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Abstract

Logic gives a technique for the articial intelligence to
make the computers simulate human being in dealing
with certainty and uncertainty in information. Various
logical algebras have been proposed and researched as
the semantical systems of non-classical logical systems.
In this paper using the concept of commutator, we in-
troduce the Engel algebra and then study a condition on
infinite subsets of infinite algebras. We also show that
some logical algebras satisfy to this condition but do not
have the properties associated with that condition.
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1 Introduction
BCI-algebras as a class of logical algebras are the algebraic formulations of the set difference
together with its properties in set theory and the implicational functor in logical systems. Their
names are originated from the combinators B, C, K and I in combinatory logic.

BCK-algebras and BCI-algebras are abbreviated to two B-algebras. The former was raised
in 1966 by Y. Imai and K. Iseki, Japanese mathematicians, and the latter was put forward in the
same year due to K. Iseki.

In set theory, there are three most elementary and fundamental operations. They are the union,
intersection and set difference. If we consider those three operations, then we have the notion of
Boolean algebras. If we take both of the union and intersection, then as a general algebra, the
notion of lattices is obtained. Moreover, if we consider the union or the intersection alone, we have
the notion of upper semilattices or lower semilattices. However, the set difference together with
its properties had not been considered systematically before K. Iseki. There are some systems
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which contain the only implicational functor among logical functors. Hyper logical algebras were
first studied in 2000 by Borzooei et al. They applied the concept of hyperstructures to one of
the logical algebraic structures known as the BCK-algebra, and introduced two generalizations of
them called the hyper BCK-algebra and hyper K-algebra.

They also introduced the notions of hyper I-algebras and hyper K-algebras and the union of
two hyper K-algebras. Then they stated and proved some related theorems. In particular, by some
examples they shew that these definitions are different from the notion of hyper BCK-algebras,
however any hyper BCK-algebra is a hyper K-algebra. Then by defining the concept of hyper
K-algebra product of two hyper K-algebras, they gave a theorem which shows that the relation
between the hyper K-ideal of the given hyper K-algebras and the hyper K-ideals of their product
[2, 3].

Now, in this paper we introduce the autocommutator using the automorphisms. Then we
study some conditions on infinite subsets of infinite BCI-algebras. We also using the concept of
commutator, introduce the Engel algebra and then study a graph related to an algebra.

2 Preliminaries
In this section, we recall some definitions which will need in the next sections.

A BCI-algebra is an algebraic structure (A, ∗, 0) of type (2, 0) such that, for all x, y, z ∈ A:

(BCI-1) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,

(BCI-2) x ∗ 0 = x,

(BCI-3) x ∗ y = 0 = y ∗ x imply x = y.

Define a binary relation ≤ on A by which x ≤ y if and only if x ∗ y = 0 for any x, y ∈ A. Then
(A,≤) is a partially ordered set with 0 as a minimal element in the meaning that x ≤ 0 implies
x = 0 for any x ∈ A. Given an element x in a BCI-algebra A, if it satisfies 0 ∗ x = 0 (that is,
x ≥ 0), the element x is call a positive element of A. A non-vacuous subset X of a BCI-algebra
A is a subalgebra of A if and only if X is closed under the ∗ on A. If A is a BCI-algebra, then B
and P are subalgebras of A, where B is the set of all positive elements of A, and P the set of all
minimal elements of A.

Let (A, ∗, 0) be a BCI-algebra. Then A is called a BCK-algebra if 0 ∗ x = 0, for any x ∈ A.
An algebra (A, ∗, 0) of type (2, 0) is a P -algebra if and only if it satisfies the following conditions,
for any x, y, z ∈ A,

(1) (x ∗ y) ∗ (x ∗ z) = z ∗ y,

(2) x ∗ 0 = x.

A BCK-algebra A is called commutative if x ∗ (x ∗ y) = y ∗ (y ∗ x), for any x, y ∈ A.
A BCI-algebra A is P -algebra if and only if 0 ∗ (0 ∗ x) = x, for all x ∈ A.

Let A be a BCI-algebra and for any x, y ∈ A, define, x ∗ y0 = x, x ∗ yn+1 = (x ∗ yn) ∗ y, where
n ∈ N, if there is a natural number k such that 0 ∗ xk = 0, the element x is called a nilpotent
element of A, and the least natural number satisfying 0 ∗ xk = 0 is called the period of x.

A BCI-algebra A is called nilpotent if every element in A is nilpotent.
A BCK-algebra A is called positive imlicative if x ∗ y = x ∗ y2, for any x, y ∈ A.
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Proposition 2.1. [4] Let (A1, ∗1, 01) and (A2, ∗2, 02) be BCI-algebras, and let A denote the
Cartesian product A1 × A2 of A1 and A2, i.e, A = {(x, y) | x ∈ A1, y ∈ A2}. Define a binary
operation ∗ on A by (x1, y1)∗ (x2, y2) = (x1 ∗1 x2, y1 ∗2 y2). Then, (A, ∗, 0) is a BCI-algebra, where
0 = (01, 02).

Proposition 2.2. [4] Let (A1, ∗1, 0) and (A2, ∗2, 0) be BCI-algebras such that A1 ∩ A2 = {0},
define a binary operation ∗ on A = A1 ∪A2 by

x ∗ y =


x ∗1 y x, y ∈ A1,
x ∗2 y x, y ∈ A2,
0 ∗2 y x ∈ A1, y ∈ A2 − {0},
x x ∈ A2, y ∈ A1.

Then, (A, ∗, 0) is a BCI-algebra.

Definition 2.3. [4] Let (A1, ∗1, 01) and (A2, ∗2, 02) be BCI-algebras. A mapping f from A1 to
A2 is called a BCI-homomorphism if f(x ∗1 y) = f(x) ∗2 f(y), for all x, y ∈ A1. An isomorphism
means that it is both of surjective and injective. If A is a BCI-algebra, an automorphism of A is
an isomorphism from A to A. The set of automorphisms of A denoted by Aut(A).
Let A be a non-empty set and ∗ a map from A×A to P (A)− {∅}, where P (A) denotes the power
set of A. For two subsets X and Y of A, denote by X ∗ Y the set

⋃
x∈X,y∈Y

x ∗ y.

A hyper P -algebra (HP -algebra) is a non-empty set A endowed with a hyperoperation ∗ and a
constant 0 such that, for all x, y, z ∈ A, it satisfying in the following conditions:

(1) (x ∗ y) ∗ (x ∗ z) = z ∗ y,

(2) x ∗ 0 = {x}.

Theorem 2.4. Let A be an HP -algebra and let x, y, z ∈ A, then

(i) 0 ∗ 0 = {0}, x ∗ x = {0}, 0 ∗ (0 ∗ x) = {x}, x ∗ (x ∗ y) = {y},

(ii) if 0 ∈ x ∗ y, then x = y,

(iii) if x ∗ y = x ∗ z, then y = z.

Proof. This follows from the definition.

3 A graph associated with a BCI-algebra
In this section, using the concept of commutator, we introduce the Engel elements of a BCI-algebra
and then we introduce a graph related to algebras. But before that we need some properties about
commutators and we prove them.

Definition 3.1. Let (A, ∗, 0) be a BCI-algebra and let x1, x2, . . . , xn, x, y be elements of A, we
define the commutator x and y as follows:

[x, y] = (x ∗ (0 ∗ y)) ∗ (y ∗ (0 ∗ x)).

More generally, we define inductively [x1, . . . , xn] as follows:

[x1, . . . , xn] = [[x1, . . . , xn−1], xn].

A useful shorthand notation is [x,n y] = [x, y, . . . , y︸ ︷︷ ︸
n

].
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Example 3.2. The set A = {0, 1, 2, 3} with the operation ∗ given by Table 1,

Table 1

∗ 0 1 2 3

0 0 0 0 0
1 1 0 0 0
2 2 2 0 0
3 3 2 1 0

froms a BCI-algebra (See [4]). Then [2, 1] = 2 and [2,n 1] = 2, for all n ∈ N. Also [2, 3] = 0,
[0, x] = 0, for all x ∈ A.

Lemma 3.3. Let (A, ∗, 0) be a BCI-algebra. Then

(i) B = {[x, 0] | x ∈ A}, where B is the set of all positive elements of A,

(ii) 0 ∗ [x, y] = [0 ∗ x, 0 ∗ y], for any x, y ∈ A,

(iii) [0, x] = [x, x] = [0 ∗ x, x] = 0, for any x ∈ A,

(iv) If x, y ∈ B, then [x, y] ∈ B,

(v) A = P if and only if [x, y] = 0, for any x, y ∈ A, where P is the set of all minimal elements
of A.

Proof. (i) We have 0 ∗ [x, 0] = 0 and if b ∈ B, then there exists x ∈ A such that b = [x, 0].

(iv) By (ii) we have 0 ∗ [x, y] = 0 and so [x, y] ∈ B.

Proposition 3.4. Let A be a BCK-algebra. Then,

(i) A is commutative if and only if for any x, y ∈ A, [x, [x, y]] = [y, [y, x]].

(ii) The following conditions are equivalent:

(1) A is positive implicative,
(2) [x, y] = [x,2 y], for all x, y ∈ A,
(3) [x, y, z] = [[x, z], [y, z]], for all x, y, z ∈ A.

Proof. A is commutative if and only if for any x, y ∈ A, [x, [x, y]] = x ∗ (x ∗ y) = y ∗ (y ∗ x) =
[y, [y, x]].

As an application of the above definition, we give the Engel graph, (for Engel graph associated
with a group, see [1]).

Definition 3.5. Let A be a BCI-algebra, then an element x of A is called left Engel if for every
element a ∈ A, there exists a positive integer n such that [a,n x] = 0. If the integer n is fixed for any
element a, then the element x is called left n-Engel. The set of all left Engel (n-Engel) elements
of A is denoted by L(A) (Ln(A)). A BCI-algebra A is called an Engel (n-Engel) BCI-algebra, if
L(A) = A− {0} (Ln(A) = A− {0}). Associate with a non-Engel A a graph G(A) as follows:
Take V = A − (L(A) ∪ {0}) as vertices of G(A) and join two distinct vertices x and y whenever
[x,n y] ̸= 0 ̸= [y,n x], for all positive integers n. We call G(A), the Engel graph of A.
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Example 3.6. Let A = {0, 1, 2}. Define an operation ∗ on A by Table 2.

Table 2

∗ 0 1 2

0 0 0 0
1 1 0 1
2 2 2 0

Then (A, ∗, 0) is a BCK-algebra (see [4]). It is easy to verify that L(A) = ∅ and thus V = {1, 2}
and Engel graph G(A) is shown in Figure 1.

1 2

Figure 1: Engel graph of A

Example 3.7. Let A = {0, a, b, c} in which ∗ is given by Table 3.

Table 3

∗ 0 a b c

0 0 0 0 0
a a 0 0 a
b b a 0 b
c c c c 0

Simple calculations show that (A, ∗, 0) is a BCK-algebra and V = A− (L(A)∪{0}) = {a, b, c}.
We obtain the Engel graph in Figure 2.

a

b c

Figure 2

Example 3.8. Let A = {0, a1, a2, a3, a4, a5, a6}. Define an operation ∗ on A by

x ∗ y =

{
0 x = y,
x x ̸= y.

Then (A, ∗, 0) is a BCK-algebra. It is not difficult to verify that V = {a1, a2, a3, a4, a5, a6}. Thus
the Engel graph G(A) is represented by the Figure 3.

Theorem 3.9. Let A be a positive implicative BCK-algebra, and |A| ≥ 3 and let G(A) = (V,E)
be the Engel graph of A. Then

(i) |V | = |A| − 1 or |V | = |A| − 2,
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Figure 3

(ii) Let x, y be distinct elements of V , then xy ∈ E if and only if x and y are not comparable.
Proof. (i) Let a be the greatest element, if it exists, then a is comparable with all elements of

the poset A and so L(A) = {a}, this completes the proof of part (i).

(ii) Let x, y be any two comparable points, therefore 0 = [x, y] = [x,n y] or 0 = [y, x] = [y,n x],
for all n ∈ N. Thus comparable elements are not joined in the Engel graph. Hence the result
follows.

Example 3.10. The set A = {0, 1, 2, 3, 4} together with the operation ∗ on A given by Figure 4

∗ 0 1 2 3 4

0 0 0 0 0 0
1 1 0 1 0 0
2 2 2 0 2 0
3 3 3 3 0 0
4 4 4 3 2 0

0

1 2

3

4

Figure 4

forms a positive implicative BCK-algebra, (See [4]). By routine verification, the element 4 is the
greatest element of A. But this implies that, L(A) = {4} and V = {1, 2, 3}, as shown in the
diagram below:

0

1 2

3

4

delete 0, 4

1

3

2

join 1, 2 and 2, 3

1 2

3

Figure 5

Definition 3.11. Let (A, ∗, 0) be a BCI-algebra and let x ∈ A, α ∈ Aut(A). We define [x, α] =
x ∗α(x) and will call an autocommutator of x and α. Inductively, for all α1, α2, . . . , αn ∈ Aut(A),

[x, α1, α2, . . . , αn] = [[x, α1, α2, . . . , αn−1], αn].
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If α1 = α2 = · · · = αn, then we denote [x, α1, α2, . . . , αn] by [x,n α1]. A is called auto-Engel if
[x,n α] = 0, for any x, α.

Example 3.12. Let A be the BCI-algebra as in Example 3.7. Then simple calculations show that
[x,n α] = 0, for any x ∈ A, α ∈ Aut(A), and thus A is auto-Engel which is not Engel.

Proposition 3.13. Suppose that (A, ∗, 0) is a BCI-algebra, x, y ∈ A and n ∈ N, and let α ∈
Aut(A). Then

(i) [0, α] = [0,n α] = [x,n I] = 0, where I is the identity of the group Aut(A),

(ii) α([x,n α]) = [α(x),n α], 0 ∗ α(x)n = α(0 ∗ xn),

(iii) If x ∈ B, then [x, α] ∈ B,

(iv) If [α, x] = α(x) ∗ x, then [α, x] = [α(x), α−1] = α([x, α−1]),

(v) α([x, y]) = [α(x), α(y)].

Proof. (ii) By the definition, we obtain α([x, α]) = [α(x), α]. Therefore

α([x,n α]) = [α([x,n−1 α]), α] = · · · = [α(x),n α],

for n > 1. Also by the definition, we have

α(0 ∗ xn) = α((0 ∗ xn−1) ∗ x) = · · · = (0 ∗ α(x)n−1) ∗ α(x) = 0 ∗ α(x)n.

(iii) If x ∈ B, then [x, α] ≥ 0.

Definition 3.14. Let A be a BCI-algebra and let R be a relation on A. Then R is called an
invariant relation, if for all α ∈ Aut(A), we have α(R) ⊆ R, where

α(R) = {α(x, y) = (α(x), α(y)) | (x, y) ∈ R}.

A nonempty subset K of A is called characteristic in A if for all α ∈ Aut(A), α(K) ⊆ K.

Example 3.15. Let A be a BCI-algebra. Define a binary relation R on A as follows: (x, y) ∈ R
if and only if x ∗ y ∈ B and y ∗ x ∈ B for all x, y ∈ A. Then R is an invariant relation. Also B is
characteristic.

Example 3.16. Let A be the algebra as in Example 3.6. Then Aut(A) = {I, (1 2)} and set {1, 2}
is characteristic but {0, 1} is not characteristic.

Example 3.17. Suppose that K is a characteristic subalgebra of a BCI-algebra A. Then, the
relation R = {(x, y) ∈ A×A | x ∗ y, y ∗ x ∈ K} is an invariant relation.

Conversely, if R be an invariant equivalence relation on a BCI-algebra A, then the set

K = {x ∗ y | (x, y) ∈ R},

is a characteristic subset of A.

Proposition 3.18. Let K1 and K2 be two nonempty subsets of BCI-algebra A1 and A2, respec-
tively, and let K1 ×K2 be a characteristic subset of A1 ×A2. Then Ki is characteristic.
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Proof. Let αi ∈ Aut(Ai), i = 1, 2. we define α = (α1, α2) by α((x, y)) = (α1(x), α2(y)), clearly
α ∈ Aut(A1 ×A2). Now, we obtain

α1(K1) ∼= α(K1 × {0}) ⊆ K1 × {0} ∼= K1,

and
α2(K2) ∼= α({0} ×K2) ⊆ {0} ×K2

∼= K2,

as required.

Example 3.19. Let A = {0, a} in which ∗ is given by the Table 4.

Table 4

∗ 0 a

0 0 a
a a 0

Then (A, ∗, 0) is a BCI-algebra. Also {0} and {a} are characteristic subsets of A but {(0, a)} =
{0} × {a} is not characteristic.

The above example, shows that the converse of the above proposition, is not necessarily true.

4 A condition on infinite subsets
In this section, we study algebras with a condition on infinite subsets of them.

Theorem 4.1. Let A be an infinite P -algebra and let n ∈ N and let for any infinite subset X of
A there exists x ∈ X such that 0 ∗ xn = 0, then A is nilpotent of class n.

Proof. Consider the set N = {x ∈ A | 0 ∗ xn = 0}. If A − N is infinite, then by the hypothesis
there is element a ∈ A − N such that 0 ∗ an = 0, a contradiction. Thus A − N is finite. Now,
suppose, for a contradiction, that a ∈ A −N and b ∈ N , then 0 ∗ (a ∗ (0 ∗ b))n = 0 ∗ an ̸= 0 and
hence a ∗ (0 ∗ b) ∈ A − N , on the other hand if a ∗ (0 ∗ b1) = a ∗ (0 ∗ b2), for b1, b2 ∈ N , then
b1 = b2 and so D = {a ∗ (0 ∗ b) | b ∈ N} is an infinite subset of A−N , a contradiction. Therefore
A = N .

The next example points out that a BCI-algebra with condition of infinite subset need not be
nilpotent.

Example 4.2. Let A = {0, 1, 2, 3, . . .}. Define an operation ∗ on A by

x ∗ y =


0 x ≤ y, y ̸= 1 ̸= x or x = y = 1,
x x > y, y ̸= 1,
1 x ̸= 1, y = 1 or x = 1, y ̸= 1.

It is easy to verify that the algebra A is a BCI-algebra which for any infinite subset X of A there
exists x ∈ X, such that 0∗xn = 0, but obviously, 1 is not nilpotent and therefore A is not nilpotent.

Theorem 4.3. Let A be an infinite P -algebra and let for any infinite subset X of A there exists
x ∈ X such that 0 ∗ x = x, then for all x ∈ A, 0 ∗ x = x.



A combinatorial property of logical algebras 31

Proof. Define the set S = {x ∈ A | 0 ∗x = x}. By property of infinite subset, one can see that S is
an infinite subset of A. Let t ∈ A∖ S and consider the infinite set T = {s ∗ t | s ∈ S}. Therefore
by the property A, there exists s ∈ S such that 0 ∗ (s ∗ t) = s ∗ t. But 0 ∗ (s ∗ t) = s ∗ (0 ∗ t) and so
0 = (s ∗ (0 ∗ t)) ∗ (s ∗ t) = t ∗ (0 ∗ t). Thus t ∈ S ∩ (A− S), a contradiction. Therefore A = S.

Question 4.4. In which class of algebras does the infinite subsets condition result in the corre-
sponding property?

Example 4.5. Let A be the algebra as in Example 4.2. Then for every two infinite subsets X and
Y of A there exist x ∈ X, y ∈ Y such that [x, y] = 0, but [2, 0] = 2.

Theorem 4.6. Let A1 and A2 be infinite BCI-algebras and let A1×A2 satisfies the infinite subsets
condition. Then Ai is too, i = 1, 2.

Theorem 4.7. Let A be an infinite P -algebra, n ∈ N, and for every two infinite subsets X and Y
of A there exist x ∈ X, y ∈ Y such that 0∗xn = 0∗yn. Then for all x, y ∈ A−{0}, 0∗xn = 0∗yn.

Proof. Put U = {{x, y} ∈ A(2) | 0 ∗ xn = 0 ∗ yn} and V = A(2) − U , where A(2) is the set of all 2-
element subsets of A−{0}. Since V is finite, so U is infinite, and suppose, for a contradiction, that
{a, b} ∈ V . Let T be an infinite subset of A, such that T (2) ⊆ U , and X and Y be infinite distinct
subsets of T . Now, consider the infinite sets X1 = {x∗(0∗a) | x ∈ X} and Y1 = {y∗(0∗b) | y ∈ Y }
and using the property A, we find the elements x ∈ X and y ∈ Y such that

0 ∗ (x ∗ (0 ∗ a))n = 0 ∗ (y ∗ (0 ∗ b))n.

But {x, y} ∈ U and thus 0 ∗ an = 0 ∗ bn. So {a, b} ∈ U , a contradiction.

Theorem 4.8. Let A be an infinite P -algebra and α ∈ Aut(A), and let for every infinite subset
X of A there exists x ∈ X such that [x, α] = 0, then for all x ∈ A, [x, α] = 0.

Proof. The proof is similar to the proof of Theorem 4.3.

Theorem 4.9. Let A be an infinite P -algebra and let for any infinite subset X of A there exists
x ∈ X such that [x, α] = 0 for all α ∈ Aut(A). Then Aut(A) = {I}.

Proof. Let α ∈ Aut(A), then by Theorem 4.8, we have α = I.

Theorem 4.10. Let A be an infinite P -algebra, and let B be an infinite subalgebra of A. If for
any infinite subset X of B there exists x ∈ X such that α(x) ∈ X, for all α ∈ Aut(A), then B is
characteristic in A.

Proof. Consider the set C = {x ∈ B | α(x) ∈ B, ∀α ∈ Aut(A)}. By property of infinite subset, C
is an infinite subset of B. Indeed, suppose on the contrary there exists t ∈ B − C if

T = {t ∗ (0 ∗ a) | a ∈ C},

therefore T is an infinite subset of B − C and by the property B there exists a ∈ C such that
α(t∗(0∗a)) ∈ B, for all α ∈ Aut(A) and so α(t) = (α(t)∗(0∗α(a)))∗α(a) ∈ B, for all α ∈ Aut(A),
a contradiction. It follows that B = C.

Corollary 4.11. Let A be an infinite P -algebra and let for any infinite subset X of A there
exists x ∈ X such that α(x) ∈ X, for all α ∈ Aut(A), then every infinite subalgebra of A is a
characteristic subalgebra of A.
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5 Conclusion
In this article, some concepts such as commutator, Engel graph and autocommutator are intro-
duced and examples of their aplications are stated. The following items have been obtained from
them:

(i) A graph related to a non-Engel algebra is introduced.

(ii) Engel algebras have been defined and studied.

(iii) The condition of infinite subsets is expressed on infinite algebras and their properties are
studied.
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