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Abstract

In this paper, we introduce the notion of a block commu-
tativity in several groupoids, and show that the class of
block commutative groupoids and the class of d/BCK-
algebras are Smarandache disjoint. The block commuta-
tivity in linear/quadratic groupoids is investigated, and
we prove that every group is a normal groupoid. More-
over, we discuss block n-commutative groupoids and
block ranks.
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A Title

1 Introduction

The theory of groupoids [3, 4] has been introduced by some researchers. It has been combined with
the theory of general algebraic structures [7, 10, 11]. One of the methods for the generalization of
axioms is to employ special functions, i.e., by using of proper mappings, we may generalize axioms
in mathematical structures.

The notion of BCK-algebras was formulated by K. Iséki. The motivation of this notion is
based on both set theory and propositional calculus (see [6, 8, 12]). As a generalization of this
notion, the notion of d-algebras has been developed by many researchers (see [5, 13, 14]).
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Allen et al. [1, 2] introduced several new families of Smarandache -type P -algebras and studied
some of their properties in relation to the properties of previously defined Smarandache -types.
Moreover, they introduced the notion of Smarandache disjointness, and showed that semigroups
and d/BCK-algebras are Smarandache disjoint, and also that groups and d-algebras are Smaran-
dache disjoint, while groups and semigroups are clearly not Smarandache disjoint.

The notion of the semigroup (Bin(X),�) was introduced by Kim and Neggers [9]. Given
binary operations “∗” and “•” on a set X, they defined a product binary operation “�” as follows:
x�y = (x ∗ y) • (y ∗x). This in turn yields a binary operation on Bin(X), the set of all groupoids,
defined on X turning (Bin(X),�) into a semigroup with identity (x ∗ y = x), the left zero
semigroup, and an analog of negative one in the right zero semigroup [9].

In this paper, given a groupoid (X, ∗), we consider the �-product, i.e., x�y = (x ∗ y) ∗ (y ∗ x),
and we investigate the role of � in several groupoids related to commutativity, and show that the
class of block commutative groupoids and the class of d/BCK-algebras are Smarandache disjoint.
We discuss the block commutativity in linear/quadratic groupoids, and investigate (block) centers
and normal groupoids. Especially, we prove that every group is a normal groupoid. Moreover, we
discuss block n-commutative groupoids and block ranks.

2 Preliminaries

A d-algebra [14] is a non-empty set X with a constant 0 and a binary operation “ ∗ ” satisfying
the following axioms:

(I) x ∗ x = 0,

(II) 0 ∗ x = 0,

(III) x ∗ y = 0 and y ∗ x = 0 imply x = y for all x, y ∈ X.

A BCK-algebra [6, 8, 12] is a d-algebra X satisfying the following additional axioms:

(IV) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,

(V) (x ∗ (x ∗ y)) ∗ y = 0 for all x, y, z ∈ X.

A groupoid (X, ∗) is said to be a right zero semigroup if x ∗ y = y for any x, y ∈ X, and a
groupoid (X, ∗) is said to be a left zero semigroup if x ∗ y = x for any x, y ∈ X. A groupoid (X, ∗)
is said to be a rightoid for f : X → X if x ∗ y = f(y) for any x, y ∈ X. Similarly, a groupoid (X, ∗)
is said to be a leftoid for f : X → X if x ∗ y = f(x) for any x, y ∈ X. Note that a right (left, resp.)
zero semigroup is a special case of a rightoid (leftoid, resp.) (see [9]).

Given a non-empty set X, two groupoids (X, ∗) and (X, •) are said to be Smarandache disjoint
[1, 2] if X has both an (X, ∗)-structure and an (X, •)-structure, then |X| = 1. The notion of
“Smarandache disjoint” means that, given a groupoid (X, ∗), if we combine another groupoid
(X, •) to it, then it can only be a trivial groupoid.

Given a non-empty set X, we let (Bin(X),�) denote the collection of all groupoids (X, ∗),
where ∗ : X × X → X is a map and where ∗(x, y) is written in the usual product form. Given
groupoids (X, ∗) and (X, •) in (Bin(X),�), we define a product “�” on these groupoids as follows:

(X, ∗)� (X, •) = (X,�)

where
x� y = (x ∗ y) • (y ∗ x)
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for any x, y ∈ X.
Using this notion, H. S. Kim and J. Neggers proved the following theorem.

Theorem 2.1. [9] (Bin(X),�) is a semigroup, i.e., the operation “ �” as defined in general is
associative. Furthermore, the left-zero-semigroup is the identity for this operation.

3 Block commutative groupoids

A groupoid (X, ∗) is said to be block commutative if x�y = y�x for all x, y ∈ X, where x�y :=
(x ∗ y) ∗ (y ∗ x).

Example 3.1. Let R be the set of all real numbers. Define a binary operation “∗” on R by
x ∗ y := ⌈x⌉ + ⌊y⌋ for all x, y ∈ R, e.g., ⌈2.14⌉ = 3, ⌊3.56⌋ = 3. Then 2.14 ∗ 4 = ⌈2.14⌉ + ⌊4⌋ =
3 + 4 = 7, but 4 ∗ 2.14 = ⌈4⌉ + ⌊2.14⌋ = 4 + 2 = 6. Hence (R, ∗) is not commutative. Consider
(R,�) = (R, ∗)�(R, ∗), i.e., x�y = (x ∗ y) ∗ (y ∗ x) for all x, y ∈ R. Then we have

(x ∗ y) ∗ (y ∗ x) = (⌈x⌉+ ⌊y⌋) ∗ (⌈y⌉+ ⌊x⌋)
= ⌈⌈x⌉+ ⌊y⌋⌉+ ⌊⌈y⌉+ ⌊x⌋⌋
= ⌈x⌉+ ⌊y⌋+ ⌈y⌉+ ⌊x⌋
= (y ∗ x) ∗ (x ∗ y).

Hence (R,�) is commutative, i.e., (R, ∗) is block commutative.

The example above is an example of a block commutative groupoid which is not commutative.
Obviously, if (X, ∗) is commutative, then it is block commutative. For example, let R be the set
of all real numbers and let α, β ∈ R. If we define x ∗ y := α+ βxy for all x, y ∈ R, then (R, ∗) is
both block commutative and commutative.

Example 3.2. Let X := {a, b, c, d} be a set. Define a map φ : X → X by

φ(a) = φ(b) = a, φ(c) = φ(d) = b.

If we define a binary operation “∗” on X by x∗y := φ(x) for all x, y ∈ X, then the groupoid (X, ∗)
becomes as follows:

∗ a b c d

a a a a a
b a a a a
c b b b b
d b b b b

Given x, y ∈ X, we have

x�y = (x ∗ y) ∗ (y ∗ x) = φ(x) ∗ φ(y) = φ(φ(x)) = a,

and
y�x = (y ∗ x) ∗ (x ∗ y) = φ(y) ∗ φ(x) = φ(φ(y)) = a.

It shows that (X, ∗) is block commutative. But (X, ∗) is not commutative, since c∗b = b ̸= a = b∗c.

Proposition 3.3. Let (X, ∗) be a rightoid for φ such that φ(X) ⊆ A and φ(A) = {a} for some
a ∈ A. Then (X, ∗) is block commutative.
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Proof. Given x, y ∈ X, we have

(x ∗ y) ∗ (y ∗ x) = φ(y) ∗ φ(x) = φ(φ(x)) = a.

Similarly, we obtain (y ∗ x) ∗ (x ∗ y) = a. Hence (X, ∗) is block commutative.

Example 3.4. Let R be the set of all real numbers. Define a map φ : R → R by

φ(x) :=

{
5 if x ≥ 0,
|x| if x < 0.

Then φ(R) = [0,∞) and φ(φ(R)) = {5}. If we define a binary operation “∗” on X by x∗y := φ(y)
for all x, y ∈ X, by applying Proposition 3.3, (X, ∗) is block commutative.

Proposition 3.5. Let (X, ∗) be a block commutative groupoid. If (X, ∗) is selective, then it is
commutative.

Proof. Assume that there exist x, y in X such that x ∗ y ̸= y ∗ x. Since (X, ∗) is selective, we may
let x ∗ y = y and y ∗ x = x. It follows that

y ∗ x = (x ∗ y) ∗ (y ∗ x) = x�y = y�x = (y ∗ x) ∗ (x ∗ y) = x ∗ y,

a contradiction, since (X, ∗) is block commutative.

Theorem 3.6. Let X := R be the set of all real numbers and let α, β, γ ∈ X. Define a binary
operation “∗” on X by x ∗ y := α+ βx+ γy for all x, y ∈ X. If (X, ∗) is block commutative, then
β = γ, i.e., x ∗ y is of the form x ∗ y = α+ β(x+ y) for all x, y ∈ X.

Proof. Given x, y ∈ X, we have

x�y = (x ∗ y) ∗ (y ∗ x)
= α+ β(x ∗ y) + γ(y ∗ x)
= α+ β(α+ βx+ γy) + γ(α+ βy + γx)

= α(1 + β + γ) + (β2 + γ2)x+ 2βγy.

Similarly, we obtain y�x = α(1 + β + γ) + (β2 + γ2)y + 2βγx. Since (X, ∗) is block commutative,
we obtain β2 + γ2 = 2βγ, and hence (β − γ)2 = 0, proving that β = γ.

Corollary 3.7. Let X := R be the set of all real numbers and let α, β, γ ∈ X. Define a binary
operation “∗” on X by x ∗ y := α + βx + γy for all x, y ∈ X. Then every block commutative
groupoid is commutative.

Proof. Straightforward.

Theorem 3.8. Let X := R be the set of all real numbers and let α, β ∈ X. Define a binary
operation “∗” on X by x ∗ y := αx2 + βy2 for all x, y ∈ X. Then

(i) if α+ β = 0, then (X, ∗) is block commutative, but not commutative,

(ii) if α+ β ̸= 0, then (X, ∗) is block commutative if and only if α = β.
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Proof. Given x, y ∈ X, we have

x�y = (x ∗ y) ∗ (y ∗ x)
= α(x ∗ y)2 + β(y ∗ x)2

= α[αx2 + βy2]2 + β[αy2 + βx2]2

= (α3 + β3)x4 + αβ(α+ β)y4 + 2αβ(α+ β)x2y2. (1)

Similarly, we have

y�x = (y ∗ x) ∗ (x ∗ y) = (α3 + β3)y4 + αβ(α+ β)x4 + 2αβ(α+ β)x2y2 (2)

Case (i). If α + β = 0, then x ∗ y = α(x2 − y2) for all x, y ∈ X. Hence y ∗ x = −x ∗ y and
hence

x�y = (x ∗ y) ∗ (y ∗ x) = α[(x ∗ y)2 − (y ∗ x)2] = α[(x ∗ y)2 − {−(x ∗ y)}2] = 0.

Similarly, we have y�x = (y ∗ x) ∗ (x ∗ y) = 0. Hence (X, ∗) is block commutative, but not
commutative.

Case (ii). Let α + β ̸= 0. Assume (X, ∗) is block commutative. By (1) and (2), we obtain
α3 + β3 = αβ(α+ β), and hence (α+ β)(α2 − αβ + β2) = αβ(α+ β). Since α+ β ̸= 0, we obtain
α2 − αβ + β2 = αβ, proving that α = β. If we assume α = β, then x ∗ y = α(x2 + y2), which
proves that (X, ∗) is both block commutative and commutative.

Proposition 3.9. Let (X, ∗, 0) be a d-algebra. If (X, ∗) is block commutative, then |X| = 1.

Proof. Given x ∈ X, since (X, ∗, 0) is a d-algebra, we have 0 ∗ x = 0. Since (X, ∗) is block
commutative, we obtain

0 = 0 ∗ (x ∗ 0) = (0 ∗ x) ∗ (x ∗ 0) = (x ∗ 0) ∗ (0 ∗ x) = (x ∗ 0) ∗ 0, i.e., 0 = (x ∗ 0) ∗ 0.

Since 0 ∗ (x ∗ 0) = 0 and (X, ∗, 0) is a d-algebra, we obtain x ∗ 0 = 0. In addition, from 0 ∗ x = 0,
we obtain x = 0 for all x ∈ X. Hence |X| = 1.

Corollary 3.10. The class of d/BCK-algebras and the class of block commutative groupoids are
Smarandache disjoint.

Proof. It follows immediately from Proposition 3.9.

4 Centers and normal subgroupoids

The concepts of a center and a block center of groupoids can be derived from the center of a
group. Let (X, ∗) be a groupoid. We define two notions, i.e., a center and a block center of (X, ∗)
as follows:

Z(X, ∗) := {x ∈ X |x ∗ y = y ∗ x,∀y ∈ X},

and
BZ(X, ∗) := {x ∈ X | (x ∗ y) ∗ (y ∗ x) = (y ∗ x) ∗ (x ∗ y), ∀y ∈ X}.

Moreover, a non-empty subset W of a groupoid (X, ∗) is said to be a commutative subgroupoid
of X if x ∗ y = y ∗ x for all x, y ∈ W . If (X, ∗) is a commutative groupoid, then X = Z(X, ∗) =
BZ(X, ∗).
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Example 4.1. Let (R, ∗) be a groupoid as in Example 3.1. Then (R, ∗) is not a commutative
groupoid. We claim that Z(R, ∗) = ∅. Assume that n ∈ R satisfies the condition n ∗ y = y ∗ n for
all y ∈ R.

Case 1. n ∈ Z, i.e., n is an integer. We take y := 2.14. Then n ∗ 2.14 = ⌈n⌉+ ⌊2.14⌋ = n+2
and 2.14 ∗ n = ⌈2.14⌉+ ⌊n⌋ = 3 + n, a contradiction.

Case 2. n ̸∈ Z, say n = 3.78. We take y := 1. Then 3.78 ∗ 1 = ⌈3.78⌉ + ⌊1⌋ = 5 and
1 ∗ 3.78 = ⌈1⌉+ ⌊3.78⌋ = 4, a contradiction.

We claim that BZ(R, ∗) = R, since (R, ∗) is block commutative.

Proposition 4.2. Let (X, ∗) be a groupoid and (Y, ∗) be a subgroupoid of (X, ∗). Then

(i) Y ∩BZ(X, ∗) ⊆ BZ(Y, ∗),

(ii) Y ∩ Z(X, ∗) ⊆ Z(Y, ∗).

Proof. (i) If x ∈ Y ∩ BZ(X, ∗), then x ∈ Y and (x ∗ z) ∗ (z ∗ x) = (z ∗ x) ∗ (x ∗ z) for all z ∈ X.
Since Y ⊆ X, we obtain x ∈ BZ(Y, ∗).
(ii) The proof is similar to (i).

Proposition 4.3. Let (X, ∗) be a groupoid and (W, ∗) be a commutative subgroupoid of (X, ∗) with
X ∗X ⊆ W . Then (X, ∗) is block commutative.

Proof. Given x, y ∈ X, since X ∗ X ⊆ W , we have x ∗ y, y ∗ x ∈ W . In addition, from (W, ∗) is
commutative, we have x ∗ y = y ∗ x, and hence (x ∗ y) ∗ (y ∗ x) = (y ∗ x) ∗ (x ∗ y). Therefore, (X, ∗)
is block commutative.

Theorem 4.4. Let (X, ∗) be a groupoid and (W, ∗) be a commutative subgroupoid of (X, ∗). Assume
if x, y ̸∈ W , then x ∗ y ∈ W . Then (X, ∗) is block commutative.

Proof. Given x, y ∈ X, we have 3 cases as follows.
Case (i). x, y ∈ W . Since (W, ∗) is a commutative subgroupoid of (X, ∗), x ∗ y = y ∗ x ∈ W .

It follows that x�y = (x ∗ y) ∗ (y ∗ x) = (y ∗ x) ∗ (x ∗ y) = y�x.
Case (ii). x, y ̸∈ W . By assumption, we have x ∗ y, y ∗ x ∈ W . Since (W, ∗) is commutative,

we have x ∗ y = y ∗ x, and hence x�y = y�x.
Case (iii). x ∈ W and y ̸∈ W .

Subcase (iii-1). x ∗ y ∈ W . It is similar to Case (i).
Subcase (iii-2). x ∗ y ̸∈ W . If y ∗ x ∈ W , then x ∗ y = y ∗ x ∈ W . Since (W, ∗) is a

commutative subgroupoid of (X, ∗), we get x ∗ y ∈ W , a contradiction. Hence this case does not
happen. Let y∗x ̸∈ W . Since x∗y ̸∈ W , by assumption, we obtain (x∗y)∗(y∗x), (y∗x)∗(x∗y) ∈ W .
It follows from (W, ∗) is a commutative groupoid that x�y = (x∗y)∗(y∗x) = (y∗x)∗(x∗y) = y�x.
This completes the proof.

Example 4.5. In Example 3.1, if we let W := Z, then (Z, ∗) is a commutative subgroupoid of
(R, ∗), since m∗n = ⌈m⌉+ ⌊n⌋ = m+n = n∗m for all m,n ∈ Z. We see that R∗R ⊆ Z. Hence,
by Proposition 4.2, we show that (R, ∗) is block commutative.

A groupoid (X, ∗) is said to be normal if x ∗X = X ∗ x for all x ∈ X.

Example 4.6. (a) Let X := [0,∞) be a set and “+” be the usual addition on X. Then (X,+)
is a semigroup. For any x ∈ X, we have x + X = [x,∞) = X + x. Hence (X,+) is a normal
groupoid, but not a group.

(b) Let X := [0,∞) be a set and x • y := min{x, y} on X. Then x •X = [0,∞) = X • x for all
x ∈ X. Hence (X, •) is a normal groupoid, but not a group.
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Example 4.7. Consider Example 3.1. We show that y ∗R = R∗y for all y ∈ R. Given x, y ∈ R,
for any x ∗ y ∈ X ∗ y, we need to find an element u ∈ R such that y ∗ u = x ∗ y. We take u in R
satisfying

⌊u⌋ :=
{

⌈x⌉ − 1 if y ̸∈ Z,
⌈x⌉ if y ∈ Z.

If y ̸∈ Z, then there exists n ∈ Z and α ∈ R such that y = n+α. Hence x∗y = ⌈x⌉+⌊y⌋ = ⌈x⌉+n
and

y ∗ u = ⌈y⌉+ ⌊u⌋ = n+ 1 + ⌊u⌋ = n+ 1 + (⌈x⌉ − 1) = ⌈x⌉+ n,

which proves that x∗y = y∗u. If y ∈ Z, say y = n for some n ∈ Z, then x∗y = ⌈x⌉+⌊y⌋ = ⌈x⌉+n
and y ∗ u = ⌈y⌉+ ⌊u⌋ = n+ ⌊u⌋ = n+ ⌈x⌉. Hence x ∗ y = y ∗ u. Therefore, y ∗R = R ∗ y for all
y ∈ R, proving that (R, ∗) is a normal groupoid.

Theorem 4.8. Every group is a normal groupoid.

Proof. Let (X, ∗, e) be a group and x, y ∈ X. We take u := x∗y∗x−1. Then u∗x = (x∗y∗x−1)∗x =
x ∗ y for all x ∈ X. This proves that x ∗X = X ∗ x for all x ∈ X, proving the theorem.

Theorem 4.9. The class of d/BCK-algebras and the class of normal groupoids are Smarandache
disjoint.

Proof. Let (X, ∗, 0) be both a d/BCK-algebra and a normal groupoid. Then 0 ∗ X = X ∗ 0. It
follows that x ∗ 0 = 0 ∗ x = 0 for all x ∈ X. Since (X, ∗, 0) is a d/BCK-algebra, we obtain x = 0.
Hence |X| = 1.

Let (X, ∗) be a groupoid. A subset B of X is said to be a block subset of X if x, y ∈ B, then
x�y = y�x, i.e., (x ∗ y) ∗ (y ∗ x) = (y ∗ x) ∗ (x ∗ y).

Proposition 4.10. Let (X, ∗) be a leftoid for φ and a ∈ X. If we define

Ba := {x ∈ X|φ(x) = a},

then Ba is a block subset of X.

Proof. If x, y ∈ Ba, then φ(x) = a = φ(y) and hence

(x ∗ y) ∗ (y ∗ x) = φ(x) ∗ φ(y) = a ∗ a = φ(a),

and
(y ∗ x) ∗ (x ∗ y) = φ(y) ∗ φ(x) = a ∗ a = φ(a),

proving the proposition.

5 Block n-commutative groupoids

Let (X, ∗) be a groupoid and x, y ∈ X. We define

E∗
1(x, y) := x ∗ y

E∗
2(x, y) := E∗

1(x, y) ∗ E∗
1(y, x)

E∗
3(x, y) := E∗

2(x, y) ∗ E∗
2(y, x)

.....................................

E∗
n+1(x, y) := E∗

n(x, y) ∗ E∗
n(y, x).
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If we assume E∗
n(x, y) = E∗

n(y, x), then

E∗
n+1(x, y) = E∗

n(x, y) ∗E∗
n(y, x) = E∗

n(y, x) ∗ E∗
n(x, y) = E∗

n+1(y, x).

Hence we have E∗
k(x, y) = E∗

k(y, x) for all k ≥ n.
A groupoid (X, ∗) is said to be

• commutative if E∗
1(x, y) = E∗

1(y, x) for all x, y ∈ X,

• block commutative if E∗
2(x, y) = E∗

2(y, x) for all x, y ∈ X,

• block n-commutative if E∗
n(x, y) = E∗

n(y, x) for all x, y ∈ X.

A groupoid (X, ∗) is said to have a block rank m, and denote it by brank(X, ∗) = m, if

(i) E∗
m(x, y) = E∗

m(y, x) for all x, y ∈ X,

(ii) for any n ≤ m− 1, there exist x, y ∈ X such that E∗
n(x, y) ̸= E∗

n(y, x).

The groupoid (R, ∗) in Example 3.1 has the block rank 2.

Example 5.1. Let X := {1, 2, 3, 4, 5} be a set. Define a binary operation “∗” on X by x∗y := φ(x)
for all x, y ∈ X, where φ : X → X is a map defined by

φ =

(
1 2 3 4 5
1 1 2 2 3

)
.

Then E∗
2(3, 5) = φ(φ(3)) = φ(2) = 1 ̸= 2 = φ(3) = φ(φ(5)), and hence E∗

2(3, 5) ̸= E∗
2(5, 3). Now,

we have E∗
3(x, y) = E∗

2(x, y) ∗ E∗
2(y, x) = φ(φ(x)) ∗ φ(φ(y)) = φ(φ(φ(x))) = 1 = E∗

3(y, x). Hence
brank(X, ∗) = 3.

We construct a groupoid (X, ∗) having brank(X, ∗) = 3 by the following method. Given two
elements x, y ∈ X, we define a map φ : X → X by φ(X) ⊆ A,φ(A) ⊆ B,φ(B) = {b} for some
b ∈ B, where A,B are subsets of X and φ(φ(x)) ̸= φ(φ(y)). Then

E∗
2(x, y) = (x∗y)∗(y∗x) = φ(x)∗φ(y) = φ(φ(x)) ̸= φ(φ(y)) = φ(x)∗φ(y) = (y∗x)∗(x∗y) = E∗

2(y, x).

Since φ(B) = {b}, we obtain E∗
3(x, y) = E∗

3(y, x). This shows that (X, ∗) is a groupoid having
brank(X, ∗) = 3. In Example 5.1, if we let A := {1, 2, 3, 4} and B := {1, 2}, then the mapping φ
satisfies all conditions, and hence (X, ∗) has the block rank 3.

In this manner we may construct leftoids (X, ∗, φ) having the block rank n as follows:

Proposition 5.2. If we define a binary operation “∗” on X by x∗y := φ(x) for all x, y ∈ X, where
φ : X → X by φ(X) ⊆ A1, φ(A1) ⊆ A2, · · · , φ(An−1) ⊆ An, φ(An) = {an} for some an ∈ An and

n−1︷ ︸︸ ︷
φ(φ(· · · ((φ(x)) · · · ) ̸=

n−1︷ ︸︸ ︷
φ(φ(· · · ((φ(y)) · · · ), then (X, ∗) has the block rank n.

Example 5.3. Let X := R be the set of all real numbers and 0 < an < an−1 < · · · < a2 < a1.
Define a map φ : X → X by φ(X) ⊆ [−a1, a1], φ([−a1, a1]) ⊆ [−a2, a2], · · · , φ([−an−1, an−1]) ⊆
[−an, an] and φ([−an, an]) = {0}. Define a binary operation x ∗ y := φ(x) for all x, y ∈ X. If

n−1︷ ︸︸ ︷
φ(φ(· · · ((φ(x)) · · · )(x) ̸=

n−1︷ ︸︸ ︷
φ(φ(· · · ((φ(y)) · · · )(y) for some x ̸= y in [−an−1, an−1], then (X, ∗) has

the block rank n.
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Theorem 5.4. Let φ : (X, ∗) → (Y, •) be an epimorphism of groupoids. If (X, ∗) has the block
rank m, then there exists n ≤ m such that (Y, •) has the block rank n.

Proof. Let (X, ∗) have the block rank m. Then E∗
m(x, y) = E∗

m(y, x) for all x, y ∈ X. Since φ
is an epimorphim of groupoids, we have E•

m(x, y) = E•
m(y, x) for all x, y ∈ X. It follows that

E•
m(u, v) = E•

m(v, u) for all u, v ∈ Y . If (Y, •) is a commutative groupoid, then (Y, •) has the
block rank 1. Otherwise, E•

1(u, v) ̸= E•
1 for some u, v ∈ Y . In this case, we consider a groupoid

(Y,�•
2), where x�•

2y = (x • y) • (y •x). If (Y,�•
2) is commutative, then (Y, •) has the block rank 2.

Otherwise, E•
2(u, v) ̸= E•

2 for some u, v ∈ Y . In this case, we consider a groupoid (Y,�•
3), where

x�•
3y = (x�•

2y) • (y�•
2x). We continue this process until n ≤ m, proving that (Y, •) has the block

rank n.

Note that if m = 1 in Theorem 5.4, then n = 1 as well, i.e., if φ : (X, ∗) → (Y, •) is an
epimorphism of groupoids and if (X, ∗) is commutative, then (Y, •) is also commutative.

Let (X, ∗) be a groupoid and x, y ∈ X. If E∗
n(x, y) = E∗

n(y, x) for some n ∈ N, then

E∗
n+1(x, y) = E∗

n(x, y) ∗E∗
n(y, x) = E∗

n(y, x) ∗ E∗
n(x, y) = E∗

n+1(y, x).

Hence E∗
n+k(x, y) = E∗

n+k(y, x) for all k ≥ 1.

Lemma 5.5. Let (X, ∗) and (Y, •) be groupoids. Define a binary operation “▽” on X × Y by
(x, y)▽(u, v) := (x ∗ u, y • v) for all (x, y), (u, v) ∈ X × Y . Then, for any (x, y), (u, v) ∈ X × Y ,

E▽
k ((x, y), (u, v)) = (E∗

k(x, u), E
•
k(y, v))

for all k ∈ N.

Proof. Given (x, y), (u, v) ∈ X × Y , we have

E▽
1 ((x, y), (u, v)) = (x, y)▽(u, v) = (x ∗ u, y • v) = (E∗

1(x, u), E
•
1(y, v)),

and hence

E▽
2 ((x, y), (u, v)) = E▽

1 ((x, y), (u, v))▽E▽
1 ((u, v), (x, y))

= (x ∗ u, y • v)▽(u ∗ x, v • y)
= ((x ∗ u) ∗ (u ∗ x), (y • v) • (v • y))
= (E∗

2(x, u), E
•
2(y, v)).

It follows that

E▽
3 ((x, y), (u, v)) = E▽

2 ((x, y), (u, v))▽E▽
2 ((u, v), (x, y))

= (E∗
2(x, u), E

•
2(y, v))▽(E∗

2(u, x), E
•
2(v, y))

= (E∗
2(x, u) ∗ E∗

2(u, x), E
•
2(y, v) •E•

2(v, y))

= (E∗
3(x, u), E

•
3(y, v)).

In this fashion, using the induction, we obtain the conclusion.

Theorem 5.6. Let groupoids (X, ∗) and (Y, •) have the block rank m and n, respectively. Define
a binary operation “▽” on X × Y by (x, y)▽(u, v) := (x ∗ u, y • v) for all (x, y), (u, v) ∈ X × Y .
Then (X × Y,▽) has the block rank k where k = max{m,n}.
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Proof. Since the groupoids (X, ∗) and (Y, •) have the block rank m and n, respectively, we
have E∗

m(x, y) = E∗
m(y, x), E∗

m′(x, y) ̸= E∗
m′(y, x) where m′ ≤ m − 1, and E•

n(x, y) = E•
n(y, x),

E•
n′(x, y) ̸= E•

n′(y, x) where n′ ≤ n − 1. Without loss of generality, we let m > n. Then, since
(X, ∗) has the block rank m, by Lemma 5.5, we obtain

E▽
m((x, y), (u, v)) = (E∗

m(x, u), E•
m(y, v)) = (E∗

m(u, x), E•
m(v, y)) = E▽

m((u, v), (x, y)),

and
El((x, y), (u, v)) = (E∗

l (x, u), El(y, v)) ̸= (E∗
l (u, x), E

•
l (v, y)) = El((u, v), (x, y)),

for all l ≤ m− 1. This proves the theorem.

A groupoid (X, ∗) is said to have a block rank ∞ if, for any n ∈ N, E∗
m(x, y) ̸= E∗

m(y, x) for
some x, y ∈ X.

Example 5.7. Let R be the set of all real numbers and x, y ∈ R. Define a binary operation “∗”
on R by x ∗ y := ex for all x, y ∈ R. We see that E∗

1(x, y) = x ∗ y = ex,

E∗
2(x, y) = E∗

1(x, y) ∗ E∗
1(y, x) = ex ∗ ey = ee

x
= eE

∗
1 (x,y),

and
E∗

3(x, y) = E∗
2(x, y) ∗ E∗

2(y, x) = eE
∗
2 (x,y).

In this fashion, we obtain E∗
n+1(x, y) = eE

∗
n(x,y) for any n ∈ N. We claim that ex = ey if and only

if x = y for all x, y ∈ R. Using the claim, we obtain the following:

E∗
n+1(x, y) = E∗

n+1(y, x) ⇐⇒ E∗
n(x, y) = E∗

n(y, x)

⇐⇒ E∗
n−1(y, x) ∗ E∗

n−1(x, y)

...

⇐⇒ E∗
2(x, y) = E∗

2(y, x)

⇐⇒ E∗
1(x, y) = E∗

1(y, x)

⇐⇒ x = y

Hence (X, ∗) has a block rank ∞.

6 Conclusion

Block commutativity for groupoids is an important generalization of commutativity for groupoids.
What counts here is that although groupoids may not be commutative, the degree of “non-
commutativity” can be measured by an index called the block-rank which is defined for arbi-
trary groupoids. The degree of non-commutativity is also measured by this index which measures
the minimum number of steps needed to achieve commutativity for arbitrary groupoids. If the
groupoid is a group, then one is dealing with “commutators” at different levels and one is operating
in more familiar territory. Again this shows that it is possible to embed theories of various kinds
into a more comprehensive theory of groupoids of which this paper is another example.
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