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Abstract

This paper aims is to introduce states, Bosbach states
and state-morphism operators on BI-algebras. We de-
fine state ideals on BI-algebras and give a characteriza-
tion of the least state ideal of a BI-algebra. It is proved
that the kernel of a Bosbach state on a BI-algebra X is
an ideal of X. Further, by these concepts, we introduce
the notions of state BI-algebras and state-morphism BI-
algebras. The notion of complement pairs of a BI-algebra
X is defined, and proves that under suitable conditions,
there is a one-to-one correspondence between comple-
ment pairs of BI-algebras and state-morphism operators
on BI-algebras.
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A Title

  

1 Introduction
As a generalization of dual implication algebras and implicative BCK-algebras, Borumand Saeid
et al. introduced a new notion of logical algebras namely, BI-algebras, and gave basic properties of
BI-algebras and investigated ideals and congruence relations on this new algebra. BI-algebras are
weaker than some well-known algebras, such as implicative BCK-algebras and Boolean lattices.
Indeed, these algebras are BI-algebra, but the converse does not hold (see, [2]). For more details
and other comparisons with the other algebras, ideals, normal subalgebras in BI-algebras and the
quotient BI-algebras are studied in [1].

It is known that the notion of state was firstly defined on an MV-algebra by Kõpka and
Chovane in [32], and then has been studied and applied to other algebraic structures, since they
have important roles in studying logical algebras (see, for instance, Borzooei et al. [3, 4, 5], Buşneag
[8, 9], Ciungu [13, 14, 15], Ciungu and Dvurečenskij [17], Ciungu et al. [16, 18], Chen and Dudek
[10], Cheng et al. [11], Di Nola and Dvurečenskij [21], Di Nola et al. [22], Dvurečenskij and Zahiri
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[26], Ghasemi et al. [30], Hua [31], Lee and Kim [33], Mertanen [34], Qing and Long [36], Rezaei
et al. [38], Turunen and Mertanen [39], Xin et al. [40], Xin and Davvaz [41] and Xin et al. [42]).

Since states can be thought of in another way, the Bosbach state was defined in [6], [7], [12],
and [28]. Georgescu and Mureşan, by replacing the MV-algebra [0,1] with an arbitrary residuated
lattice L, defined a new concept of state were named generalized Bosbach state in [29], and extended
it to type I and type II states. Then the Bosbach states defined on residuated lattices with values
in residuated lattices were investigated by Ciungu et al. in [19] and [20]. Flaminio and Montagna
introduced MV-state algebras in [27]. The notion of state-morphism MV-algebra, which is a
stronger variation of a state MV-algebra, is introduced by Di Nola and Dvurečenskij in [21] and
[22]. The notion of a state operator was extended to the cases of fuzzy structures, bounded
(non-) commutative Rℓ-monoids, and GMV-algebras (pseudo-MV-algebras) by Dvurečenckij and
Rach �unek in [23] and [24], Dvurečenckij et al. in [25], Rach �unek and S̃alounova in [37].

In this paper, we introduce the notions of states, Bosbach states and state-morphism operators
on BI-algebras. Also, we define state ideals on BI-algebras and give a characterization of the least
state ideal of a BI-algebra. It is proven that the kernel of a Bosbach state on a BI-algebra X is
an ideal of X. Further, by these concepts, we introduce the notions of state BI-algebras and state-
morphism BI-algebras. The notion of complement pairs of a BI-algebra X is defined, and prove
that under suitable conditions, there is one-to-one correspondence between complement pairs of
BI-algebras and state-morphism operators on BI-algebras.

2 Preliminaries
We recalled some definitions and results which will be used in the sequel. Throughout this paper,
we will denote N for the set of all positive integers and R for the set of real numbers.

Definition 2.1. [2] An algebra (X; ∗, 0) of type (2, 0) is called a BI-algebra if satisfying the following
axioms: for all x, y ∈ X,

(B) x ∗ x = 0,

(BI) x ∗ (y ∗ x) = x.

From now on, by X, we mean that it is a BI-algebra (X; ∗, 0).
We introduce the binary relation “ ≤ ” on X by x ≤ y if and only if x ∗ y = 0. Notice that the

relation ≤ is not a partial order, since it is only reflexive.
A BI-algebra X is said to be right distributive or self distributive (briefly, distributive) if

(x ∗ y) ∗ z = (x ∗ z) ∗ (y ∗ z) ,

for all x, y, z ∈ X (see, [2]).

Proposition 2.2. [2] The following statements hold: for all x, y, z, u ∈ X,

(i) x ∗ 0 = x,

(ii) 0 ∗ x = 0,

(iii) x ∗ y = (x ∗ y) ∗ y,

(iv) if y ∗ x = x, then X = {0},

(v) if x ∗ (y ∗ z) = y ∗ (x ∗ z), then X = {0},
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(vi) if x ∗ y = z, then z ∗ y = z and y ∗ z = y,

(vii) if (x ∗ y) ∗ (z ∗ u) = (x ∗ z) ∗ (y ∗ u), then X = {0}.

Remark 2.3. Notice that, if z ∗ (x ∗ y) = (z ∗ x) ∗ (z ∗ y), for all x, y, z ∈ X, then X = {0}. Since
if we take y := x, for all z ∈ X, and using Proposition 2.2(i) and (B), we obtain z = z ∗ 0 =
z ∗ (x ∗ x) = (z ∗ x) ∗ (z ∗ x) = 0.

Proposition 2.4. [2] Let X be distributive. Then for all x, y, z ∈ X,

(i) y ∗ x ≤ y,

(ii) x ∗ (x ∗ y) ≤ y,

(iii) (x ∗ z) ∗ (y ∗ z) ≤ x ∗ y,

(iv) if x ≤ y, then x ∗ z ≤ y ∗ z,

(v) (x ∗ y) ∗ z ≤ x ∗ (y ∗ z),

(vi) if x ∗ y = z ∗ y, then (x ∗ z) ∗ y = 0.

A subset I of X is called an ideal of X if (I1) 0 ∈ I and (I2) y ∈ I and x ∗ y ∈ I imply x ∈ I,
for all x, y ∈ X (see, [2]).

Denote the set of all ideals on X by I(X).

Theorem 2.5. [2] Let X be distributive, and I ∈ I(X). Then the binary relation“∼I” where
defined by

x ∼Iy if and only if x ∗ y ∈ I and y ∗ x ∈ I

is a right congruence relation on X.

Analytic constructions for BI-algebras are considered in [1].
Let X := {x ∈ R : x ≥ 0}. Define the binary operation “∗” on X as follows:

x ∗ y = max {0, f (x, y) (x− y)} = max{0, λ (x, y)x},

where f (x, y) and λ(x, y) are non-negative real valued functions, with λ (0, y) = 0, for all y ∈ X.
If we define

λ (x, y) =

{
1 if y = 0;
0 if y ̸= 0,

then
x ∗ y =

{
x if y = 0;
0 if y ̸= 0,

Thus (X; ∗, 0) is a BI-algebra (see, [1]).
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3 State operators on BI-Algebras
In this section, we introduce the notion of states on BI-algebras and investigate their properties.

Definition 3.1. A map σ : X → X is called state operator on X if it satisfying the following
conditions: for all x, y ∈ X,

(SO1) x ≤ y implies σ (x) ≤ σ (y),

(SO2) σ (x ∗ y) = σ (x) ∗ σ (x ∗ (x ∗ y)),

(SO3) σ (σ (x) ∗ σ (y)) = σ (x) ∗ σ (y) .

A state BI-algebra is a pair (X,σ) .
Denote kerσ = {x ∈ X : σ (x) = 0} , that is the kernel of σ. A state operator σ is faithful if

kerσ = {0}.

Example 3.2. (i) Let X be a BI-algebra, and σ : X → X be a map defined by σ (x) = 0, for all
x ∈ X. Then it is easy to see that σ is a state operator on X.
(ii) Let X = {0, a, b}. Define the binary operation “∗1” in Table 1 and define σ : X → X by

Table 1: BI-algebra (X; ∗1, 0)

∗1 0 a b
0 0 0 0
a a 0 a
b b b 0

σ(0) = 0 and σ(a) = σ(b) = b. Then (X,σ) is a state BI-algebra.
(iii) Let X be a BI-algebra. Define two operators “σ1” and “σ2” on the direct product BI-algebra
X ×X as follows:

σ1(x, y) = (x, x) and σ2(x, y) = (y, y), for all (x, y) ∈ X ×X.

Then σ1 and σ2 are two state operators on X ×X.

Denote the set of all state operators on X by S(X).
Now, we give some properties of state operators on BI-algebras.

Proposition 3.3. Let σ ∈ S(X). Then the following hold: for all x ∈ X,

(i) σ (0) = 0,

(ii) σ(σ (x)) = σ(x),

(iii) img σ = {x ∈ X : σ (x) = x},

(iv) img σ is a subalgebra of X,

(v) kerσ ∈ I(X).
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Proof. (i) If we take x := y in (SO3) and using (B), we get

σ(0) = σ (σ (x) ∗ σ (x)) = σ (x) ∗ σ (x) = 0.

(ii) By (i) and Proposition 2.2(i), we have

σ (σ (x) ∗ σ (0)) = σ (σ (x) ∗ 0) = σ(σ (x)).

On the other hand, if we take y := 0 in (SO3), then

σ (σ (x) ∗ σ (0)) = σ (x) ∗ σ(0) = σ (x) .

Therefore (ii) holds.
(iii) Clearly, {x ∈ X : σ (x) = x} ⊆ img σ. Now, suppose x ∈ img σ. Then there exists x′ ∈ X
such that σ (x′) = x. Then by (ii), we have

x = σ
(
x′
)
= σ(σ

(
x′
)
) = σ (x) .

This shows that x ∈ img σ, and so img σ ⊆ {x ∈ X : σ (x) = x}. Hence (iii) holds.
(iv) From (i), 0 ∈ img σ. For all x, y ∈ X by (SO3), we have σ (x) ∗ σ(y) ∈ img σ. Thus img σ is
a subalgebra of X.
(v) Suppose y ∈ kerσ and x ∗ y ∈ kerσ. Then σ (y) = σ (x ∗ y) = 0. On the other hand, using
(SO2), we get

0 = σ (x ∗ y) = σ (x) ∗ σ (x ∗ (x ∗ y)) .

Now, by Proposition 2.4(ii), since x ∗ (x ∗ y) ≤ y, using (SO1), we get

σ (x ∗ (x ∗ y)) ≤ σ (y) = 0.

Hence σ (x ∗ (x ∗ y)) = 0, and so σ (x) = 0. This means that x ∈ kerσ, and so kerσ ∈ I(X).

Proposition 3.4. Let X be distributive and σ ∈ S(X). Then the following statements hold: for
all x, y ∈ X,

(i) if x ≤ y and for any z ∈ X, z ∗ y ≤ z ∗ x, then σ (y) ∗ σ(x) ≤ σ(y ∗ x),

(ii) kerσ ∩ img σ = {0}.

Proof. (i) Given x, y ∈ X. Using Proposition 2.4(ii), we have y ∗ (y ∗x) ≤ x. Hence σ(y ∗ (y ∗ x)) ≤
σ(x). Then σ (y) ∗ σ (x) ≤ σ (y) ∗ σ (y ∗ (y ∗ x)) = σ(y ∗ x), by hypothesis and (SO2).
(ii) Suppose x ∈ kerσ ∩ img σ. It follows that σ(x) = 0. Moreover, x ∈ img σ, so there exists
x′ ∈ X such that σ (x′) = x. Then by Proposition 3.3(ii), 0 = σ (x) = σ (σ (x′)) = σ (x′) = x.
Thus x = 0, and so (ii) holds.

The following example shows that in Proposition 3.4(i), the distributive law and condition
z ∗ y ≤ z ∗ x, for any z ∈ X, are necessary.

Example 3.5. Let X = {0, a, b, c}. Define the binary operation “∗2” in Table 2. Then (X; ∗2, 0)
is a BI-algebra (see, [2]), but is not distributive, since

(a ∗2 b) ∗2 c = a ∗2 c = b ̸= (a ∗2 c) ∗2 (b ∗2 c) = b ∗2 b = 0.

Define σ : X → X by σ(0) = σ(b) = σ(c) = 0 and σ(a) = a. Then (X,σ) is a state BI-
algebra, but not satisfies in Proposition 3.4(i), since 0 ≤ c, but a ∗2 c = b ̸≤ a ∗2 0 = a. Further,
σ(a) ∗2 σ(c) = a ∗2 0 = a ̸≤ σ(a ∗2 c) = σ(b) = 0.
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Table 2: BI-algebra (X; ∗2, 0)

∗2 0 a b c
0 0 0 0 0
a a 0 a b
b b b 0 b
c c b c 0

Proposition 3.6. Let X be commutative (i.e., x ∗ (x ∗ y) = y ∗ (y ∗x) for all x, y ∈ X), σ ∈ S(X)
and y ≤ x. Then σ (x ∗ y) = σ (x) ∗ σ(y).

Proof. Given x, y ∈ X with y ≤ x. Using the commutative law and Proposition 2.2(i), we have

σ (x ∗ y) = σ (x) ∗ σ (x ∗ (x ∗ y)) = σ (x) ∗ σ (y ∗ (y ∗ x))
= σ (x) ∗ σ (y ∗ 0) = σ (x) ∗ σ(y).

This completes the proof.

The following example shows that the commutative law in Proposition 3.6 is necessary.

Example 3.7. Consider Example 3.5. It is not commutative, since

a ∗2 (a ∗2 c) = a ∗2 b = a ̸= c ∗2 (c ∗2 a) = c ∗2 b = c.

Define σ : X → X by σ(a) = σ(a) = σ(b) = 0 and σ(c) = c. Then (X,σ) is a state BI-algebra and
we can see that

σ(c ∗2 a) = σ(b) = 0 ̸= σ(c) ∗2 σ(a) = c ∗2 0 = c.

Remark 3.8. Notice that, if σ (x ∗ y) = σ(y) or σ (x ∗ y) = σ(x), for any x, y ∈ X, then σ is zero
map. By contrary, if there is x ∈ X such that σ(x) ̸= 0, then we have σ (0) = σ (x ∗ 0) = σ(x).
By Proposition 3.3(i), σ (0) = 0, this implies σ (x) = 0, a contradiction. Then σ is zero map.
Further, σ(0) = σ (x ∗ x) = σ(x), using Proposition 3.3(i), we get σ(x) = 0, for all x ∈ X.

Proposition 3.9. Let X = {x ∈ R : x ≥ 0}. Then there exists non-zero non-negative real valued
function λ(x, y) such that (X; ∗λ, 0) becomes a BI-algebra, where

x ∗λ y = max{0, λ (x, y)x}

and for every state operator σ on X, we have σ (x ∗λ y) = 0, for all 0 ̸= x, y ∈ X.

Proof. Assume X = {x ∈ R : x ≥ 0}. Define λ : X ×X → X by

λ (x, y) =

{
1 if y = 0;
0 if y ̸= 0,

for all (x, y) ∈ X ×X. Then (X; ∗λ, 0) is a BI-algebra (see, [1]). Let x, y ∈ X, since X is linearly
ordered, we have x ≤ y or y < x. If x ≤ y, then x ∗λ y = 0. Thus the proof completes. Now,
suppose y < x. Then

x ∗λ (x ∗λ y) = x ∗λ (max {0, λ (x, y)x}) = x ∗λ
(
max

{
0,

{
x if y = 0;
0 if y ̸= 0.

})
= x ∗λ

({
x if y = 0;
0 if y ̸= 0.

)
=

{
x ∗λ x if y = 0;
x ∗λ 0 if y ̸= 0.

=

{
0 if y = 0;
x if y ̸= 0.
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If y = 0, then σ (x ∗λ 0) = σ (x), and if y ̸= 0, then

σ (x ∗λ y) = σ(x) ∗λ σ(x ∗λ (x ∗λ y)) = σ (x) ∗λ σ (x) = 0.

This completes the proof.

Definition 3.10. Let σ ∈ S(X). An ideal I of X is called a state ideal if σ(I) ⊆ I.

We denote the set of all state ideals on X by SI(X).

Example 3.11. Consider Example 3.2(ii) and take I := {0, b} and J := {0, a}. Then I ∈ SI(X),
but J ̸∈ SI(X), since σ (a) = b /∈ J .

Proposition 3.12. Let σ ∈ S(X) and {Ii}i∈Λ be a family of states ideals of X, then
∩
i∈Λ

Ii, is too.

Proof. Assume σ ∈ S(X) and {Ii}i∈Λ is a family of states ideals of X. Since Ii ∈ I(X), we get∩
i∈Λ

Ii ∈ I(X). Now, let x ∈
∩
i∈Λ

Ii. Then x ∈ Ii, for all i ∈ Λ, and so σ(x) ∈ σ(Ii) ⊆ Ii, since Ii is

a state ideal of X. Hence σ(x) ∈
∩
i∈Λ

Ii. It follows that σ(
∩
i∈Λ

Ii) ⊆
∩
i∈Λ

Ii. Thus
∩
i∈Λ

Ii ∈ SI(X).

Since the set SI(X) is closed under arbitrary intersections, we have the following theorem.

Theorem 3.13. (SI(X);⊆) is a complete lattice.

The following example shows that the union of two state ideals may not be a state ideal, in
genaral.

Example 3.14. Let X = {0, a, b, c}. Define the binary operation “∗3” in Table 3. Then (X; ∗3, 0)

Table 3: BI-algebra (X; ∗3, 0)

∗3 0 a b c
0 0 0 0 0
a a 0 a a
b b b 0 a
c c c a 0

is a BI-algebra. Define σ : X → X by σ(0) = σ(a) = 0 and σ(b) = σ(c) = c. Then σ ∈ S(X)
and (X,σ) is a state BI-algebra. If we take I1 := {0, a} and I2 := {0, c}, then I1, I2 ∈ SI(X), but
I1∪I2 = {0, a, c} is not an ideal of X, since c, b∗3 c ∈ I1∪I2, but b ̸∈ I1∪I2. Thus I1∪I2 ̸∈ SI(X).

Definition 3.15. Let σ ∈ S(X) and I ∈ I(X). For any x, y ∈ X, define

Iσ (x, y) := {t ∈ X : (t ∗ x) ∗ σ(y) ∈ I} .

Notice that, by Proposition 2.2(ii), since 0 ∗ x = 0, for all x ∈ X, we get 0 ∈ Iσ(x, y), for
all x, y ∈ X. Hence Iσ (x, y) ̸= ∅. Also, for all x ∈ X, Iσ (0, x) := {t ∈ X : t ∗ σ(x) ∈ I} and
Iσ (x, 0) := {t ∈ X : t ∗ x ∈ I}, since σ(0) = 0.

The following example shows that for σ ∈ S(X) and I ∈ I(X), Iσ(x, y) ̸= Iσ(y, x), and may
Iσ(x, y) ̸∈ SI(X), in general.
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Example 3.16. (i) Consider Example 3.5. If we take I := {0, a, c}, then I ∈ I(X). One can
easily see that Iσ(c, a) = {0, c} ̸= Iσ(a, c) = I and Iσ(b, c) = X.

(ii) In Example 3.14, take I := {0, c}. Then I ∈ SI(X) and Iσ(a, b) = {0, a, c} ̸∈ SI(X), since
c, b ∗3 c = a ∈ Iσ(a, b), but b ̸∈ Iσ(a, b).

Proposition 3.17. Let X be distributive, σ ∈ S(X) and I ∈ I(X). Then Iσ (x, y) ∈ I(X).

Proof. Assume I ∈ I(X) and x, y ∈ X. Using Proposition 2.2(ii) and (I1), we get

(0 ∗ x) ∗ σ(y) = 0 ∗ σ(y) = 0 ∈ I.

Hence 0 ∈ Iσ(x, y), and so Iσ(x, y) ̸= ∅.
Let b, a ∗ b ∈ Iσ(x, y). Then (b ∗ x) ∗ σ(y) ∈ I and ((a ∗ b) ∗ x) ∗ σ(y) ∈ I. Using distributive law,
we obtain

((a ∗ x) ∗ σ(y)) ∗ ((b ∗ x) ∗ σ(y)) = ((a ∗ x) ∗ (b ∗ x)) ∗ σ(y) = ((a ∗ b) ∗ x) ∗ σ(y) ∈ I.

Since I ∈ I(X) and (b ∗ x) ∗ σ(y) ∈ I, we get (a ∗ x) ∗ σ(y) ∈ I. It follows that a ∈ Iσ(x, y). Thus
Iσ (x, y) ∈ I(X).

The following example shows that the distributive law in Proposition 3.17 is necessary.

Example 3.18. Consider Example 3.5. If we take I := {0, a, c}, then I ∈ I(X). We can see that
Iσ(b, a) = {0, b, a}, where Iσ(b, a) ̸∈ I(X), since a, c ∗2 a = b ∈ Iσ(b, a), but c ̸∈ Iσ(b, a).

Proposition 3.19. Let I ∈ SI(X) and σ ∈ S(X). Then I =
∪
x∈I

Iσ(0, x).

Proof. Assume I ∈ SI(X), σ ∈ S(X) and t ∈ I. Let x ∈ I. Hence σ(x) ∈ σ(I) ⊆ I. Then
t∗σ(x) ∈ I, and so t ∈ Iσ(0, x) ⊆

∪
x∈I

Iσ(0, x) It follows that t ∈
∪
x∈I

Iσ(0, x). Thus I ⊆
∪
x∈I

Iσ(0, x).

On the other hand, let t ∈
∪
x∈I

Iσ(0, x). Then there exists x ∈ I such that t ∈ Iσ(0, x). Hence

t ∗ σ(x) ∈ I. Since I ∈ SI(X) and x ∈ I, we have σ(x) ∈ σ(I) ⊆ I, and so σ(x) ∈ I. Thus t ∈ I.

It shows that
∪
x∈I

Iσ(0, x) ⊆ I.

Corollary 3.20. Let X be distributive, I ∈ I(X), σ ∈ S(X) and a ∈ X. If we take
Ma := {t ∈ X : (t ∗ a) ∗ σ(a) ∈ I} , then Ma ∈ I(X).

Proof. Similar to the proof Proposition 3.17, if we take Ma := Iσ(a, a).

The following example shows that there is I ∈ SI(X) and a ∈ X, where Ma ̸∈ SI(X).

Example 3.21. Consider the state ideal I2 = {0, c} in Example 3.14. One can easily see that
Ma = {0, a, c} ̸∈ SI(X), since c, b ∗3 c = a ∈ Ma, but b ̸∈ Ma.

Open problem. Consider status Proposition 3.17 or Corollary 3.20, if σ ∈ S(X) and
I ∈ SI(X), then Iσ(x, y) ∈ SI(X) or Ma ∈ SI(X)? Under what condition/conditions is/are it
possible?

Theorem 3.22. Let X be distributive, I ∈ I(X) and σ ∈ S(X). Then ∼I , where defined in
Theorem 2.5, is a congruence relation on X, and [0]I ∈ SI(X).



Applications of states to BI-algebras 53

Proof. By [2, Lemma 5.6], [0]I ∈ I(X). Let x ∈ [0]I . Then x∼I0. This implies that σ (x)∼Iσ (0) .
By Proposition 3.3(i), σ (x)∼I0. It shows that σ(x) ∈ [0]I . Thus [0]I ∈ SI(X).

Definition 3.23. Let σ ∈ S(X) and ∅ ̸= I ⊆ X. Define the state ideal generated by I as follows:

⟨I⟩S :=
∩
I⊆Ii

Ii,

where σ ∈ S(X) and I ⊆ Ii ∈ SI(X), for i ∈ Λ.

Notice that, in Definition 3.23,
∩
I⊆Ii

Ii ∈ SI(X), by Proposition 3.12. Also, if I ∈ SI(X), then

⟨I⟩S = I.
Borumand Saeid et al. defined the set A(x, y) := {t ∈ X : (t ∗ x) ∗ y = 0}, and it was shown

that if X is distributive, then A(x, y) ∈ I(X), where x, y ∈ X.
Also, we can see that A(x, 0) = A(0, x), for all x ∈ X. Further, it is shown that if I ∈ I(X), then
(see for details, Proposition 4.10 and Theorem 4.11 (see, [2]))

I =
∪
x∈I

A (0, x) =
∪

x,y∈I
A (x, y).

The following example shows that if X is distributive and ∅ ̸= I ⊆ X, then

⟨I⟩S ̸=
∩

x,y∈I
A (x, y).

Example 3.24. Consider Example 3.2(ii). Then (X,σ) is a state BI-algebra. If we take I = {b},
then I ̸∈ I(X) and < I >S= {0, b}.
Also, we can see that A(0, 0) = {0} and A(0, b) = A(b, 0) = A(b, b) = {0, b}, where

⟨I⟩S = {0, b} ̸=
∩

x,y∈I∪{0}

A (x, y) = {0}.

Also, If we take I := {0, a}, then we can see that I ∈ I(X) and

⟨I⟩S = I = {0, a} ̸=
∩

x,y∈I∪{0}

A (x, y) = {0}.

The following theorem show that a representation of ⟨I⟩S .

Theorem 3.25. Let ∅ ̸= I ⊆ X. Then ⟨I⟩S =
∩
I⊆Ii

∪
x∈Ii

Iiσ(0, x), where σ ∈ S(X) and Ii ∈ SI(X),

for all i ∈ Λ.

Proof. By Definition 3.23 and Proposition 3.19, the proof is obvious.
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4 Bosbach states on BI-algebras
In this section, we introduce the notion of Bosbach states and show that there exists a Bosbach
state via X

∼I
where ∼I is a congruence relation induced by an ideal I of distributive BI-algebra X.

Definition 4.1. Let σ : X → [0, 1] be a map. We say that σ is a Bosbach state on X, if the
following conditions hold: for all x, y ∈ X

(BS1) σ(0) = 0,

(BS2) σ(x) + σ(y ∗ x) = σ(y) + σ(x ∗ y).

Example 4.2. (i) Consider Example 3.5. Define σ : X → [0, 1] as follows:

σ(0) = 0 and σ(a) = σ(b) = σ(c) =
1

2
.

Then σ is a Bosbach state on X.
(ii) Let X = {0, a, b}. Define the binary operation “∗4” in Table 4. Then (X; ∗4, 0) is a BI-algebra

Table 4: BI-algebra (X; ∗4, 0)

∗4 0 a b
0 0 0 0
a a 0 a
b b b 0

(see, [2]). Define σ : X → [0, 1] by σ(0) = 0, σ(a) = 1
2 and σ(b) = 1. Then σ is a Bosbach state on

X.

Denote the set of all Bosbach states on X by BS(X).

Proposition 4.3. Let σ ∈ BS(X). Then

(i) x ≤ y implies σ(x) ≤ σ(y) and σ(y ∗ x) ≤ σ(y),

(ii) kerσ ∈ I(X).

Proof. (i) Given x, y ∈ X, if x ≤ y, then x ∗ y = 0. Hence

σ(x) + σ(y ∗ x) = σ(y) + σ(x ∗ y) = σ(y) + σ(0) = σ(y) + 0 = σ(y).

Since σ(t) ≥ 0, for all t ∈ X, and σ(x) + σ(y ∗ x) = σ(y), we get σ(x) ≤ σ(y) and σ(y ∗ x) ≤ σ(y).
(ii) Clearly, 0 ∈ kerσ. If y, x ∗ y ∈ kerσ, then σ(y) = σ(x ∗ y) = 0. Since σ ∈ BS(X), we have

0 = 0 + 0 = σ(y) + σ(x ∗ y) = σ(x) + σ(y ∗ x).

Since σ(x), σ(y ∗ x) ∈ [0, 1] and σ(x) + σ(y ∗ x) = 0, we get σ(x) = 0 and σ(y ∗ x) = 0. Thus
x ∈ kerσ.

Definition 4.4. Let (X; ∗, 0) and (Y ; ⋄, 0) be two BI-algebras. A map θ : X → Y is called a
homomorphism if θ(x ∗ y) = θ(x) ⋄ θ(y), for all x, y ∈ X.



Applications of states to BI-algebras 55

Notice that, if we take y := x, than by (B), θ(0) = θ(x ∗ x) = θ(x) ⋄ θ(x) = 0.

Example 4.5. (i) The identity map from any BI-algebra is a homomorphism.
(ii) Consider BI-algebra X in Example 4.2(ii) and Y is the BI-algebra in Example 3.5. Define
θ : X → Y by θ(0) = 0, θ(a) = b and θ(b) = c. Then θ is a homomorphism.
(iii) Every map θ : X → Y between BI-algebras defined by θ(x) = 0, for all x ∈ X is a homomor-
phism.

Lemma 4.6. Let (X; ∗, 0) and (Y ; ⋄, 0) be two BI-algebras and θ : X → Y be a homomorphism.
Then

(i) θ(0) = 0,

(ii) x ≤ y implies θ(x) ≤ θ(y),

(iii) ker θ ∈ I(X).

Proof. (i) From (BS1), we have θ(0) = θ(0 ∗ 0) = θ(0) ⋄ θ(0) = 0.
(ii) If x ≤ y, then x ∗ y = 0. Using (i), we have 0 = θ(0) = θ(x ∗ y) = θ(x) ⋄ θ(y). This means that
θ(x) ≤ θ(y).
(iii) Clearly, 0 ∈ ker θ. Now, let y, x∗y ∈ ker θ. Then θ(x∗y) = 0 and θ(y) = 0. Using Proposition
2.2(ii), we obtain 0 = θ(x ∗ y) = θ(x) ⋄ θ(y) = θ(x) ⋄ 0 = θ(x). This means that x ∈ ker θ, and so
ker θ ∈ I(X).

Theorem 4.7. Let (X; ∗, 0) and (Y ; ⋄, 0) be two BI-algebras, θ : X → Y be a homomorphism and
σY ∈ BS(Y ). Then there is a unique σX ∈ BS(X) such that the following diagram is commutative
(i.e., σX = σY ◦ θ).

X
θ //

∃! σX !!C
CC

CC
CC

C Y
σY

��
[0, 1]

Proof. Define σX : X → [0, 1] by σX(x) = σY ◦ θ(x). Since σY and θ are well-defined, σX is
well-defined. By Lemma 4.6(i) and (BS1), we get σX(0) = σY (θ(0)) = σY (0) = 0. Moreover, since
σY ∈ BS(Y ), for all x, y ∈ X, we have

σX(x) + σX(y ∗ x) = σY ◦ θ(x) + σY ◦ θ(y ∗ x) = σY (θ(x)) + σY (θ(y) ⋄ θ(x))
= σY (θ(y)) + σY (θ(x) ⋄ θ(y)) = σY ◦ θ(y) + σY ◦ θ(x ∗ y)
= σX(y) + σX(x ∗ y).

Thus σX ∈ BS(X). Now, let σ′ ∈ BS(X) such that σ′ = σY ◦θ. Then σ′(x) = (σY ◦θ)(x) = σX(x),
for all x ∈ X. This means that σ′ = σX . Hence σX is a unique Bosbach state on X.

Let (X; ∗, 0) and (Y ; ⋄, 0) be two BI-algebras, and θ : X → Y be a homomorphism. Then we say
that θ is injective, if ker θ = {0}. The homomorphisms defined in Example 4.5(i)-(ii) are injective
and the homomorphism defined in Example 4.5(iii) is not injective. As usual, a homomorphism is
called bijective, if it is injective and surjective.
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Theorem 4.8. Let (X; ∗, 0) and (Y ; ⋄, 0) be two BI-algebras, θ : X → Y be a bijective homomor-
phism and σX ∈ BS(X). Then there is a unique σY ∈ BS(Y ) such that the following diagram is
commutative (i.e., σX = σY ◦ θ).

X
θ //

σX !!C
CC

CC
CC

C Y
∃! σY

��
[0, 1]

Proof. Assume y ∈ Y is an arbitrary element. Then from surjectivity of θ, there exists x ∈ X
such that θ(x) = y. Thus for any y ∈ Y there exists x ∈ X such that x is depend on y. If we take
σY (y) := σ(x), where x is depend on y, then σ(x) = σY (y) = σY (θ(x)) = σY ◦ θ(x) and since θ is
injective, we have σ(x) = σY ◦ θ(x), for all x ∈ X. Now, we show that σY ∈ BS(Y ).
(BS1) From Lemma 4.6(i), injectivity of θ and (BS1) property on σX , we have

σY (0) = σY (θ(0)) = σX(0) = 0.

(BS2) Given y, y′ ∈ Y , then there exist x, x′ ∈ X such that θ(x) = y and θ(x′) = y′. Thus

σY (y) + σY (y
′ ⋄ y) = σY (θ(x)) + σY (θ(x

′) ⋄ θ(x))
= σY (θ(x)) + σY (θ(x

′ ∗ x))
= σY ◦ θ(x) + σY ◦ θ(x′ ∗ x)
= σX(x) + σX(x′ ∗ x)
= σX(x′) + σX(x ∗ x′)
= σY ◦ θ(x′) + σY ◦ θ(x ∗ x′)
= σY (y

′) + σY (y ⋄ y′).

Then σY ∈ BS(Y ). Suppose σ′ ∈ BS(Y ) such that σX(x) = σ′ ◦ θ(x), for all x ∈ X. Let y ∈ Y.
Then there exists x ∈ X such that θ(x) = y, and so σ′(y) = σ′(θ(x)) = σ′ ◦ θ(x) = σX(x). On the
other hand, according to the definition of σY , we have σY (y) = σX . Hence σ′(y) = σX(x) = σY (y),
for all y ∈ Y . It follows that σ′ = σY . Thus σY is unique and this completes the proof.

Let X be a distributive BI-algebra and I ∈ I(X). Consider relation “∼I” in Theorem 2.5, we
denote by Cx the congruence class of x and let X

∼I
= {Cx : x ∈ X}. Also, we define ϱ : X → X

∼I

by ϱ(x) = Cx. Then ( X
∼I

; ⋆, C0) is a BI-algebra, where Cx ⋆ Cy = Cx∗y. Notice that, if x ∈ I, then
Cx = C0.

Corollary 4.9. Let X be distributive BI-algebra, I ∈ I(X) and σ ∈ BS(X). Then there exists a
unique Bosbach state t : X

∼I
→ [0, 1] such that the following diagram is commutative (i.e., σ = s◦ϱ),

in fact, ∼I is a congruence relation induced by ideal I.

X
ϱ //

σ
  A

AA
AA

AA
AA

X
∼I

∃! s
��

[0, 1]

Proof. Using Theorem 4.8, if we take Y := X
∼I

, then the proof is complete.



Applications of states to BI-algebras 57

Corollary 4.10. Let X be distributive BI-algebra and σ ∈ BS(X). Then there exists a unique
Bosbach state t : X

∼kerσ
→ [0, 1] such that the following diagram is commutative (i.e., σ = s ◦ ϱ), in

fact, ∼I is a congruence relation induced by kerσ.

X
ϱ //

σ
  B

BB
BB

BB
BB

X
∼kerσ

∃! s
��

[0, 1]

Proof. Using Proposition 4.3(ii) and Corollary 4.9, if we take I := kerσ, then the proof is complete.

5 State-morphism operators on BI-algebras
In this section, we introduce the notion of state-morphism operators on BI-algebras. By this new
notion, we introduce the notion of state-morphism BI-algebras.

Definition 5.1. A homomorphism σ : X → X is called a state-morphism operator if σ ◦ σ = σ,
and the pair (X;σ) is called a state-morphism BI-algebra.

Example 5.2. (i) Let IdX be the identity map on X. Then, clearly IdX is a state-morphism
operator. Notice that, IdX is not a state operator on X.
(ii) Consider Example 3.2(ii), for any x, y ∈ X, we have x∗1 y = (x∗1 y)∗1 y. Define fb : X → X by
fb (x) = x∗1 b, for all x ∈ X. Then by easy calculations, one can show that fb is a homomorphism.
Moreover,

(fb ◦ fb) (x) = fb (x ∗1 b) = (x ∗1 b) ∗1 b = x ∗1 b = fb(x),

for all x ∈ X. Thus fb is a state-morphism operator on X and (X, fb) becomes a state-morphism
BI-algebra.

From Example 5.2(i), we can see that any state-morphism operator may not be a state operator.
Moreover, the converse may not be true, i.e., any state operator may not be a state-morphism
operator. For example, consider the state σ in Example 3.2(ii). Then σ is not a state-morphism
operator, since

b = σ (a) = σ (a ∗1 b) ̸= σ (a) ∗1 σ (b) = b ∗1 b = 0.

We denote the set of all state-morphism operators on X by SMO(X).

Proposition 5.3. Let X be distributive. Then SMO(X) ̸= ∅.

Proof. Assume X is distributive and x, y ∈ X. Define σy : X → X by σy (x) = x ∗ y. Then for
any z ∈ X,

σz (x ∗ y) = (x ∗ y) ∗ z = (x ∗ z) ∗ (y ∗ z) = σz(x) ∗ σz(y).

Hence σz is a homomorphism. We show that σz ◦ σz = σz. Using the distributive law, we get

(σz◦σz) (x) = σz(σz(x)) = σz (x ∗ z) = (x ∗ z) ∗ z = x ∗ z = σz(x).

Thus σz ∈ SMO(X), and so SMO(X) ̸= ∅.
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It was shown that if x ≤ y and X satisfies the following condition:

(z ∗ x) ∗ (z ∗ y) = y ∗ x (⋆)

Then z ∗ y ≤ z ∗ x (see, [2, Prop. 3.13]).

Proposition 5.4. Let X be distributive and satisfies (⋆). Then (x ∗ y) ∗ z ≤ (x ∗ z) ∗ y, for all
x, y, z ∈ X.

Proof. Using the distributive law, (⋆) and Proposition 2.2(ii), we get

((x ∗ y) ∗ z) ∗ ((x ∗ z) ∗ y) = ((x ∗ y) ∗ z) ∗ ((x ∗ y) ∗ (z ∗ y))
= (z ∗ y) ∗ z = (z ∗ z) ∗ (y ∗ z)
= 0 ∗ (y ∗ z) = 0.

Thus (x ∗ y) ∗ z ≤ (x ∗ z) ∗ y.

The following example shows that the distributive law in Proposition 5.4 is necessary.

Example 5.5. Let X = {0, a, b, c, d}. Define the binary operation “∗6” in Table 6. Then (X; ∗6, 0)

Table 5: BI-algebra (X; ∗6, 0)

∗6 0 a b c d
0 0 0 0 0 0
a a 0 d d c
b b 0 0 b b
c c 0 c 0 c
d d 0 d d 0

is a BI-algebra and satisfies (⋆), but not distributive, since

(a ∗6 d) ∗6 b = c ∗6 b = c ̸= 0 = d ∗6 d = (a ∗6 b) ∗6 (d ∗6 b).

Also, ((a ∗6 d) ∗6 b) ∗6 ((a ∗6 b) ∗6 d) = (c ∗6 b) ∗6 (d ∗6 d) = c ∗6 0 = c ̸= 0.

Proposition 5.6. Let X be distributive and σ ∈ SMO(X), where satisfies (⋆), and I ∈ I(X).
Then

⟨I⟩S = {x ∈ X : (((x ∗ σ (x1)) ∗ σ (x2)) ∗ · · · ) ∗ σ(xn) ∈ I, ∃n ∈ N, ∃x1, . . . , xn ∈ X} .

Proof. We denote the right hand by M . Clearly, I ⊆ M . We show that M ∈ I(X).
Assume x, y ∗ x ∈ M . Then there exist m,n ∈ N, and x1, . . . , xn, y1, . . . , ym ∈ X such that

(((x ∗ σ(x1)) ∗ σ (x2)) ∗ · · · ) ∗ σ(xn) ∈ I and ((((y ∗ x) ∗ σ(y1)) ∗ σ (y2)) ∗ · · · ) ∗ σ(ym) ∈ I.
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Then by Proposition 2.4(iii)-(iv) and Proposition 5.4,

((((((y ∗ σ(y1)) ∗ σ(y2)) ∗ · · · ) ∗ σ(ym)) ∗ σ(x1)) ∗ · · · ∗ σ(xn))
∗ ((((x ∗ σ(x1)) ∗ σ(x2)) ∗ · · · ) ∗ σ(xn)) ∗ ((((y ∗ x) ∗ σ(y1)) ∗ σ(y2)) ∗ · · · ) ∗ σ(ym))

≤ ((((((y ∗ σ(y1)) ∗ σ(y2)) ∗ · · · ) ∗ σ(ym)) ∗ σ(x1)) ∗ · · · ∗ σ(xn−1))

∗ (((x ∗ σ(x1)) ∗ σ(x2)) ∗ · · · ) ∗ σ(xn−1) ∗ ((((y ∗ x) ∗ σ(y1)) ∗ σ(y2)) ∗ · · · ) ∗ σ(ym))

...
≤ (((((y ∗ σ(y1)) ∗ σ(y2)) ∗ · · · ) ∗ σ(ym) ∗ x) ∗ ((((y ∗ x) ∗ σ(y1)) ∗ σ(y2)) ∗ · · · ) ∗ σ(ym))

≤ (((((y ∗ σ(y1)) ∗ σ(y2)) ∗ · · · ) ∗ x) ∗ σ(ym)) ∗ ((((y ∗ x) ∗ σ(y1)) ∗ σ(y2)) ∗ · · · ) ∗ σ(ym))

...
≤ (((((y ∗ σ(y1)) ∗ x) ∗ σ(y2)) ∗ · · · ) ∗ σ(ym)) ∗ (((((y ∗ x) ∗ σ(y1)) ∗ σ(y2)) ∗ · · · ) ∗ σ(ym))

≤ (((((y ∗ x) ∗ σ(y1)) ∗ σ(y2)) ∗ · · · ) ∗ σ(ym)) ∗ (((((y ∗ x) ∗ σ(y1)) ∗ σ(y2)) ∗ · · · ) ∗ σ(ym))

= 0 ∈ I.

This means that y ∈ M , and so M ∈ I(X). Now, let x ∈ M . Then there exist n ∈ N and
x1, x2, . . . , xn ∈ X such that y = (((x ∗ σ (x1)) ∗ σ (x2)) ∗ · · · ) ∗ σ (xn) ∈ I. Then

σ (y) = (((σ (x) ∗ σ (x1)) ∗ σ (x2)) ∗ · · · ) ∗ σ (xn) .

Hence
((((σ (x) ∗ σ (x1)) ∗ σ (x2)) ∗ · · · ) ∗ σ (xn)) ∗ σ (y) = σ (0) = 0 ∈ I.

Thus there exist n ∈ N and x1, . . . , xn, xn+1 ∈ X, where xn+1 = y, such that

(((σ (x) ∗ σ (x1)) ∗ σ (x2)) ∗ · · · ) ∗ σ (xn) ∈ I.

This means that σ(x) ∈ M , and hence M is a state ideal of X. Now, let K be a state ideal of
X containing I and x ∈ M . Then according to definition of M , we conclude that x ∈ K. Hence
M ⊆ K. Thus M is the least ideal of X containing I. This means that M = ⟨I⟩S .

Proposition 5.7. Let X be distributive and σ ∈ SMO(X). Then the following statments hold:

(i) kerσ = {x ∗ σ (x) : x ∈ X} = {σ (x) ∗ x : x ∈ X},

(ii) X = ⟨kerσ ∪ img σ⟩S.

Proof. (i) Clearly, {x ∗ σ (x) : x ∈ X} ⊆ kerσ. Let x ∈ kerσ. Then

x = x ∗ 0 = x ∗ σ (x) ∈ {x ∗ σ (x) : x ∈ X}.

Thus kerσ ⊆ {x ∗ σ (x) : x ∈ X}, and so kerσ = {x ∗ σ (x) : x ∈ X}. By a similar argument, we
have kerσ = {σ (x) ∗ x : x ∈ X}.
(ii) Clearly, ⟨kerσ ∪ img σ⟩S ⊆ X. Let x ∈ X, we show that x ∈ ⟨kerσ ∪ img σ⟩S . By (i),
x∗σ(x) ∈ kerσ, for any x ∈ X. Moreover, σ(x) ∈ img σ, for any x ∈ X. Then x ∈ ⟨kerσ∪img σ⟩S .
Thus X ⊆ ⟨kerσ ∪ img σ⟩S . This shows that (ii) holds.

Definition 5.8. Let I ∈ I(X), and T be a subalgebra of X. We say T and I are complement sets
of X if,
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(C1) T ∩ I = {0},

(C2) ⟨T ∪ I⟩S = X,

(C3) for any x ∈ X, there exists ax ∈ T such that x∼Iax.

Example 5.9. Consider Example 3.5. Define σ : X → X by σ(0) = σ(b) = σ(c) = 0 and σ(a) = a.
Then (X,σ) is a state BI-algebra. If we take I := {0, c} and T := {0, a, b}, then we can see that
I ∈ I(X) and (C1)-(C3) hold.

If T and I are complement pair sets of X, then we denote these by (T, I) and we call it
complement pair of X. We denote the set of all complement pairs of X by C (X).
Proposition 5.10. Let (T, I) ∈ C (X). Then ax is a unique element of T , for any x ∈ X.
Proof. Let x ∈ X and a, b ∈ T such that x∼Ia and x∼Ib. Since ∼I is an equivalence relation on
X, we have a∼Ib. This means that a ∗ b, b ∗ a ∈ I. On the other hand, a ∗ b, b ∗ a ∈ T , since T is
a subalgebra of X. Hence a ∗ b, b ∗ a ∈ I ∩ T . But from (C1), we have I ∩ T = {0}. This implies
that a = b. Thus ax is a unique element of T , for any x ∈ X.

Theorem 5.11. Let X be distributive such that for any ideal I, ∼I is a right congruence relation.
Then there is a one-to-one correspondence between complement pairs of X and state-morphism
operators on X.
Proof. Assume σ ∈ SMO(X). Set I = kerσ and T = img σ. Then I ∈ I(X) and T is a
subalgebra of X. Now, we show that (T, I) ∈ C (X). Clearly, (C1) holds and by Proposition
5.7(ii), (C2) holds. Let x ∈ X. Then σ (x) ∈ img σ = T . Moreover, by Proposition 5.7(i),
x ∗ σ (x) , σ (x) ∗ x ∈ kerσ = I. Thus x∼Iσ(x). Therefore, for any x ∈ X, there exists σ(x) ∈ T
such that x∼Iσ(x). This shows that (T, I) ∈ C (X).

Conversely, we show that for any complement pair of X, one can define a state-morphism. Let
(T, I) ∈ C (X). Define σT,I : X → X by σT,I(x) = ax, for all x ∈ X. Proposition 5.10 follows that
σT,I well defined. Let x, y ∈ X. Then σ(x) = ax and σT,I(y) = ay. Thus x∼Iax and y∼Iay. Since
∼I is a congruence relation, we have x ∗ y∼Iax ∗ay. Moreover, ax ∗ay ∈ T , since T is a subalgebra
of X, then by Proposition 5.10, σT,I(x∗y) = ax∗y. Since x∗y∼Iax ∗ay, again by Proposition 5.10,
ax ∗ ay is unique, and so ax∗y = ax ∗ ay. This implies that

σT,I (x ∗ y) = ax∗y = ax ∗ ay = σT,I (x) ∗ σT,I(y).

Hence σT,I is a homomorphism on X. Moreover, for any a ∈ T , a∗a = 0 ∈ I, so by Proposition 5.10,
σT,I (a) = aa = a. This follows that σT,I (σT,I(x)) = σT,I(x), for all x ∈ X. Thus σT,I ∈ SMO(X).
Now, define α : C (X) → SMO (X), by α (T, I) = σT,I , and β : SMO (X) → C (X) by
β (σ) = (img σ, kerσ). Also, we have

kerσT,I = {x ∈ X : σT,I (x) = 0}
= {x ∈ X : ax = 0} .

It is obvious that I ⊆ kerσT,I . On the other hand, assume x ∈ kerσT,I . Hence ax = 0. Since
x ∗ ax ∈ I and ax = 0 ∈ I, we obtain x ∈ I, and so kerσT,I ⊆ I. Thus kerσT,I = I. Moreover, it
is easy to cheek that σT,I (x) = img σT,I = T . Then

(α ◦ β) (σT,I) = α (img σT,I , kerσT,I) = α (T, I) = σT,I

and
(β ◦ α) (T, I) = β (σT,I) = (img σT,I , kerσT,I) = (T, I) .

These complete the proof.
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6 Conclusions and future works
In this paper, we have studied various versions of maps that we called Bosbach states and state-
morphism operators in a BI-algebra. Essential properties of the above mentioned mappings and
examples for clarifying these new notions are given. Besides, we defined state ideals on BI-algebras
and gave a characterization of the least state ideal of a BI-algebra. It is proved that, the kernel
of a Bosbach state on a BI-algebra X is an ideal of X. Further, by these concepts, we have
introduced the notions of complement pairs of a BI-algebra. It is proved that under suitable
conditions, there is a one-to-one correspondence between complement pairs of a BI-algebra and
state-morphism operators in a BI-algebra. In our next research, we will consider the notions of
measures, generalized states, Riečan states, modal operators, and internal states on BI-algebras.
Hyper BI-algebras were defined by Niazian in [35]. As another direction of research, we will extend
and investigate these results to hyper BI-algebras.
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