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A Title

1 Introduction

In this issue, we’ll give a survey of A. Di Nola’s main results and some essential results obtained by A. Di
Nola and R. Grigolia concerning  Lukasiewicz logic, with its important extensions, and its algebraic models -
varieties of MV -algebras, that are results of the collaboration that it is begun 1992 and continued nowadays.
But previously let me give a brief biography of our collaboration and some general historical excursus with
key results that have given impact to new deep corollaries.

Our first acquaintance has been in the 14th Linz Seminar on Fuzzy Set Theory 1992, where I have met
also P. Belluce and D. Mundici, and we have succeeded quickly to solve a scientific problem. After that, I
was invited by A. Di Nola to the Institute of Mathematics of the Faculty of Architecture of the University
of Naples in 1993. From now on have begun our long-lasting collaboration. I attended his home in his
native town Grumo Nevano, which is a typical Italian small town, where I acquainted with his wife Rosa
and Rosa’s sister family. Grumo Nevano is a small town where everybody almost knows each other, and I
have acquainted with his relatives and I always felt a very warm attitude from them. Then A. Di Nola was
invited to the Symposium on Language, Logic, and Computation that took place in the Georgian mountain
resort Gudauri (1995), where Antonio has acquainted with L. Esakia (head of Georgian logic group) and
other Georgian logicians, and, I would like to notice, a warm party in Esakia’s home in Tbilisi (capital of
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Georgia). Notice, that he attended Tbilisi and my home many times. The conference ”Ordered Groups
and Lattices in Algebraic Logic” (OGLAL2011), organized by Salerno and Tbilisi Universities, Kurt Gödel
Society, Studia Logica, have been held in Tbilisi, dedicated to the living memory of great Georgian logician
Prof. Leo Esakia, was part of the regular series Order and Algebra in Logic, started in Napoli in 1991
(Order in Algebra and Logic with application, 1991, University of Napoli, Italy).

It would be noticed that our collaboration carries interactive character - sometimes the idea arises from
Antonio, sometimes from me but we work together with posed problem. Our collaboration was continued
with the University of Salerno, where Antonio became a professor of the Department of Mathematics, and
Tbilisi State University that was strengthened by a special scientific agreement. According to the agreement
it was held two scientific conferences in Salerno (2014) and Tbilisi (2015). I would like also to notice that
over a long period of our collaboration I have acquainted with our other co-authors: Peter Belluce, Ada
Lettieri, who suddenly passed away, unfortunately, Giovani Panti, Luca Spada, Giacomo Lenzi, Gaetano
Vitale, Vincenzo Loia.

Many-valued logic is the complex of studies that originated from the papers of  Lukasiewicz [32, 33] and
Post [37] in the twenties of the last century. It should be noted that these logics are defined axiomatically.
From the logical point of view, I give preference to  Lukasiewicz logic since  Lukasiewicz logic has sensible
interpretation and, moreover, philosophical hidden.  Lukasiewicz logic and classical logic have the same
logical connectives, but different interpretations that emphasize their difference.

Taking into account  Lukasiewicz’s idea on infinite valued logic afterward C. C. Chang has been developed
its algebraic counterpart - the variety of MV -algebras [7] (1958), and proved the completeness theorem for
 Lukasiewicz logic with respect to the variety MV of MV -algebras. From this point, it is begun developing
the theory of MV -algebras. C.C. Chang constructed Γ functor from the category of linearly ordered groups
with strong unit to the category of linearly ordered MV -algebras [8] (1959), and then D. Mundici generalized
this construction to all lattice ordered groups with strong unit, and, moreover, Γ established a natural
equivalence (i.e., a full, faithful, dense functor) between the category of lattice ordered groups with strong
unit and the category of all MV -algebras [35] (1963).

Di Nola’s contribution to the study of MV -algebras, witnessed by his work [10] (1991) that has citations
in the fundamental monograph [9] (2000), includes: a functional representation theorem for all MV -algebras
(also known as Di Nolas Representation Theorem).

Subvarieties of MV -algebras have been studied by R. Grigolia [29] (1973), Y. Komori [30] (1981), A. Di
Nola and A. Lettieri [24] (1999). It is known that any such variety is generated by finitely many algebras, and
explicit axiomatizations have been obtained. R. Grigolia axiomatized all finitely valued  Lukasiewicz logics
Ln (1 ≤ n ∈ Z+) and corresponding to them varieties MVn generated by finite chain MV -algebras (1973).
Y. Komori described all subvarieties of the variety MV (1981). A. Di Nola and A. Lettieri axiomatized all
subvarieties of the variety MV (1999).

There are MV -algebras which are not semisimple, i.e. the intersection of their maximal ideals (the
radical of A) is different from {0}. Non-zero elements from the radical of A are called infinitesimals. It is
worth stressing that the existence of infinitesimals in some MV -algebras is due to the remarkable difference
of behavior between Boolean algebras and MV -algebras.

Perfect MV -algebras, that were introduced by B. Belluce, A. Di Nola, and A. Lettieri in [4] (1993), are
those MV -algebras generated by their infinitesimal elements or, equivalently, generated by their radical [3]
(2007). They generate the smallest non locally finite subvariety of the variety MV of all MV -algebras.
An important example of a perfect MV -algebra is the subalgebra S of the Lindenbaum algebra L of first
order  Lukasiewicz logic generated by the classes of formulas which are valid when interpreted in [0, 1] but
non-provable. Hence perfect MV -algebras are directly connected with the very important phenomenon of
incompleteness in  Lukasiewicz first order logic (see [2, 40]. One of the interesting results established by A.
Di Nola and A. Lettieri is a categorical equivalence between abelian ℓ-groups and perfect MV -algebras [23]
(1994). Infinitesimal elements of perfect MV -algebra spring to mind the idea of quasi-false and quasi-truth.
Following this idea, A. Di Nola, R. Grigolia, and E. Turunen have been published the monograph Fuzzy
Logic of Quasi-Truth: An Algebraic Treatment [21] (2016).

Free MV -algebras, which is an important object of a variety of algebras, have been studied by Di Nola,
R. Grigolia and G. Panti [19] (1998) and by G. Panti [36] (1999). Projective MV -algebras, which play
important role in unification problem, have been studied by Di Nola, R. Grigolia [11] (2003), Di Nola, R.
Grigolia and A, Lettieri [15] (2008), and it should be also noticed L. M. Cabrer and D. Mundici [6].
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Let E be an equational theory. The E-unification problem is: given two terms s, t (built from function
symbols and variables), to find a unifier for them, that is, a uniform replacement of the variables occurring
in s and t by other terms that make s and t equal by modulo E.

Dzik’s main result [25] entails as a special case that each subvariety of MV -algebras generated by a
single finite chain has a unitary unification type. V. Marra and L. Spada have proved that the unification
type of MV -algebras is nullary and that nullary unification problems already occur over two variables [34].

The variety generated by perfect MV -algebras has been investigated by A. Di Nola, R. Grigolia and G.
Lenzi in [14] (2016). It is shown that for m-generated algebras from this variety to be finitely presented is
equivalent to be projective. The variety generated by perfect algebras has a unitary unification type and it
is shown that the logic corresponding to this variety is structurally complete.

Monadic MV -algebras (monadic Chang algebras by Rutledges terminology) were introduced and studied
by Rutledge in [39] (1959), using a functional approach, as an algebraic model for the predicate calculus of
 Lukasiewicz infinite-valued logic, in which only a single individual variable occurs. Rutledge followed P.R.
Halmos study of monadic Boolean algebras. In view of the incompleteness of the predicate calculus, the
result of Rutledge in [39], showing the completeness of the monadic predicate calculus, has been of great
interest.

After 44 years, extending the signature of MV -algebra by unary monadic (modal) operation, we (A. Di
Nola and R. Grigolia) in [12] (2004) defined and studied monadic MV -algebras as pairs of MV -algebras one
of which is a special case of relatively complete subalgebra named m-relatively complete. An m-relatively
complete subalgebra determines a unique monadic operator. A necessary and sufficient condition is given
for a subalgebra to be m-relatively complete. After this scientific work serial works appeared by many
authors devoted to various types of monadic algebras.

We introduced a new logic [17] (2015), a multimodal epistemic  Lukasiewicz logic, which is an extension
of the infinitely valued  Lukasiewicz logic, the language of the logic is extended by unary connectives that
are interpreted as modal operators (knowledge operators). We proposed the use of such logic in studying
immune system.

Following K. Segerberg [41] (1977), D. Kozen [31] (1979) and V. Pratt [38] (1980), who have been in-
troduced dynamic (classical) propositional logic, that is a formal system for reasoning about programs,
and dynamic algebras, dynamic propositional  Lukasiewicz logic DPL (dynamic n-valued propositional
 Lukasiewicz logic DPLn) and dynamic MV -algebras (dynamic MVn-algebras) are introduced and theories
of the logic DPL (DPLn) and dynamic MV -algebras (MVn-algebras) are developed [22] (2020). Dynamic
MV -algebras (dynamic MVn-algebras) are algebraic counterparts of the logic DPL (DPLn), that in turn
represent two-sorted algebras that combine the varieties of MV -algebras (MVn-algebras) and regular alge-
bras into a single finitely axiomatized variety resembling R-module with scalar multiplication. The results
obtained for dynamic  Lukasiewicz logic have been applied for the immune system in [18] (2021) having
another interpretation of modal operators

2 The variety of MV -algebras and its subvarieties

An algebra A = (A, 0,¬,⊕) with one binary and one unary and one nullary operations is a MV -algebras if
it satisfies:

MV1. (A, 0,⊕) is an abelian monoid
MV2. ¬¬x = x
MV2. x⊕ ¬0 = ¬0
MV3. y ⊕ ¬(y ⊕ ¬x) = x⊕ ¬(x⊕ y).
We set 1 = ¬0 and x ⊙ y = ¬(¬x ⊕ ¬y). We shall write ab for a ⊙ b and an for a⊙ · · · ⊙ a︸ ︷︷ ︸

n times

, for given

a, b ∈ A. Every MV -algebra has an underlying ordered structure defined by x ≤ y iff ¬x ⊕ y = 1. Then
(A;≤, 0, 1) is a bounded distributive lattice. Moreover, the following property holds in any MV -algebra:

xy ≤ x ∧ y ≤ x ∨ y ≤ x⊕ y.

The unit interval of real numbers [0, 1] endowed with the following operations: x ⊕ y = min(1, x + y), x ⊙
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y = max(0, x + y − 1),¬x = 1 − x, becomes an MV -algebra. It is well known that the MV -algebra
S = ([0, 1],⊕,⊙,¬, 0, 1) generate the variety MV of all MV -algebras, i. e. V(S) = MV.

MV -algebras are algebraic models of  Lukasiewicz logic  L [7]. The axioms of the  Lukasiewicz logic are
the following [33]:

(L1) φ→ (ψ → φ),
(L2) (φ→ ψ) → ((ψ → χ) → (φ→ χ)),
(L3) (¬φ→ ¬ψ) → (ψ → φ),
(L4) ((φ→ ψ) → ψ) → (ψ → φ) → φ).
MVn-algebras, that was introduced by R. Grigolia in [29] (1973), are algebraic models of n-valued

 Lukasiewicz logic  Ln. The axioms of the logic  Ln, that was given by R. Grigolia [29] (1973), are the
 Lukasiewicz logic plus the following:

(Ln5) φn ↔ φn−1,
(Ln6) n(φk) ↔ (k(φk−1))n,
for every integer 2 ≤ k ≤ n− 2 that does not divide n− 1.
An MV -algebra A = (A,⊕,⊙,¬, 0, 1) is MVn-algebra if it satisfies the identities: xn = xn−1, (n(xk) =

(k(xk−1))n for every integer 2 ≤ k ≤ n− 2 that does not divide n− 1 [29] (1973).
The subvariety MVn)(= V(Sn)) of MV (also named by Grigolia’s subvariety [1]) is generated by

Sn = ({0, 1/n, ..., n− 1/n, n},⊕,⊙,¬, 0, 1).
Chang discovered a correspondence between totally ordered (= linearly ordered) MV -algebras and to-

tally ordered abelian groups [7]. Mundici, in [35], extended this correspondence to a Γ functor between
MV -algebras and lattice-ordered abelian groups (abelian ℓ-groups) (G,+,−, 0, u) with strong unit u, and
proved that Γ is a categorical equivalence. For every abelian ℓ-group G, the functor Γ equips the unit
interval [0, u] with the operations:

x⊕ y = u ∧ (x+ y);
x⊙ y = 0 ∨ (x+ y − u);
¬x = u− x; 0 = 0;
1 = u.
It is easy to see that the resulting structure ([0, u], 0,¬,⊕) is an MV -algebra.
Following Komori [30], set Sω

n = Γ((Z ×lex Z), (n, 0)), where Z is the totally ordered additive group of
integers, and Z ×lex Z is the lexicographic product of Z by itself; and let Sn = Γ(Z, n)(∈ MVn); note that
Sn is a subalgebra of Sω

n .
In [30], Komori proved that every subvariety V of MV is of the form V = V{Sm1 , ..., Smr , S

ω
t1 , ..., S

ω
ts}

for some finite sets I = {m1, ...,mr} and J = {t1, ..., ts}, not both empty.
Let V(A1, ..., An) denotes the subvariety of MV which is generated by the MV -algebras A1, ..., An. For

every i ∈ Z+ let
δ(i) = {n ∈ Z : 1 ≤ n and n is a divisor of i}.

Furthermore, if J is a nonempty finite subset of Z+ and i = 2, 3, 4, ... let ∆(i, J) = {d ∈ δ(i)−
∪

j∈J δ(j)}.
In case J = ∅ we define ∆(i, ∅) = δ(i).
Di Nola - Lettieri Assertion
Let V be a proper subvariety of MV. Then there exist finite sets I and J of positive integers with

I ∪ J ̸= ∅, such that for any MV -algebra A we have A ∈ V iff A satisfies the equations

((n+ 1)xn)2 = 2xn+1,where n = max{I ∪ J}; (1)

(pxp−1)n+1 = (n+ 1)xp, (2)

for every positive integer 1 < p < n such that p is not a divisor of any i ∈ I ∪ J ;

(n+ 1)xq = (n+ 2)xq, for every q ∈
∪
j∈J

∆(i, J). (3)
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Equations (1) and (2) tackle subvarieties with no finite algebras as generators. Equations (3) are added
to deal with subvarieties having mixed finite and infinite generators.

From this A. Di Nola and A. Lettieri result, we can conclude that any subvariety of MV is finitely
axiomatizable.

3 Di Nola’s representation theorem

Let I be a non-empty set. Let (P (I),∪,∩, ′, ∅, I) be the Boolean algebra of all subsets of I. A subset
F ⊂ P (I) is said to be filter if: 1) I ∈ F , 2) if X,Y ∈ F then X ∩ Y ∈ F , 3) if X ∈ F and X ⊂ Y then
Y ∈ F . A filter F is proper if F ̸= P (I). A proper filter U is called ultrafilter if it is a maximal proper filter
with respect to the inclusion between filters.

Let (Ai)i∈I be a nonempty indexed family of algebras of the same type, and suppose F is a filter over
I. We define the binary relation θF on

∏
i∈I Ai by (a, b) ∈ θF iff {i ∈ I : a(i) = b(i)} ∈ F which is a

congruence relation.
Given a nonempty indexed family of algebras (Ai)i∈I of the same type and a proper filter F over I,

define the reduced product
∏

i∈I Ai/F as follows. Let its universe
∏

i∈I Ai/F be the set
∏

i∈I Ai/θF , and
let a/F denote the element a/θF . For an n-ary function symbol f and for a1, ..., an ∈

∏
i∈I Ai, let

f(a1/F, ..., an/F ) = f(a1, ..., an)/F.

A reduced product
∏

i∈I Ai/U is called an ultraproduct if U is an ultrafilter over I. If all the Ai = A,
then we write AI/U and call it an ultrapower of A.

Proposition 3.1. (Di Nola’s representation theorem) [10]. Up to isomorphism, every MV -algebra
A is an algebra of [0, 1]I/U -valued functions over some set only depending on the cardinality of A.

4 Perfect MV -algebras

The class of perfect MV -algebras is a full subcategory of the category of MV -algebras. In general, there are
MV -algebras which are not semisimple. Roughly speaking we can say that a non-semisimple MV -algebra A
has a non-zero radical. We call a non-zero element from the radical of A an infinitesimal. The first example
of a non-simple MV -chain was given by Chang in [7], where the MV -algebra C is described.

Chang’s MV -algebra C [7], which is our main interest, is defined on the set

C = {0, c, ..., nc, ..., 1 − nc, ..., 1 − c, 1},

by the following operations (consider 0 = 0c): x⊕ y =

• (m+ n))c if x = nc and y = mc;

• 1 − (m− n)c if x = 1 − nc and y = mc and 0 < n < m;

• 1 − (n−m)c if x = nc and y = 1 −mc and 0 < m < n;

• 1 otherwise;

¬x = 1 − nc if x = nc, ¬x = nc if x = 1 − nc.

The MV -algebra C is isomorphic to the algebra Sω
1 defined by Komori in [30].

The algebra C has remarkable properties:

(1) C is generated by its radical

(2) C = Rad(C) ∪ ¬Rad(C)

(3) C/Rad(C) ∼= {0, 1}.
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Hence C is just made by infinitesimal elements and co-infinitesimal elements. We then would like to describe
a class of MV -algebras containing C and whose elements share the above properties. Then we can think of
such a class as the one made by MV -algebras which are, up to infinitesimal elements, like the 2-elements
Boolean algebra {0, 1}.

We say that an MV -algebra A is perfect if for each element x ∈ A, ord(x) <∞ iff ord(¬x) = ∞, where
the order of an element x, in symbols ord(x), is the least integer m such that mx = 1; if no such integer m
exists then ord(x) = ∞.

An ideal of an MV -algebra A is a subset J of A satisfying the following conditions:

J1) 0 ∈ J ,
J2) If x ∈ J , y ∈ A and y ≤ x then y ∈ J ,
J3) If x ∈ J and y ∈ J then x⊕ y ∈ J .

We say that an ideal J of an MV -algebra A is perfect if for every x ∈ A, there is an n ∈ N such that
xn ∈ J iff (¬x)m /∈ J for all m ∈ N.

The intersection of any family of ideals of A is an ideal of A. For every subset W ⊆ A, the intersection of
all ideals J ⊇W is said to be the ideal generated by W . In particular, given an element z of an MV -algebra
A, the ideal ⟨z⟩ generated by the singleton {z} is called the principal ideal generated by z, and we have
⟨z⟩ = {x ∈ A : nz ≥ x} for some integer n ≥ 0.

Filter and perfect filter are defined dually.
Let X be a subset of the algebra A. We say that the algebra A is generated by the set X if A coincides

with the intersectionof all subalgebras containung the set X: in notation A = ⟨X⟩.

Proposition 4.1. [21] (i) Let A be a perfect MV -algebra. Then Rad(A) is a unique maximal ideal of A;
(ii) An ideal J ⊆ A is perfect iff A/J is perfect;
(iii) Let A be an MV -algebra, the following statements are equivalent:

(1) A is perfect;
(2) Every ideal J ⊆ A is perfect;

(iv) In an MV -algebra A, the algebra ⟨Rad(A)⟩ generated by Rad(A) is a perfect subalgebra of A;
(v) Let A be a perfect MV -algebra. Then A = ⟨Rad(A)⟩;
(vi) Let A be an MV -algebra. Then the following are equivalent:

(1) A is perfect.
(2) A/Rad(A) = {0, 1}.

(vii) Let A be a perfect MV -algebra and f a homomorphism. Then f(A) is a perfect MV -algebra;
(viii) Let A be a non semisimple MV -algebra. Then A contains a copy of C as a subalgebra;

4.1 The category of Perfect MV -algebras

A relevant the fact concerning perfect MV -algebras is that each one of them is generated by its infinitesimals.
This turns out to induce a very special structure on the generated algebra. Perfect MV -algebras can be seen
as an extreme case of non-archimedean MV -algebras. Thus, the role of perfect MV -algebras is important
because it is strictly linked with the role of infinitesimals. An important example of a perfect MV -algebra
can be found as a subalgebra S of the Lindenbaum algebra L of the first order  Lukasiewicz logic. Hence
perfect MV -algebras are directly connected with a very important phenomenon of the first order  Lukasiewicz
logic, namely, with the incompleteness of such a logic.

Perfect MV -algebras form a full subcategory of the category of all MV -algebras. We denote the category
of perfect MV -algebras by Perfect.

Proposition 4.2. [23, 21] (i) The category Perfect of perfect MV -algebras is equivalent to the category of
abelian l-groups;
(ii) {0, 1} is a terminal and initial object of Perfect;
(iii) Perfect has pull-backs;
(iv) Perfect has arbitrary products;
(v) Perfect has the amalgamation property.
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4.2 The variety generated by Perfect MV -algebras

It is worth remarking that the class of perfect algebras does not form a variety, so the problem of studying
the proper subvariety of the variety of all MV -algebras generated by all perfect MV -algebras arises.

Let V(Perf) be the variety generated by all perfect algebras, and V(C) be the variety generated by
Chang’s algebra C. Then the following theorem holds:

Proposition 4.3. [23, 21] (i) An MV-algebra A is in the variety V (C) iff A satisfies the identity:

(x⊕ x) ⊙ (x⊕ x) = (x⊙ x) ⊕ (x⊙ x);

(ii) V(C) = V(Perf);
(iii) Let A be a perfect non-Boolean MV -chain. Then V(A) = V(Perf);
(iv) Let A ∈ V(C). Then A is a subdirect product of perfect MV-chains.

Proposition 4.4. [21] V(C) = QV(C), where QV(C) is a quasivariety generated by C.

Since QV(FMV(ω)) = QV(C), from this proposition we obtain directly

Corollary 4.5. The logic LP , corresponding to the variety of perfect MV -algebras, is structurally complete.

5 Free and projective algebras

Let V be a variety. An algebra A ∈ V is said to be a free algebra over V, if there exists a set A0 ⊂ A such
that A0 generates A and every mapping f from A0 to any algebra B ∈ V is extended to a homomorphism h
from A to B. In this case, A0 is said to be the set of free generators of A. If the set of free generators is finite,
then A is said to be a free algebra of finitely many generators. We denote a free algebra A with m ∈ (ω+ 1)
free generators by FV(m). We shall omit the subscript V if the variety V is known. We can also define the
m-generate free algebra A on the generators g1, ..., gm over the variety K in the following way: the algebra
A is a free algebra on the generators g1, ..., gm iff for any m variable identity p(x1, ..., xm) = q(x1, ..., xm),
the identity holds in the variety K iff the equation p(g1, ..., gm) = q(g1, ..., gm) is true in the algebra A on
the generators [5].

Let V be any variety of algebras. An algebra A is said to be retract of the algebra B, if there are
homomorphisms ε : A → B and h : B → A such that hε = IdA, where IdA is the identity map over A.
An algebra A ∈ V is called projective, if for any B,C ∈ V, any onto homomorphism γ : B → C and any
homomorphism β : A → C, there exists a homomorphism α : A → B such that γα = β. Notice that in
varieties, projective algebras are characterized as retracts of free algebras.

A subalgebra A of FV(m) is said to be projective subalgebra if there exists an endomorphism h : FV(m) →
FV(m) such that h(FV(m)) = A and h(x) = x for every x ∈ A.

Let FVn(m) be m-generated free MV -algebra in the variety

Vn = V({S1, ..., Sn}).

Let g
(n)
1 , ..., g

(n)
m ∈ FVn(m) be free generators of FVn(m).

On Z+ we define the function vm(x) as follows: vm(1) = 2m, vm(2) = 3m − 2m, ..., vm(n) = (n+ 1)m −
(vmn1 + ...vm(nk−1)), where n1(= 1), ..., nk−1 are all the divisors of n distinct from n(= nk).

Proposition 5.1. [19] FVn
(m) ∼= S

vm(1)
1 × ...× S

vm(n)
n .

Let FMV(m) be m-generated free MV -algebra in the variety MV.

Proposition 5.2. [11] (i) FMV(m) is isomorphic to a subalgebra of an inverse limit F∞(m) of a chain of
order type ω∗ of finite algebras, for m ∈ ω, and the finite algebras are isomorphic to FVn(m).
(ii) The subalgebra FMV(m)) of the direct product

∏∞
n=1 FVn(m) generated by zi = (g

(1)
i , g

(2)
i , ...) ∈

∏∞
n=1 FVn(m)

is a free MV -algebra with the free generators z1, ..., zm, where i = 1, ...,m, and are free generators of the
free m-generated MV -algebra FVn(m).
(iii) The free MV -algebra FMV(ω) with countably many free generators is isomorphic to a subalgebra of
the inverse limit F∞(ω) of the inverse system {FVi(ω), πij}, where FVi(ω) is the free MV -algebra with
countably many free generators in the variety Vi.
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In addition, it would be noticed, that in [20] the n-generated free MV -algebra is represented as a quotient
of the disjoint union of all the n-generated free Vn-algebras. Such a quotient can be seen as the direct limit
of a system consisting of all free Vn-algebras and special maps between them as morphisms.

Proposition 5.3. [11] Let K be any variety of algebras and FK(m) be the m-generated free algebra of
a variety K and g1, ..., gm be its free generators. Then the m generated subalgebra A of FK(m) with the
generators a1, ..., am ∈ A is projective if and only if there exist polynomials P1(x1, ..., xm), ..., Pm(x1, ..., xm)
such that

Pi(g1, ..., gm) = ai

and

Pi(P1(x1, ..., xm), ..., Pm(x1, ..., xm)) = Pi(x1, ..., xm),

i = 1, ...,m.

Proposition 5.4. [11] (1) Let A be finite MV -algebra of a locally finite subvariety Vn of the variety MV
of all MV -algebras. Then the following statements are mutually equivalent:

(i) A is projective in Vn,
(ii) A is isomorphic to S1 ×A′ for some finite MV -algebra A′.

(2) Any subalgebra of the m-generated free algebra FVn(m) is projective MV -algebra in the variety Vn.
(3) Any endomorphic image of FVn(m) is an m-generated projective MV -algebra in Vn.
(4) If A is finite projective MV -algebra in the variety MV then A is isomorphic to S1.

Let S
ω(1)
1 = Γ(Z ×lex Z, (1, 0)) = C, S

ω(m)
1 = Γ(Z ×lex ...×lex Z︸ ︷︷ ︸

m+1 times

, (1, 0, ..., 0)), where (1, 0, ..., 0) ∈ Zm+1

and Z ×lex ...×lex Z is the lexicographic product of Z m+ 1 times.

Proposition 5.5. [13] 1) S
ω(m)
1 is generated by m generators: (0, ..., 0, 1), ..., (0, 1, 0, ..., 0);

2) S
ω(k)
1 is a homomorphic image of S

ω(m)
1 for k ≤ m.

3) 1-generated free Sω
1 -algebra FV(Sω

1 )(1) is isomorphic to (Sω
1 )2 with free generator g = ((0, 1), (1,−1)).

For the sake of simplicity, let us introduce the following notations for the generating elements of the

algebra S
ω(m)
1 (m ≥ 2): c1 = (0, 0, ..., 0, 1), c2 = (0, 0, ..., 1, 0), ..., cm = (0, 1, ..., 0, 0). Notice, that Sω

1 -algebra

S
ω(2)
1 is generated by two generators c1 = (0, 0, 1) and c2 = (0, 1, 0).

Proposition 5.6. [16] 2-generated free Sω
1 -algebra FV(Sω

1 )(2) is isomorphic to (Rad∗((S
ω(2)
1 )2))2

2

with free
generators g1 = ((c1, c2),¬(c1, c2), (c1, c2),¬(c1, c2)) and g2 = ((c2, c1), (c2, c1),¬(c2, c1),¬(c2, c1)).

6 Unification problem

Let E be an equational theory. The E-unification problem is: given two terms s, t (built from function
symbols and variables), to find a unifier for them, that is, a uniform replacement of the variables occurring
in s and t by other terms that make s and t equal by modulo E. For detailed information on the unification
problem, we refer the readers to [27, 28, 26].

Let us be more precise. Let F be a set of functional symbols and let V be a set of variables. Let TF (V )
be the term algebra built from F and V , and TFm(V ) be the term algebra of m-variable terms. Let E be a
set of identities of type p(x1, ..., xm) = q(x1, ..., xm), where p, q ∈ TFm(V ).

Let V be the variety of algebras over F axiomatized by the equations from E.
A unification problem modulo E is a finite set of pairs

E = {(sj , tj) : sj , tj ∈ TFm(V ), j ∈ J},

for some finite set J . A solution to (or a unifier for) E is a substitution (or an endomorphism of the term
algebra TFm(V )) σ (which is extension of the map s : Vm → TFm(V ), where Vm (= {x1, ..., xm}) is the set



A longtime season of friendship and scientific collaboration 53

of m variables) such that the identity σ(sj) = σ(tj) holds in every algebra of the variety V. The problem E
is solvable (or unifiable) if it admits at least one unifier.

Let (X,≼) be a quasi-ordered set (i. e. ≼ is a reflexive and transitive relation). A µ-set [28] for (X,≼)
is a subset M ⊆ X such that: (1) every x ∈ X is less or equal to some m ∈ M ; (2) all elements of M are
mutually ≼-incomparable. There might be no µ-set for (X,≼) (in this case we say that (X,≼) has type 0)
or there might be many of them, due to the lack of antisymmetry. However, all µ-sets for (X,≼), if any,
must have the same cardinality. We say that (X,≼) has type 1, ω,∞ iff it has a µ-set of cardinality 1, of
finite (greater than 1) cardinality or of infinite cardinality, respectively.

Substitutions are compared by instantiation in the following way: we say that σ : TFm(V ) → TFm(V )) is
more general than τ : TFm(V ) → TFm(V ) (written as τ ≼ σ) iff there is a substitution η : TFm(V ) → TFm(V )
such that for all x ∈ Vm we have E ⊢ η(σ(x)) = τ(x). The relation ≼ is quasi-order.

Let UE(E) be the set of unifiers for the unification problem E ; then (UE(E),≼) is a quasi-ordered set.
We say that an equational theory E has:

1. Unification type 1 iff for every solvable unification problem E , UE(E) has type 1;

2. Unification type ω iff for every solvable unification problem E , UE(E) has type ω;

3. Unification type ∞ iff for every solvable unification problem E , UE(E) has type 1 or ω or ∞ - and
there is a solvable unification problem E such that UE(E) has type ∞;

4. Unification type nullary, if none of the preceding cases applies.

Following Ghilardi [27], who has introduced the relevant definitions for E-unification from an algebraic
point of view, by an algebraic unification problem we mean a finitely presented algebra A of V. In this
context, an E-unification problem is simply a finitely presented algebra A, and a solution for it (also called
a unifier for A) is a pair given by a projective algebra P and a homomorphism u : A → P . The set of
unifiers for A is denoted by UE(A). A is said to be unifiable or solvable iff UE(A) is not empty. Given
another algebraic unifier w : A → Q, we say that u is more general than w, written w ≼ u, if there is a
homomorphism g : P → Q such that w = gu.

The set of all algebraic unifiers UE(A) of a finitely presented algebra A forms a quasi-ordered set with
the quasi-ordering ≼.

The algebraic unification type of an algebraically unifiable finitely presented algebra A in the variety
V is now defined exactly as in the symbolic case, using the quasi-ordering set (UE(A),≼). If m-generated
finitely presented algebra of an equational class V is projective, then IdA will be most general unifier for
A.

Proposition 6.1. [14] The unification type of the equational class V(Sω
1 ) is 1, i. e. unitary.

7 Monadic MV -algebras

The finitely valued propositional calculi, which have been described by  Lukasiewicz and Tarski in [33], are
extended to the corresponding predicate calculi. The predicate  Lukasiewicz (infinitely valued) logic QL is
defined in the following standard way. The existential (universal) quantifier is interpreted as supremum
(infimum) in a complete MV -algebra. Then the valid formulas of predicate calculus are defined as all
formulas having value 1 for any assignment. The functional description of the predicate calculus is given by
Rutledge in [39]. Scarpellini in [40] has proved that the set of valid formulas is not recursively enumerable.
Monadic MV -algebras were introduced and studied by Rutledge in [39] as an algebraic model for the
predicate calculus QL of  Lukasiewicz infinite-valued logic, in which only a single individual variable occurs.
Rutledge followed P.R. Halmos’ study of monadic Boolean algebras. In view of the incompleteness of
the predicate calculus, the result of Rutledge in [39], showing the completeness of the monadic predicate
calculus, has been of great interest.

Let L denote a first-order language based on ·,+,→,¬, ∃ and let Lm denote a propositional language
based on ·,+,→,¬, ∃. Let Form(L) and Form(Lm) be the set of all formulas of L and Lm, respectively.
We fix a variable x in L, associate with each propositional letter p in Lm a unique monadic predicate p∗(x)
in L and define by induction a translation Ψ : Form(Lm) → Form(L) by putting:
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• Ψ(p) = p∗(x) if p is propositional variable,

• Ψ(α ◦ β) = Ψ(α) ◦ Ψ(β), where ◦ = ·,+,→,

• Ψ(∃α) = ∃xΨ(α).

Through this translation Ψ, we can identify the formulas of Lm with monadic formulas of L containing
the variable x.

An algebra A = (A,⊕,⊙,¬, ∃, 0, 1) is said to be a monadic MV -algebra ( MMV -algebra for short) if
A = (A,⊕,⊙,¬, 0, 1) is an MV -algebra and in addition ∃ satisfies the following identities:

E1. x ≤ ∃x,

E2. ∃(x ∨ y) = ∃x ∨ ∃y,

E3. ∃¬(∃x) = ¬(∃x),

E4. ∃(∃x⊕ ∃y) = ∃x⊕ ∃y,

E5. ∃(x⊙ x) = ∃x⊙ ∃x,

E6. ∃(x⊕ x) = ∃x⊕ ∃x.

A subalgebra A0 of an MV -algebra A is said to be relatively complete if for every a ∈ A the set
{b ∈ A0 : a ≤ b} has a least element.

Let (A,⊕,⊙,¬, ∃, 0, 1) be a monadic MV -algebra. By [39], the MV -algebra ∃A(= {∃a : a ∈ A}) is a
relatively complete subalgebra of the MV -algebra (A,⊕,⊙,¬, 0, 1), and ∃a = inf{b ∈ ∃A : a ≤ b}.

A subalgebra A0 of an MV -algebra A is said to be m-relatively complete [11], if A0 is relatively complete
and two additional conditions hold:

(#) (∀a ∈ A)(∀x ∈ A0)(∃v ∈ A0)(x ≥ a⊙ a⇒ v ≥ a&v ⊙ v ≤ x),

(##) (∀a ∈ A)(∀x ∈ A0)(∃v ∈ A0)(x ≥ a⊕ a⇒ v ≥ a&v ⊕ v ≤ x).

Proposition 7.1. [12] Let (A,⊕,⊙,¬, ∃, 0, 1) be a monadic MV -algebra. Then the MV -subalgebra ∃A of
MV -algebra (A,⊕,⊙,¬, 0, 1) is m-relatively complete.

Proposition 7.2. [12] There exists a one-to-one correspondence between:
(1) monadic MV -algebras (A,⊕,⊙,¬, ∃, 0, 1);
(2) the pairs (A,A0), where A0 is m-relatively complete subalgebra of A;
(3) the pairs (A,A0), where A0 is a subalgebra of A and the canonical embedding h : A0 ↩→ A has left
m-adjoint function.

7.1 Multimodal epistemic  Lukasiewicz logic with application in immune system

In [17] we extend 3-valued  Lukasiewicz logic  L3 to the 3-valued multimodal  Lukasiewicz logic E  L3(n) by
adding n unary modal ”knowledge” operators �i and ♢i (i = 1, ..., n) to the language of  L. We extend

3-valued multimodal  Lukasiewicz logic E  L3(n) to the logic E  L�
3 (n) by adding global modal (knowledge)

operators � and ♢ to the language of E  L3(n).
The knowledge operators model a community of ideal knowledge agents who have the properties of

veridical knowledge (everything they know is true), fuzzy knowledge (everything they know is quasitrue,
positive introspection (they know what they know) and negative introspection (they know what they do
not know) and so on. The knowledge operators permit the following interpretation:

�iα - ”i knows proposition α”;
♢iα - ”i does not know that proposition α is false”.

A 3-valued Kripke frame for agent i is a pair Ji = (Wi, Ri), i = 1, ..., n, consisting of a non-empty set
Wi of elements called the states of the agent i (or possible worlds of the agent i); Ri ⊂Wi ×Wi is a binary
reflexive and transitive relation on Wi (called the accessibility relation for agent i).
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A 3-valued Kripke model for agent i (or simply, Kripke model for agent i, when there is no ambiguity) is
a pair Mi = (Ji, ei), i = 1, ..., n, where Ji = (Wi, Ri) is Kripke frame for agent i and ei : V ar×Wi → S2 is a
function, called evaluation for agent i, which maps every propositional variable p ∈ V ar and possible world
w ∈Wi to the set of truth values S2, i = 1, ..., n, such that if ei(p, w) = 1 and (w,w′) ∈ Ri then ei(p, w

′) = 1.
If φ is a propositional formula of  L3, then ei(φ,w) ∈ S2 is a propositional evaluation for agent i; if φ is a
modal formula, then ei(♢iφ,w) =

∨
{ei(φ,w′) : (w,w′) ∈ Ri}; ei(�iφ,w) =

∧
{ei(φ,w′) : (w,w′) ∈ Ri} for

every w ∈Wi, i = 1, ..., n.
A modal formula φ is said to be modally valid for agent i when it is evaluated to 1 in all Kripke models

for agent i; it is said to be modally 1-satisfiable for agent i when there is some Kripke model for agent i
and some world w such that ei(φ,w) = 1; and it is said to be modally satisfiable for agent i when it is
1-satisfiable for agent i. A modal formula φ is said to be modally valid when it is evaluated to 1 in all
Kripke models for every agent i.

A 3-valued descriptive Kripke frame is a pair J = (W,R), W = {W1, ...,Wn} is the set of n agents (or
possible worlds); R ⊂ W ×W is a binary reflexive and transitive relation on W (called the accessibility
relation between agents i(= Wi)).

A 3-valued descriptive Kripke global model (or descriptive Kripke global model) is a triple M = (W,R, V )
where W = {W1, ...,Wn} is the set of n agents (or possible worlds); R ⊂W ×W is a binary relation on W
(called the accessibility relation between agents i(= Wi)); V (φ,Wi) =

∧
{ei(φ,w) : w ∈Wi, ei : V ar×Wi →

S2}, V (�φ,Wi) =
∧
{V (φ,Wj) : (Wi,Wj) ∈ R}, V (♢φ,Wi) =

∨
{V (φ,Wj) : (Wi,Wj) ∈ R}.

A modal formula φ is said to be globally modally valid when it is evaluated to 1 in all Kripke models
for every agent i ∈ {1, ..., n}; it is said to be modally satisfiable when it is 1-satisfiable for some agent
i ∈ {1, ..., n}.

We extend the language of E  L3(n) by two unary modal operators ♢ and �. A modal formula φ is said
to be globally modally valid when it is evaluated to 1 in all descriptive Kripke global models; it is said to
be globally modally 1-satisfiable when 1-satisfiable for any agent i ∈ {1, ..., n}; and it is said to be globally
modally satisfiable when it is 1-satisfiable for all descriptive Kripke models.

The logic E  L3(n) is defined as the set of its modal formulas that are modally valid. It is worth pointing
out that for this modal logic the modal operators are interdefinable by means of the modally valid formulas
♢iφ↔ ¬�i¬φ and �iφ↔ ¬♢i¬φ.

The logic E  L�
3 (n), the language of which is enriched of the language of E  L3 by two unary modal

operators ♢ and �, is defined as the set of its modal formulas that are globally modally valid. From the
definition of the descriptive Kripke frame we can deduce that the formulas �φ ↔ �1φ ∧ ... ∧ �nφ and
♢φ↔ ♢1φ ∨ ... ∨ ♢nφ are globally modally valid.

[17] has studied 3-valued multimodal  Lukasiewicz logic and its semantic - descriptive Kripke models
with respect of which this logic is complete and using the ones for representation of immune systems.
We can understand the set of T -cells as the set of agents. In many ways the immune system is a black
box; although many of its inputs and outputs are known, exactly how the system achieves its function
is the subject of many investigations. Laboratory experiments provide large quantities of data, allowing
components (agents (T -cells), state of the agents (T -cells)) within the black box to be identified, but there
remain many details of how the components (agents (T -cells), state of the agents (T -cells)) of the system
carry out their functions, or on the nature of the interaction between components. There are many variables
in such systems that exhaustive testing to establish these details is not feasible. Multimodal logic and its
corresponding Kripke model is ideally suited to describing immunological systems at this level: they may be
represented as a relational system of interacting elements (components), where the components themselves
may have complex, non-deterministic, individual behavior. Moreover, use of multimodal logic and Kripke
model gives access to a range of investigatory techniques, including simulation, verification via logical
properties.

We suggest the following schemata of axioms for E  L3(n): to the schemata of axioms of  L3 we add

1) �iφ→ φ, i = 1, ..., n,
2) �iφ→ �i�iφ, i = 1, ..., n,
3) �i(φ ∧ ψ) ↔ (�iφ ∧�iψ), i = 1, ..., n,
4) �i(φ&φ) ↔ (�iφ&�iφ), i = 1, ..., n,
5) �i(φ∨φ) ↔ (�iφ∨�iφ), i = 1, ..., n,
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6) ♢iφ→ �i♢iφ, i = 1, ..., n,

inference rules: φ,φ→ ψ/ψ, φ/�iφ, i = 1, ..., n.

We suggest the following schemata of axioms for E  L�
3 (n): to the schemata of axioms of  L3 we add

1) �iφ→ φ, i = 1, ..., n,
2) �iφ→ �i�iφ, i = 1, ..., n,
3) �i(φ ∧ ψ) ↔ (�iφ ∧�iψ), i = 1, ..., n,
4) �i(φ&φ) ↔ (�iφ&�iφ), i = 1, ..., n,
5) �i(φ∨φ) ↔ (�iφ∨�iφ), i = 1, ..., n,
6) �φ↔

∧n
i=1 �iφ, i = 1, ..., n,

7) ♢iφ→ �i♢iφ, i = 1, ..., n,
8) �i(φ→ ψ) → (�iφ→ �iψ), i = 1, ..., n,
9) �(φ→ ψ) → (�φ→ �ψ),

inference rules: φ,φ→ ψ/ψ, φ/�φ.

Proposition 7.3. [17] (Completeness of E  L3(n) (E  L�
3 (n))) A formula φ is (globally) modally valid formula

of E  L3(n) (E  L�
3 (n))) iff it is a theorem of E  L3(n) (E  L�

3 (n))).

8 Dynamic MV -algebras

Dynamic logic is a formal system for reasoning about programs. Dynamic logic is a modal logic for reasoning
about dynamic behavior taking into account a discrete time. Dynamic logic is an extension of modal logic
originally intended for reasoning about computer programs and later applied to more general complex
behaviors arising in linguistics, philosophy, AI, and other fields.

Modal logic is characterized by the modal operators �p asserting that p is necessarily the case, and ♢p
asserting that p is possibly the case. Dynamic logic extends this by associating to every action a the modal
operators [a] and ⟨a⟩, thereby making it a multimodal logic. The meaning of [a]p is that after performing
action a it is necessarily the case that p holds, that is, a must bring about p. The meaning of ⟨a⟩p is that
after performing a it is possible that p, that is, a might bring about p. These operators are related by
[a]p ≡ ¬⟨a⟩¬p and ⟨a⟩p ≡ ¬[a]¬p, analogously to the relationship between the universal ∀ and existential ∃
quantifiers.

Dynamic logic permits compound actions built up from smaller actions. Given actions a and b, the
compound action a ∪ b, choice, is performed by performing one of a or b. The compound action a;b,
sequence, is performed by performing first a and then b. The compound action a∗, iteration, is performed
by performing a zero or more times, sequentially. The constant action 0 or BLOCK does nothing and does
not terminate, whereas the constant action 1 either SKIP or NOP, definable as 0∗, does nothing but does
terminate.

We have proposed the notion of a dynamic MV -algebra, which integrates an abstract notion of propo-
sition with an equally abstract notion of action. Just as propositions tend to band together to form
MV -algebras with operations x⊕ y, and ¬x, so do actions organize themselves into regular algebras, with
operations a∪b, a; b, and a∗. Analogously to the proposition p∨q being the strong disjunction (the algebraic
counterpart of which is x⊕ y), p ∨ q being the disjunction of propositions p and q, and ¬p the negation of
p, the action a ∪ b is the choice of actions a or b, a; b, or just ab, is the sequence a followed by b, and a∗ is
the iteration of a indefinitely often.

It is natural to think of an action as being able to bring about a proposition. We write ⟨a⟩p, or just
ap, pronounced ”a enables p”, as the proposition that action a can bring about proposition p. A dynamic
algebra then is a MV -algebra (A,⊕,⊙,¬, 0, 1), a regular algebra (R,∪, ; ,∗ ), and the enables operation
♢ : R×A→ A.

Dynamic propositional  Lukasiewicz logic DP  L is designed for representing and reasoning about propo-
sitional  Lukasiewicz properties of programs. Its syntax is based upon two sets of symbols: a countable set
Var (= p, p1, p2, . . . , q, q1, q2, ) of propositional variables and a countable set Π of atomic programs. So the
language L of DP  L is given by a countable set Var of propositional variables and a countable set Π of
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atomic programs. Formulas and programs FP (L), which we name formulas, over this base are defined as
follows:

• Every propositional variable is a formula;
• ⊥ (false) is a formula;
• If φ is a formula then ¬φ ( notφ ) is a formula;
• If φ and ψ are formulas then (ϕ∨ψ) (∨ is a strong disjunction) is a formula;
• If φ and ψ are formulas then (φ&ψ) (& is a strong conjunction) is a formula;
• If φ and ψ are formulas then (φ ∨ ψ) (φ or ψ) is a formula;
• If a is a program and φ is a formula then [a]φ (every execution of a from the present state leads to a

state where φ is true) is a formula
• Every atomic program is a program;
• If a and b are programs then (a; b) (do a followed by b) is a program;
• If a and b are programs then (a ∪ b) (do a or b, non-deterministically) is a program;
• If a is a program then a∗ (repeat a a finite, but non-deterministically determined, number of times) is

a program;
• If φ is a formula then φ? (proceed if φ is true, else fail) is a program.

The other  Lukasiewicz connectives 1,→ and ↔ are used as abbreviations in the standard way (1 ≡
⊥∨¬⊥, p → q ≡ ¬p∨q, p ↔ q ≡ (p → q) ∧ (q → p)). In addition, we abbreviate ¬[a]¬φ to ⟨φ⟩ (some
execution of a from the present state leads to a state where φ is true) as in modal logic. We write an for
a; . . . ; a with n occurrences of a. More formally:

• a0 =df 1?
• an+1 =df a; an.

Finally, we adopt the standard rules for omission of parentheses.
The axioms of DP  L are the axioms of  Lukasiewicz logic (L1) - (L4):

(L1) φ→ (ψ → φ),
(L2) (φ→ ψ) → ((ψ → χ) → (φ→ χ)),
(L3) (¬φ→ ¬ψ) → (ψ → φ),
(L4) ((φ→ ψ) → ψ) → (ψ → φ) → φ).

plus the following schemata of modal parts. For any formulas φ, ψ and and any programs a, b:

Ax0 [a](φ→ ψ) → ([a]φ→ [a]ψ),
Ax1 [a; b]φ↔ [a][b]φ
Ax2 [a ∪ b]φ↔ [a]φ ∨ [b]φ,
Ax3 [a∗]φ↔ φ ∧ [a][a∗]φ,
Ax4 [φ?]ψ ↔ (φ→ ψ),
Ax5 [a](φ&φ) ↔ [a]φ&[a]φ,
Ax6 [a](φ Y φ) ↔ [a]φ Y [a]φ.

and closed under the following rules of inference:

(MP) from φ and φ→ ψ infer ψ,
(N) from φ infer [a]φ,
(I) φ→ [a]φ infer φ→ [a∗]φ.

Notice that these axioms presented as multimodal  Lukasiewicz logic [17].
The axioms of DP  Ln are the axioms DP  L plus the following axioms:

(Ln5) φn ↔ φn−1,
(Ln6) n(φk) ↔ (k(φk−1))n,

for every integer 2 ≤ k ≤ n− 2 that does not divide n− 1 [29].

Dynamic MV -algebra (dynamic MVn-algebra, n ∈ Z+) combine MV -algebra (MVn-algebra) M =
(M,⊕,⊙,∼, 0, 1) and regular algebra R = (R,∪, ; ,∗ ) into a single finitely axiomatized class (M,R,♢)
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resembling an R-module with scalar multiplication ♢ : R ×M → M . A dynamic MV -algebra (dynamic
MVn-algebra) D = (M,R,♢) satisfies the following axioms: for any x, y ∈M and a, b ∈ R

1. M is MV -algebra (MVn-algebra).
2. a0 = 0.
3. a(x ∨ y) = ax ∨ ay.
4. (a ∪ b)x = ax ∨ bx.
5. (ab)x = a(bx).
6. a(x⊕ x) = ax⊕ ax.
7. a(x⊙ x) = ax⊙ ax.
8. x ∨ aa∗x ≤ a∗x ≤ x ∨ a∗(¬x ∧ ax).

If in addition a dynamic MV -algebra satisfies the following condition

9. x?y = x ∧ y,

then it is called test algebra.

Proposition 8.1. (Completeness theorem). A formula φ of dynamic propositional logic DP  L is a tautology
iff it is a theorem of the logic.

8.1 Dynamic  Lukasiewicz Logic and its Application to Immune System

The results obtained for dynamic  Lukasiewicz logic have been applied for immune system in [18] having
another interpretation of modal operators. It is introduced an immune dynamic n-valued  Lukasiewicz logic
ID Ln on the base of n-valued  Lukasiewicz logic  Ln and corresponding to it immune dynamic MVn-algebra
(IDLn-algebra), 1 < n < ω, which are algebraic counterparts of the logic, that in turn represent two-sorted
algebras (M,R,♢) that combine the varieties of MVn-algebras M = (M,⊕,⊙,∼, 0, 1) and regular algebras
R = (R,∪, ; ,∗ ) into a single finitely axiomatized variety resemblig R-module with ”scalar” multiplication
♢. Kripke semantics is developed for immune dynamic  Lukasiewicz logic ID Ln with application in immune
system.

Immune dynamic n-valued  Lukasiewicz logic ID Ln is designed for representing and reasoning about
propositional  Lukasiewicz logic expected results (hypothesis) of (laboratory) experiments (results of experi-
mentation). Its syntax is based upon two sets of symbols: a countable set Var (= {p, p1, p2, . . . , q, q1, q2, . . .})
of propositional variables and a countable set Exp (= {a, b, c, ...}) of atomic experiments. So the language
L of ID Ln is given by a countable set Var of propositional variables and a countable set Exp of atomic
experiments.

One of the semantics of IDLn are Kripke semantics [18] that is similar to the ones that have been
done in [22]. In the presented case the formula [a ∪ b]φ means that whenever laboratory experiment a or
b is successfully done, a state is reached where φ holds, whereas the formula ⟨(a; b)⟩φ means that there
is a sequence of consecutive laboratory experiments a and b such that a state is reached where φ holds.
Semantically speaking, formulas are interpreted by states and experiments are interpreted by binary relations
over states in a Kripke model.

THE EPILOGUE

This paper is submitted for a Special Issue Dedicated to Prof. Antonio Di Nola. In this paper, I have
taken responsibility to present the longtime friendship and joint scientific collaboration of two mathemati-
cians: Antonio Di Nola and Revaz Grigolia, in the field of logical algebraic structures, that devoted to the
75th birthday of Prof. Antonio Di Nola. I express my deep gratitude to Antonio Di Nola for this longtime
collaboration and friendship and Journal of Algebraic Hyperstructures and Logical Algebras for presented
to me passibility to express this gratitude frankly.
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