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Abstract

We study the class of weak pseudo EMV-algebras without top
element that are a non-commutative generalization of MV-
algebras, pseudo MV-algebras and generalized Boolean alge-
bras. We present their categorical equivalences to a special
category of pseudo MV-algebras with a fixed maximal and nor-
mal ideal as well as to a special category of unital ℓ-groups with
a fixed maximal and normal ℓ-ideal.
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1 Introduction
The basic algebraic model for many valued Łukasiewicz logic is an MV-algebra introduced in the late fifties
by Chang [3]. During the last decades MV-algebras penetrated into many areas of mathematics as well as
they were very deeply studied. The fundamental result on representation of MV-algebras is due to Mundici,
[21], saying that the category of MV-algebras is categorically equivalent to the category of unital Abelian
ℓ-groups. For more information about MV-algebras, we recommend to consult with [4]. The importance of
MV-algebras and corresponding unital ℓ-groups entails a whole variety of generalizations of MV-algebras:
In [18] and independently in [22], pseudo MV-algebras were introduced as non-commutative MV-algebras.
Pseudo BL-algebras as a non-commutative generalization of BL-algebras are defined in [7, 8], and in [19]
pseudo hoops were studied, etc.
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Recently, [11, 13, 14] introduced common commutative and non-commutative generalizations of MV-
algebras, pseudo MV-algebras and generalized Boolean algebras, called EMV-algebras (extended MV-
algebras) and pseudo EMV-algebras, respectively, as algebras where top element is not assumed. Their
basic representation theorem says that they are either equivalent to MV-algebras/pseudo MV-algebras if
they possess a top element, or they can be embedded into an equivalent MV-algebra/pseudo MV-algebra as
a maximal and normal ideal such that every element outside of the image is a complement of some element
from the image. This generalizes the analogous result for generalized Boolean algebra, see [5, Thm 2.2]. For
example, the Loomis–Sikorski type theorem for σ-complete EMV-algebras was established in [12].

We have to underline that not every maximal ideal of an MV-algebra can serve as an example for
EMV-algebras.

Since the class of EMV-algebras and pseudo EMV-algebras, respectively, is not a variety, we have studied
the least variety containing them and we have showed that this is the class of weak EMV-algebras and the
class of weak pseudo EMV-algebras which were introduced and studied in [15] and [16, 17], respectively.
The class of wPEMV-algebras is very reach, and the variety of wPEMV-algebras has uncountably many
subvarieties whereas the variety of (commutative) wEMV-algebras has only countably many subvarieties.
Every wPEMV-algebra admits a representation analogous to the one for pseudo EMV-algebras.

A wPEMV-algebra is not equivalent to a pseudo MV-algebra if and only if it does not admit a top
element. Therefore, it is important to study the class of proper wPEMV-algebras, i.e. the class of wPEMV-
algebras without top element. These structures can be studied also in frames of residuated lattices, see e.g.
[1] which cover also semiclans [2] and Bosbach cone algebras [23].

In the paper, we present the categorical equivalence of proper wPEMV-algebras by a special category
of pseudo MV-algebras as well as by a special category of unital ℓ-groups. As corollaries, we present also a
subcategories of associated proper wPEMV-algebras. As a by-product, we obtain categorical equivalences
for proper pseudo EMV-algebras.

The paper is organized as follows. Section 2 gives basic facts about studied non-commutative alge-
bras - pseudo MV-algebras, pseudo EMV-algebras, and wPEMV-algebras. The main results, categorical
equivalences, are presented in Section 3.

2 Basic Facts and Notions
The basic notion for our non-commutative many-valued reasoning is a pseudo MV-algebra defined in [18]
(see also an equivalent structure called a generalized MV-algebra [22]). That is, a pseudo MV-algebra is an
algebra (M ;⊕,− ,∼ , 0, 1) of type (2, 1, 1, 0, 0) such that the following axioms hold for all x, y, z ∈ M with
an additional binary operation ⊙ defined via

y ⊙ x = (x− ⊕ y−)∼

(A1) x⊕ (y ⊕ z) = (x⊕ y)⊕ z;

(A2) x⊕ 0 = 0⊕ x = x;

(A3) x⊕ 1 = 1⊕ x = 1;

(A4) 1∼ = 0; 1− = 0;

(A5) (x− ⊕ y−)∼ = (x∼ ⊕ y∼)−;

(A6) x⊕ (x∼ ⊙ y) = y ⊕ (y∼ ⊙ x) = (x⊙ y−)⊕ y = (y ⊙ x−)⊕ x;

(A7) x⊙ (x− ⊕ y) = (x⊕ y∼)⊙ y;

(A8) (x−)∼ = x.

If ⊕ is commutative, then a pseudo MV-algebra is an MV-algebra.
Pseudo MV-algebras are intimately connected with unital ℓ-groups. We note that an element u from

the positive cone G+ of an ℓ-group G is said to be a strong unit if given x ∈ G, there is an integer n ≥ 0
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such that x ≤ nu. A couple (G, u), where u is a fixed strong unit of G, is said to be a unital ℓ-group. For
more info on ℓ-groups, we recommend to consult [6].

The importance of ℓ-groups for non-commutative many-valued reasoning is due to the following two
facts: (1) If (G, u) is a unital ℓ-group (not necessarily Abelian), we define

Γ(G, u) := [0, u]

and

x⊕ y := (x+ y) ∧ u,

x− := u− x,

x∼ := −x+ u,

x⊙ y := (x− u+ y) ∨ 0,

then Γ(G, u) := ([0, u];⊕,− ,∼ , 0, u) is a pseudo MV-algebra [18].
(2) A basic result on representation of pseudo MV-algebras says that there is a one-to-one correspondence

between pseudo MV-algebras and unital ℓ-groups, for more details see [10], moreover, there is a categorical
equivalence between the category of pseudo MV-algebras and the category of unital ℓ-groups, generalizing
a famous result on MV-algebras, see [21].

Pseudo MV-algebras and MV-algebras have many generalizations. One of them are pseudo EMV-
algebras introduced in [13, 14]:

An algebra (M ;∨,∧,⊕, 0) of type (2, 2, 2, 0) is called a pseudo EMV-algebra (EMV stands for extended
MV-algebras) if it satisfies the following conditions:

(E1) (M ;∨,∧, 0) is a distributive lattice with the least element 0;

(E2) (M ;⊕, 0) is an ordered monoid with a neutral element 0;

(E3) for each a ∈ I(M) := {x ∈ M : x⊕ x = x}, (the set of idempotents) the elements

λa(x) := min{z ∈ [0, a] : z ⊕ x = a}, ρa(x) := min{z ∈ [0, a] : x⊕ z = a}

exist in M for all x ∈ [0, a], and the algebra ([0, a];⊕, λa, ρa, 0, a) is a pseudo MV-algebra;

(E4) for each x ∈ M , there is a ∈ I(M) such that x ≤ a.

If ⊕ is commutative, then λa = ρa and (M ;∨,∧,⊕, 0) is an EMV-algebra introduced in [11].
In the same way as for pseudo MV-algebras, we can introduce a total binary operation ⊙ in the following

way: For all x, y ∈ M , we define
x⊙ y = ρa(λa(y)⊕ λa(x)),

where a ∈ I(M) and x, y ∈ [0, a]. Then x⊙ y is correctly defined and it does not depend on a ∈ I(M). It is
clear that if (M ;⊕,− ,∼ , 0, 1) is a pseudo MV-algebra, then (M ;∨,∧,⊕, 0) is a pseudo EMV-algebra with top
element. Conversely, if (M ;∨,∧,⊕, 0) is a pseudo EMV-algebra with top element 1, then (M ;⊕, λ1, ρ1, 0, 1)
is a pseudo MV-algebra. This shows that there is a one-to-one correspondence between pseudo MV-algebras
and pseudo EMV-algebras with top element.

For example, (1) every generalized Boolean algebra gives a commutative pseudo EMV-algebra.
(2) Given an infinite system {Mi}i of pseudo MV-algebras, let M be the system of all sequences (xi)i ∈∏

i Mi, where xi ∈ Mi and each xi = 0 for all but finitely many indices i. Then M is an example of a
pseudo EMV-algebra without top element.

(3) For each pseudo EMV-algebra M without top element, there is a unique pseudo EMV-algebra N
with top element such that M can be embedded into N as a maximal and normal ideal of N and every
element of M is either in the image of M or is a complement of some element from the image of M . This
basic representation theorem was established in [14, Thm 6.4].

(4) Not every maximal and normal ideal of a unital ℓ-group gives an example of a pseudo EMV-algebra.
Indeed, take M = Γ(Z−→× G, (1, 0)), where Z is the set of integers, −→× denotes the lexicographic product,
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and G is a non-trivial ℓ-group. Then I = {(0, g) : g ∈ G+} is a unique maximal and normal ideal of M , but
it cannot serve as an example of a pseudo EMV-algebra in view that it possesses only the zero idempotent
element, and it does not dominate any non-zero element of I.

For more information about pseudo EMV-algebras consult with [13, 14].
Central algebras of the paper generalizing pseudo MV-algebras and pseudo EMV-algebras are weak

pseudo EMV-algebras introduced in [16, 17].

Definition 2.1. An algebra (M ;∨,∧,⊕,⊖,⊙∼, 0) of type (2,2,2,2,2,0) is called a wPEMV-algebra (w means
weak) if it satisfies the following conditions:

(W1) (M,∨,∧, 0) is a distributive lattice with the least element 0;

(W2) (M ;⊕, 0) is a monoid;

(W3) (y ⊕ x)⊖ x ≤ y and x⊙∼(x⊕ y) ≤ y;

(W4) (y ⊖ x)⊕ x = x ∨ y = x⊕ (x⊙∼y);

(W5) x⊖ (x ∧ y) = x⊖ y and (x ∧ y)⊙∼y = x⊙∼y;

(W6) y ⊖ (x⊙∼y) = x ∧ y = (y ⊖ x)⊙∼y;

(W7) z ⊖ (x ∨ y) = (z ⊖ x) ∧ (z ⊖ y) and (x ∨ y)⊙∼z = (x⊙∼y) ∧ (y⊙∼z);

(W8) (x ∧ y)⊖ z = (x⊖ z) ∧ (y ⊖ z) and z⊙∼(x ∧ y) = (z⊙∼x) ∧ (z⊙∼y);

(W9) x⊖ (y ⊕ z) = (x⊖ z)⊖ y and (y ⊕ z)⊙∼x = z⊙∼(y⊙∼x);

(W10) x⊕ (y ∨ z) = (x⊕ y) ∨ (x⊕ z) and (y ∨ z)⊕ x = (y ⊕ x) ∨ (z ⊕ x).

If ⊕ is commutative, then x ⊖ y = y⊙∼x, x, y ∈ M , and the subreduct (M ;∨,∧,⊕,⊖, 0) is said to be a
weak EMV-algebra which is a commutative algebra introduced in [15].

An element x ∈ M such that x⊕ x = x is said to be idempotent or Boolean, and let I(M) be the set of
idempotents of M . The basic properties of wPEMV-algebras are as follows, see [16, Prop 3.2].

Proposition 2.2. Let (M ;∨,∧,⊕,⊖,⊙∼, 0) be a wPEMV-algebra and x, y, z ∈ M . Then the following hold:

(i) (M ;⊕, 0) is an ordered monoid which is right and left naturally ordered (that is, x ≤ y if and only if
there is u ∈ M such that x⊕ u = y, equivalently, there is v ∈ M such that v ⊕ x = y).

(ii) (a⊖ x)⊙∼a = x = a⊖ (x⊙∼a) if x ≤ a.

(iii) x ∧ y = ((a⊖ x) ∨ (a⊖ y))⊙∼a and x ∧ y = a⊖ ((x⊙∼a) ∨ (y⊙∼a)) if x, y ≤ a.

(iv) x ≤ y implies that x⊖ z ≤ y ⊖ z and z⊙∼x ≤ z⊙∼y. Also, z ⊖ y ≤ z ⊖ x and y⊙∼z ≤ x⊙∼z.

(v) z ≤ x⊕ y if and only if z ⊖ y ≤ x if and only if x⊙∼z ≤ y.

(vi) (x ∧ y)⊕ z = (z ⊕ z) ∧ (y ⊕ z) and z ⊕ (x ∧ y) = (z ⊕ x) ∧ (z ⊕ y).

(vii) z ⊖ (x ∧ y) = (z ⊖ x) ∨ (z ⊖ y) and (x ∧ y)⊙∼z = (x⊙∼z) ∨ (y⊙∼z).

(viii) x⊖ x = 0 = x⊙∼x and x⊖ 0 = x = 0⊙∼x.

(ix) x ≤ y if and only if x⊖ y = 0 if and only if y⊙∼x = 0.

(x) (x ∨ y)⊖ z = (x⊖ z) ∨ (y ⊖ z) and z⊙∼(x ∨ y) = (z⊙∼x) ∨ (z⊙∼y).

(xi) x⊖ y ≤ x and x⊙∼y ≤ y.

(xii) (x⊖ y) ∧ (y ⊖ x) = 0 = (x⊙∼y) ∧ (y⊙∼x).

(xiii) If a⊕ a = a, then a⊕ x = a ∨ x = x⊕ a.
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(xiv) z ⊖ (x ∧ y) = (z ⊖ x) ∨ (z ⊖ y) and (x ∧ y)⊙∼z = (x⊙∼z) ∨ (y⊙∼z).

(xv) The binary operation ⊕ is commutative if and only if x⊖ y = y⊙∼x.

We note that every pseudo MV-algebra and every pseudo EMV-algebra can be converted into a weak
pseudo EMV-algebra (M ;∨,∧,⊕,⊖,⊙∼, 0), where

x⊖ y = x⊙ λa(y), where x, y ≤ a ∈ I(M), (1)
x⊙∼y = ρa(x)⊙ y, where x, y ≤ a ∈ I(M). (2)

If (M ;∨,∧,⊕,⊖,⊙∼, 0) is a wPEMV-algebra such that its reduct (M ;∨,∧,⊕, 0) is a pseudo EMV-algebra,
then the wPEMV-algebra M is said to be an associated wPEMV-algebra.

Finally, let G+ be the positive cone of an ℓ-group G. Set x ⊕ y = x + y, x ⊖ y = (x − y) ∨ 0, and
x⊙∼y = (−x + y) ∨ 0 for all x, y ∈ G+. Then (G+;∨,∧,⊕,⊖,⊙∼, 0) is a wPEMV-algebra called a wPEMV-
algebra of a positive cone or a conic algebra. Then it is cancellative, i.e. if x ⊕ y1 = x ⊕ y2, then y1 = y2
and if x1 ⊕ y = x2 ⊕ y, then x1 = x2, and vice versa, every cancellative wPEMV-algebra is isomorphic to
some conic algebra, [16, Thm 5.8].

As for pseudo EMV-algebras, we have also a basic representation of wPEMV-algebras by wPEMV-
algebras with top element:

Theorem 2.3. [Basic Representation Theorem for wPEMV-algebras]
Every wPEMV-algebra M either has a top element and so it is an associated wPEMV-algebra or it can
be embedded into an associated wPEMV-algebra N with top element as a maximal and normal ideal of N .
Moreover, every element of N is either in the image of x ∈ M or is a right complement of the image of
some element x ∈ M .

3 Categorical equivalences of proper wPEMV-algebras
A wPEMV-algebra M is said to be proper if M does not contain a top element. We note that the class
of proper wPEMV-algebras is not a variety. The class is closed under direct products but neither under
subalgebras and nor under homomorphic images. Indeed, take a proper associated wPEMV-algebra M and
let a ∈ I(M) be non-zero. Then the interval [0, a] is a bounded subalgebra of M and it is a homomorphic
image of M under the mapping fa : M → [0, a] defined by fa(x) = x ∧ a, x ∈ M . We recall that every
proper wPEMV-algebra has infinitely many elements.

We introduce a category PwPEMV such that its objects are proper wPEMV-algebras and morphisms
are homomorphisms of wPEMV-algebras. Now, we introduce a special category PPMV of pseudo MV-
algebras whose objects are couples (M, I), where M is a pseudo MV-algebra and I is a fixed maximal and
normal ideal of M such that every element of M belongs either to I or to its complement; we know that
I− := {x− : x ∈ I} = {x∼ : x ∈ I} =: I∼. If (M1, I1) and (M2, I2) are two objects of PPMV, then a
morphism from (M1, I1) to (M2, I2) is any homomorphism ϕ : M1 → M2 of pseudo MV-algebras such that
ϕ(I1) ⊆ I2. It is easy to see that PwPEMV and PPMV are categories.

For example, (1) the MV-algebra M = [0, 1] has a unique maximal ideal, namely I = {0}, but (M, I) is
not an object of PPMV. Similarly, if G is any ℓ-group not necessarily Abelian, then M := Γ(Z−→× G, (1, 0))
is a pseudo MV-algebra (not necessarily an MV-algebra) whose I := {(0, g) : g ∈ G+} is a unique maximal
and normal ideal of M , so that (M, I) is an object of PPMV.

(2) Let N be the set of all natural numbers and let M be the Boolean algebra of all finite and co-finite
subsets of N. For each n ∈ N, let In = {A ⊂ M : n /∈ A} and I∞ = {A ⊂ N : |A| < ∞}. Then In (n ≥ 1)
and I∞ are only maximal ideals of M and each (M, In) and (M, I∞) are objects of PPMV.

In what follows, we show that both categories are categorically equivalent. The proofs will depend on
the following propositions.

Define a mapping Φ : PPMV → PwPEMV as follows: For any object (M, I) ∈ PPMV, let

Φ(M, I) := I
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and if (M1, I1) and (M2, I2) are objects of PPMV and ϕ : (M1, I1) → (M2, I2) is a morphism, then

Φ(ϕ)(x) := ϕ(x), x ∈ I1.

We note that if (M, I) is an object of PPMV, then the restriction of the operations ∨,∧,⊕,⊖,⊙∼ from
M onto I gives that I is an object of PwPEMV, i.e. I is a proper wPEMV-algebra.

Proposition 3.1. The mapping Φ is a well-defined functor that is faithful and full from the category PPMV
into the category PwPEMV.

Proof. We start with showing that Φ is a well-defined functor. That is, we show that if ϕ : (M1, I1) →
(M2, I2) is a morphism in the category PPMV, then Φ(ϕ) is a morphism in PwPEMV. The mapping Φ(ϕ)
is a wPEMV-homomorphism from the proper wPEMV-algebra I1 into the proper wPEMV-algebra I2.

Let ϕ1 and ϕ2 be two morphisms from (M1, I1) into (M2, I2) such that Φ(ϕ1) = Φ(ϕ2). Then ϕ1(x) =
ϕ2(x) for each x ∈ I1. If x ∈ M1 \ I1, there is an element x0 ∈ I1 such that x = x−

0 . Whence ϕ1(x) =
ϕ1(x

−
0 ) = (ϕ1(x0))

− = (ϕ2(x0))
− = ϕ2(x) which implies ϕ1 = ϕ2, i.e. Φ is a faithful functor.

Now, we show that Φ is a full functor, let h : I1 → I2 be a morphism from PPMV, i.e. h is a
homomorphism of wPEMV-algebras. By Basic Representation Theorem 2.3 for wPEMV-algebras, there
are associated wPEMV-algebras M1 and M2 with top element such that I1 and I2 can be embedded into
M1 and M2, respectively, as their maximal and normal ideals. Without loss of generality, we can assume that
Ii is a wPEMV-subalgebra of Mi for i = 1, 2. We assert that there is a morphism ϕ : (M1, I1) → (M2, I2)
such that Φ(ϕ) = h. That is, h can be extended to a homomorphism ϕ of pseudo MV-algebras from M1 into
M2 for some objects (M1, I1) and (M2, I2) from PPMV. We set ϕ(x) = h(x) and ϕ(x−) = (h(x))− if x ∈ I1.
Then ϕ(1) = ϕ(0−) = h(0)− = 1. Clearly, ϕ(x) = h(x) if x ∈ I1, and ϕ(x−) = (ϕ(x))−, ϕ(x∼) = h(x)∼,
x ∈ M1.

We notify that using the Basic Representation Theorem, in each wPEMV-algebra I we can define a
binary operation ⊙ by x⊙ y = (y∼ ⊕ x∼)−; equivalently x⊕ y = (y− ⊕ x−)∼ for all x, y ∈ I. We note that
x ⊙ y ∈ I; indeed, if x ⊙ y = (y∼ ⊕ x∼)− = z− for some z ∈ I, then y∼, x∼ ≤ y∼ ⊕ x∼ = z which proves
x∼, y∼ ∈ I, a contradiction. In addition, we have ϕ(x⊙ y) = ϕ(x)⊙ ϕ(y).

Now let x, y ∈ M1. We show ϕ(x ⊕ y) = ϕ(x) ⊕ ϕ(y). There are four cases: (1) x, y ∈ I1, then clearly
ϕ(x ⊕ y) = ϕ(x) ⊕ ϕ(y). (2) x = x−

0 and y = y−0 for some x0, y0 ∈ I1. Then ϕ(x ⊕ y) = ϕ(x−
0 ⊕ y−0 ) =

ϕ((y0⊙x0)
−) = (ϕ(y0⊙x0))

− = (ϕ(y0)⊙ϕ(x0))
− = ϕ(x0)

−⊕ϕ(y0)
− = ϕ(x)⊕ϕ(y). (3) x = x−

0 and y = y0
for some x0, y0 ∈ I1. We get

ϕ(x⊕ y) = ϕ(x−
0 ⊕ y) = ϕ((y∼ ⊙ x0)

−) = ϕ((y⊙∼x0)
−)

= (ϕ(y)⊙∼ϕ(x0))
− = ϕ(x)⊕ ϕ(y).

(4) x = x0 and y = y−0 . This case is dual to (3).
Summarizing, ϕ is a homomorphism of pseudo MV-algebras which is a unique extension of h onto M1.

Whence, Φ(ϕ) = h, ϕ(I1) ⊆ I2, and Φ is a full functor.

Proposition 3.2. Let M be a proper wPEMV-algebra and hi : M → Mi be a wPEMV-embedding of M
into a wPEMV-algebra Mi with top element for i = 1, 2. Define

M0
i = {x ∈ Mi : either x = hi(x0) or x = hi(x0)

− for x0 ∈ M}

for i = 1, 2. Then (M0
1 ;⊕,− ,∼ , 0, 1) and (M0

2 ;⊕,− ,∼ , 0, 1) are isomorphic pseudo MV-algebras such that
(M0

i , hi(M)) are objects in PPMV for i = 1, 2.

Proof. Let hi : M → Ni be an embedding for i = 1, 2. Let us define ϕ : N0
1 → N0

2 such that ϕ(x) = h2(x0)
if x = h1(x0) for x0 ∈ M1 and ϕ(x) = (h2(x0))

− if x = h1(x0)
− for x0 ∈ M1. Then, due to the proof of the

Proposition 3.1 that Φ is a full functor, we can prove that ϕ is a homomorphism of pseudo MV-algebras.
In addition, ϕ is a bijection, so that it is an isomorphism. Clearly, (N0

i , hi(M)) ∈ PPMV for i = 1, 2.

Proposition 3.3. The functor Φ from the category PPMV into the category PwPEMV has a left-adjoint.
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Proof. We show that for a proper wPEMV-algebra M , there is a universal arrow ((N, I), f) i.e., (N, I) is an
object in PPMV and f is a morphism from M into Φ(N, I) = I such that if (N ′, I ′) is an object from PwPEMV
and f ′ is a morphism from M into Φ(N ′, I ′), then there exists a unique morphism f∗ : (N, I) → (N ′, I ′)
such that Φ(f∗) ◦ f = f ′.

Indeed, by the Basic Representation Theorem 2.3 and Proposition 3.2, there are a unique (up to
isomorphism) associated wPEMV-algebra N with top element and an injective wPEMV-homomorphism
f : M → N such that f(M) is a maximal and normal ideal of N with f(M) ∪ (f(M))− = N . We assert
that ((N, I), f) is a universal arrow for M . Let (N ′, I ′) be an object from PEMV and let f ′ be a morphism
from M into Φ(N ′, I ′). We can define a mapping f∗ : N → N ′ such that f∗(f(x)) := f ′(x) if x ∈ M and if
y ∈ N \ f(M), there is y0 ∈ M such that y = (f(y0))

−, and we set f∗(y) = (f ′(y0))
−. Then f∗ : N → N ′

is a unique pseudo MV-homomorphism such that Φ(f∗) ◦ f = f ′.
Define a mapping Ψ : PwPEMV → PPMV by Ψ(M) := (N, I) whenever ((N, I), f) is a universal arrow

for M and if f ′ : M → M ′ is a wPEMV-homomorphism, there is a unique morphism f∗ : (N, I) → (N ′, I ′),
where Φ(N ′, I ′) = M ′, then we set Ψ(f ′) := f∗. Using the Basic Representation Theorem, we have that Ψ
is a left-adjoint functor of the functor Φ.

Theorem 3.4. The functor Φ defines a categorical equivalence of the category PPMV and the category of
proper wPEMV-algebras PwPEMV.

In addition, if h : Φ(N, I) → Φ(N ′, I ′) is a morphism of proper wPEMV-algebras, then there is a unique
homomorphism ϕ : N → N ′ of pseudo MV-algebras with ϕ(I) ⊆ I ′ such that h = Ψ(ϕ), and

(i) if h is surjective, so is ϕ;

(ii) if h is injective, so is ϕ.

Proof. According to [20, Thm IV.4.1 (i),(iii)], since Φ is faithful and full, by Proposition 3.1, and it has a
left-adjoint, by Proposition 3.3, then it is necessary to show that, for any proper wPEMV-algebra M , there
is an object (N, I) in PPMV such that Φ(N, I) is isomorphic to M . For this, it is sufficient to take any
universal arrow ((N, I), f) of M .

We introduce two subcategories of PwPEMV and of PPMV, respectively, corresponding to associated
proper wPEMV-algebras. Thus, let PwPEMVa be the set of associated proper wPEMV-algebras; it is equiv-
alent to the set of proper pseudo EMV-algebras. In addition, let PwPEMVa be the set of (N, I) ∈ PwPEMV
such that I is a maximal and normal ideal of the pseudo MV-algebra N having enough idempotents, i.e.
given x ∈ I, there is an idempotent a ∈ I such that x ≤ a. Then PwPEMVa and PPMVa are proper sub-
categories of PwPEMV and PPMV, respectively. Theorem 3.4 entails the following categorical equivalence.

Corollary 3.5. The subcategories PwPEMVa and PPMVa are categorically equivalent.

Proof. Let G be a non-zero ℓ-group and define the pseudo MV-algebra N = Γ(Z−→× G, (1, 0)) with the
unique maximal and normal ideal I = {(0, g) : g ∈ G+}. Then (N, I) ∈ PPMV \ PPMVa and I defines a
non-associated proper wPEMV-algebra. If Φa and Ψa denote the restrictions of Φ and Ψ onto PPMV and
PwPEMV, respectively, then they are functors, and by Theorem 3.4, Φa defines a categorical equivalence in
question.

We note that the latter corollary gives also a categorical equivalence for proper pseudo EMV-algebras.
We introduce the following partial addition + on every pseudo MV-algebra N : x + y is defined iff

y ⊙ x = 0, and in such a case, x + y := x ⊕ y; if N = Γ(G, u), then + coincides with the group addition
restricted to [0, u]. We say that a couple (G, f) is a universal group for a pseudo MV-algebra N if (i) f is
a mapping from N into a po-group G which preserves partial addition + on N such that G = G+ − G+,
f(N) generates G+ as a semigroup, (ii) for any group K and any +-preserving mapping h : N → K, there
is a group homomorphism ϕ : G → K such that h = ϕ ◦ f . Due to [10, Thm 5.3], if N ∼= Γ(G, u), then
(G, f) is a universal group for N , where f is an isomorphism f : N → Γ(G, u).

Now, we define a special category MNLUG of unital ℓ-groups whose objects are triples (G, u, I), where
(G, u) is a unital ℓ-group and I is a fixed maximal and normal ℓ-ideal of G such that the ℓ-group generated
by I and u is G. A morphism f : (G1, u1, I1) → (G2, u2, I2) is any homomorphism of unital ℓ-groups
f : G1 → G2 such that f(I1) ⊆ I2.
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Let us define a functor ΓI : MNLUG → PPMV as follows: If (G, u, I) is an object of MNLUG, then

ΓI(G, u, I) := (Γ(G, u), I ∩ [0, u]),

and if f is a morphism from an object (G1, u1, I1) into another object (G2, u2, I2), then

ΓI(f)(x) := f(x), x ∈ Γ(G, u).

Proposition 3.6. ΓI is a well-defined functor that is faithful and full. Moreover, it has a left-adjoint.

Proof. Clearly ΓI(G, u, I) = (Γ(G, u), I ∩ [0, u]) ∈ PPMV. If f : (G1, u1, I1) → (G2, u2, I2) is a morphism,
then the restriction of f onto Γ(G1, u1) is in fact a homomorphism of pseudo MV-algebras with f(I1) ⊆ I2,
so that ΓI(f)(I1 ∩ [0, u1]) ⊆ I2 ∩ [0, u2], and, ΓI is a correctly defined functor.

Let f1 and f2 be two morphisms from (G1, u1, I1) into (G2, u2, I2) such that ΓI(f1) = ΓI(f2). Then
f1(x) = f2(x) for each x ∈ Γ(G1, u1), so that f1(x) = f2(x) for each x ∈ G1 and f1 = f2.

Now, let ϕ : ΓI(G1, u1, I1) = (Γ(G1, u1), I1 ∩ [0, u1]) → ΓI(G2, u2, I2) = (Γ(G2, u2), I2 ∩ [0, u2]) be a
morphism. According to the proof of [10, Prop 6.1], we can uniquely extend ϕ to a homomorphism of unital
ℓ-groups f : G1 → G2. Applying [9, Thm 6.1], Ii∩ [0, ui] can be uniquely extended to the ℓ-ideal Ii, i = 1, 2,
we have f(I1) ⊆ I2 and f is a morphism from (G1, u1, I1) into (G2, u2, I2). Finally, we have established ΓI

is a full functor because ΓI(f) = ϕ.
To show that ΦI has a left-adjoint, we show that for an object (N, I0) in PPMV, there is a universal arrow

((G, u, I), f), i.e. (G, u, I) is an object from MNLUG and f is a morphism from (N, I0) into ΓI(G, u, I) =
(Γ(G, u), I ∩ [0, u]) such that if (G′, u′, I ′) is an object from MNLUG and f ′ is a morphism from (N, I0) into
ΓI(G

′, u′, I ′) = (Γ(G′, u′), I ′ ∩ [0, u′]), then there is a unique morphism f∗ : (G, u, I) → (G′, u, I ′) such that
ΓI(f

∗) ◦ f = f ′.
Take the universal group (G, f) for the pseudo MV-algebra N . Then f is a pseudo MV-bijection from

N onto Γ(G, u). We assert that ((G, u, I), f) is a universal arrow for (N, I0), where I is an ℓ-ideal of
G generated by f(I0). Indeed, take an object (G′, u′, I ′) from MNLUG and let f ′ be a morphism from
(N, I0) → ΓI(G

′, u′, I ′) = (Γ(G′, u′), I ′0), where I ′0 = I ′ ∩ [0, u′]. Since f : M → Γ(G, u) ⊂ G+ is a +-
preserving mapping and f ′ : M → Γ(G′, u′) ⊆ G′ is also a +-preserving mapping, then there is a unique
homomorphism of unital ℓ-groups f∗ : G → G′ such that f∗ ◦ f = f ′. First, if x ∈ I0, then f(x) ∈ I and
thus f∗(f(x)) = f ′(x) ∈ I ′0.

We recall that if I0 is an ideal of Γ(G, u), then the ℓ-ideal I of G generated by an ideal I0 of Γ(G, u) is
I = {x ∈ G : ∃xi, yj ∈ I0, x = x1 + · · ·+ xn − y1 − · · · − ym}.

Therefore, if x ∈ I is arbitrary, f ′(x) ∈ I ′, so that f∗ is also a morphism from (G, u, I) to (G′, u,′ I ′),
i.e. ((G, u, I), f) is the required universal arrow.

Define a mapping ΞI : PPMV → MNLUG by ΞI(N, I0) = (G, u, I) if ((G, u, I), f) is a universal arrow for
(N, I0) and I is a maximal ℓ-ideal of G generated by f(I0). If f ′ is a morphism from (N, I0) into (N ′, I ′0),
there is a unique morphism f∗ : (G, u, I) → (G′, u′, I ′), where N ′ ∼= Γ(G′, u′) and I ′ is a maximal ℓ-ideal of
G′ generated by f ′(I ′0), consequently ΞI(f

′) := f∗. Therefore, ΞI is a left-adjoint of ΓI .

The last results entail the following categorical equivalence:

Theorem 3.7. The categories MNLUG, PPMV and PwPEMV are mutually categorically equivalent.

Proof. The categorical equivalence of PPMV and PwPEMV follows from Theorem 3.4, and using ideas
analogous to the proof of Theorem 3.4, we can show that MNLUG and PPMV are categorical equivalent,
too.

Finally, let MNLUGa be the set of objects (G, u, I) ∈ MNLUG such that, for each x ∈ I ∩ [0, u], there
is an idempotent a ∈ I ∩ [0, u] with x ≤ a. Then MNLUGa is a proper subcategory of MNLUGa and using
Corollary 3.5 and ideas from proof of Corollary 3.5, we can establish the next corollary.

Corollary 3.8. The categories PvPEMVa, PPMVa and MNLUGa are mutually categorical equivalent.

We note that the latter result gives also a categorical equivalences for the set of proper pseudo EMV-
algebras because every proper associated wPEMV-algebra is in fact a proper pseudo EMV-algebra.
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4 Conclusion
The class of proper weak pseudo EMV-algebras is the class of weak pseudo EMV-algebras that are not
equivalent to pseudo MV-algebras. Therefore, we characterize the categorical equivalence of the category
of proper wPEMV-algebras by a special category of pseudo MV-algebras as couples consisting of a pseudo
MV-algebra and a fixed maximal and normal ideal such that every element of the pseudo MV-algebra
belongs either to the ideal or is a complement of some element from the ideal, Theorem 3.4. An analogous
result is given by a special class of unital ℓ-groups with a fixed maximal and normal ℓ-ideal, see Theorem
3.7. In addition, we characterize also a subcategory of associated proper wPEMV-algebras and we found for
them categorical representations, see Corollary 3.5 and Corollary 3.8. As a by-product, we have obtained
categorical equivalences for proper pseudo EMV-algebras.
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