim_I \sigma(x)$. Therefore, for any $x \in X$, there exists $\sigma(x) \in T$ such that $x \sim_I \sigma(x)$. This shows that $(T,I) \in \mathcal{C}(X)$.

Conversely, we show that for any complement pair of X, one can define a state-morphism. Let $(T,I) \in \mathcal{C}(X)$. Define $\sigma_{T,I}: X \to X$ by $\sigma_{T,I}(x) = a_x$, for all $x \in X$. Proposition 5.10 follows that $\sigma_{T,I}$ well defined. Let $x,y \in X$. Then $\sigma(x) = a_x$ and $\sigma_{T,I}(y) = a_y$. Thus $x \sim_I a_x$ and $y \sim_I a_y$. Since \sim_I is a congruence relation, we have $x * y \sim_I a_x * a_y$. Moreover, $a_x * a_y \in T$, since T is a subalgebra of X, then by Proposition 5.10, $\sigma_{T,I}(x * y) = a_{x*y}$. Since $x * y \sim_I a_x * a_y$, again by Proposition 5.10, $a_x * a_y$ is unique, and so $a_{x*y} = a_x * a_y$. This implies that

$$\sigma_{T,I}(x * y) = a_{x*y} = a_x * a_y = \sigma_{T,I}(x) * \sigma_{T,I}(y).$$

Hence $\sigma_{T,I}$ is a homomorphism on X. Moreover, for any $a \in T$, $a*a = 0 \in I$, so by Proposition 5.10, $\sigma_{T,I}(a) = a_a = a$. This follows that $\sigma_{T,I}(\sigma_{T,I}(x)) = \sigma_{T,I}(x)$, for all $x \in X$. Thus $\sigma_{T,I} \in \mathcal{SMO}(X)$. Now, define $\alpha : \mathcal{C}(X) \to \mathcal{SMO}(X)$, by $\alpha(T,I) = \sigma_{T,I}$, and $\beta : \mathcal{SMO}(X) \to \mathcal{C}(X)$ by $\beta(\sigma) = (\text{img } \sigma, \text{ker } \sigma)$. Also, we have

$$\ker \sigma_{T,I} = \{ x \in X : \sigma_{T,I} (x) = 0 \}$$
$$= \{ x \in X : a_x = 0 \}.$$

It is obvious that $I \subseteq \ker \sigma_{T,I}$. On the other hand, assume $x \in \ker \sigma_{T,I}$. Hence $a_x = 0$. Since $x * a_x \in I$ and $a_x = 0 \in I$, we obtain $x \in I$, and so $\ker \sigma_{T,I} \subseteq I$. Thus $\ker \sigma_{T,I} = I$. Moreover, it is easy to cheek that $\sigma_{T,I}(x) = \operatorname{img} \sigma_{T,I} = T$. Then

$$(\alpha \circ \beta) (\sigma_{T,I}) = \alpha (\text{img } \sigma_{T,I}, \text{ker } \sigma_{T,I}) = \alpha (T,I) = \sigma_{T,I}$$

and

$$(\beta \circ \alpha)(T, I) = \beta(\sigma_{T,I}) = (\text{img } \sigma_{T,I}, \text{ker } \sigma_{T,I}) = (T, I).$$

These complete the proof.

6 Conclusions and future works

In this paper, we have studied various versions of maps that we called Bosbach states and state-morphism operators in a BI-algebra. Essential properties of the above mentioned mappings and examples for clarifying these new notions are given. Besides, we defined state ideals on BI-algebras and gave a characterization of the least state ideal of a BI-algebra. It is proved that, the kernel of a Bosbach state on a BI-algebra X is an ideal of X. Further, by these concepts, we have introduced the notions of complement pairs of a BI-algebra. It is proved that under suitable conditions, there is a one-to-one correspondence between complement pairs of a BI-algebra and state-morphism operators in a BI-algebra. In our next research, we will consider the notions of measures, generalized states, Riečan states, modal operators, and internal states on BI-algebras. Hyper BI-algebras were defined by Niazian in [35]. As another direction of research, we will extend and investigate these results to hyper BI-algebras.

Acknowledgment

The authors would like to thank anonymous reviewers for their valuable suggestions.

References

- [1] S.S. Ahn, J.M. Ko, A. Borumand Saeid, *On ideals of BI-algebras*, Journal of the Indonesian Mathematical Society, 25(1) (2019), 24–34.
- [2] A. Borumand Saeid, H.S. Kim, A. Rezaei, On BI-algebras, Analele Stiintifice ale Universitatii Ovidius Constanta, 25(1) (2017), 177–194.
- [3] R.A. Borzooei, A. Borumand Saeid, A. Rezaei, R. Ameri, *States on BE-algebras*, Kochi Journal of Mathematics, 9 (2014), 27–42.
- [4] R.A. Borzooei, A. Dvurečenskij, O. Zahiri, State BCK-algebras and state-morphism BCK-algebras, Fuzzy Sets and Systems, 244 (2014), 86–105.
- [5] R.A. Borzooei, B. Ganji Saffar, States on EQ-algebras, Journal of Intelligent and Fuzzy Systems, 29 (2015), 209–221.
- [6] B. Bosbach, K. Halbgruppen, Axiomatik und arithmetik, Fundamenta Mathematicae, 64 (1969), 257–287.
- [7] B. Bosbach, K. Halbgruppen, Kongruenzen and quotiente, Fundamenta Mathematicae, 69 (1970), 1–14.
- [8] C. Buşneag, States on Hilbert algebras, Studia Logica, 94(2) (2010), 177–188.
- [9] C. Buşneag, State-morphisms on Hilbert algebras, Annals of the University of Craiova Mathematics and Computer Science, 37(4) (2010), 58–64.
- [10] W. Chen, W.A. Dudek, States, state operators and quasi-pseudo-MV algebras, Soft Computing, 22(24) (2018), 8025–8040.
- [11] X.Y. Cheng, X.L. Xin, P.F. He, Generalized state maps and states on pseudo equality algebras, Open Mathematics, 16 (2018), 133–148.

- [12] L.C. Ciungu, Bosbach and Riečan states on residuated lattices, Journal of Applied Functional Analysis, 2 (2008), 175–188.
- [13] L.C. Ciungu, States on pseudo BCK-algebras, Mathematical Reports, 10 (2008), 17–36.
- [14] L.C. Ciungu, Non-commutative multiple-valued logic algebras, Springer, 2014.
- [15] L.C. Ciungu, Internal states on equality algebras, Soft Computing, 19 (2015), 939–953.
- [16] L.C. Ciungu, A. Borumand Saeid, A. Rezaei, *Modal operators on pseudo-BE algebras*, Iranian Journal of Fuzzy Systems, 17(6) (2020), 175–191.
- [17] L.C. Ciungu, A. Dvurečenckij, Measures, states and de finetti maps on pseudo BCK-algebras, Fuzzy Sets and Systems, 161 (2010), 2870–2896.
- [18] L.C. Ciungu, A. Dvurečenskij, M. Hyčko, *State BL-algebras*, Soft Computing, 15 (2011), 619–634.
- [19] L.C. Ciungu, G. Georgescu, C. Mureşan, *Generalized Bosbach states: Part I*, Archive for Mathematical Logic, 52 (2013), 335–376.
- [20] L.C. Ciungu, G. Georgescu, C. Mureşan, Generalized Bosbach states: Part II, Archive for Mathematical Logic, 52 (2013), 707–732.
- [21] A. Di Nola, A. Dvurečenskij, *State-morphism MV-algebras*, Annals of Pure and Applied Logic, 161 (2009), 161–173.
- [22] A. Di Nola, A. Dvurečenskij, A. Lettieri, Erratum to "State-morphism MV-algebras", [Annals of Pure and Applied Logic, 161 (2009), 161–173], Annals of Pure and Applied Logic, 161 (2010), 1605–1607.
- [23] A. Dvurečenckij, J. Rachunek, *Probabilistic averaging in bounded commutative Rℓ-monoids*, Discrete Mathematics, 306 (2006), 1317–1326.
- [24] A. Dvurečenckij, J. Rachunek, On Riečan and Bosbach states for bounded non-commutative Rl-monoids, Mathematica Slovaca, 56 (2006), 487–500.
- [25] A. Dvurečenskij, J. Rachunek, D. Šalounová, State operators on generalizations of fuzzy structures, Fuzzy Sets and Systems, 187 (2012), 58–76.
- [26] A. Dvurečenskij, O. Zahiri, States on EMV-algebras, arXiv: 1708.06091v1 [math.LO] 21 Aug, 2017.
- [27] T. Flaminio, F. Montagna, MV-algebras with internal states and probabilistic fuzzy logics, International Journal of Approximate Reasoning, 50 (2009), 138–152.
- [28] G. Georgescu, Bosbach states on fuzzy structures, Soft Computing, 8 (2004), 217–230.
- [29] G. Georgescu, C. Mureşan, Generalized Bosbach states, arXiv: 1007.2575v1 [math.LO] 15 Jul, 2010.
- [30] S.M. Ghasemi Nejad, R.A. Borzooei, M. Bakhshi, *States on implication basic algebras*, Iranian Journal of Fuzzy Systems, 17(6) (2020), 139–156.

- [31] X. Hua, State L-algebras and derivations of L-algebras, Soft Computing, 25 (2021), 4201–4212.
- [32] F. Kõpka, F. Chovanec, *D-posets*, Mathematica Slovaca, 44 (1994), 21–34.
- [33] S.M. Lee, K.H. Kim, States on subtraction algebras, International Mathematical Forum, 8(24) (2013), 1155–1162.
- [34] J. Mertanen, E. Turunen, States on semi-divisible generalized residuated Lattices reduce to states on MV-algebras, Fuzzy Sets and Systems, 159(22) (2008), 3051–3064.
- [35] S. Niazian, On hyper BI-algebras, Journal of Algebraic Hyper Structures and Logical Algebras, 2(1) (2021), 47–67.
- [36] G. Qing, X.X. Long, State operators on pseudo EQ-algebras, Journal of Intelligent and Fuzzy Systems Preprint, 2022, 1–14. DOI: 10.3233/JIFS-212723.
- [37] J. Rachunek, D. Salounova, State operators on GMV-algebras, Soft Computing, 15 (2011), 327–334.
- [38] A. Rezaei, L.C. Ciungu, A. Borumand Saeid, States on pseudo BE-algebras, Journal of Multiple-Valued Logic and Soft Computing, 28 (2017), 591–618.
- [39] E. Turunen, J. Mertanen, States on semi-divisible residuated lattices, Soft Computing, 12(4) (2008), 353–357.
- [40] X. Xin, X. Cheng, X. Zhang, Generalized state operators on BCI-algebras, Journal of Intelligent and Fuzzy Systems, 32(3) (2017), 2591–2602.
- [41] X.L. Xin, B. Davvaz, *States and measures on hyper BCK-algebras*, Journal of Intelligent and Fuzzy Systems, 29 (2015), 1869–1880.
- [42] X.L. Xin, Y.C. Ma, Y.L. Fu, The existence of states on EQ-algebras, Mathematica Slovaca, 70(3) (2020), 527–546.