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Abstract

A vague graph is a generalized structure of a fuzzy graph
that gives more precision, flexibility and compatibility to
a system when compared with systems that are designed
using fuzzy graphs. In this paper, the new concepts of
(totally) irregular, strongly (totally) irregular, highly to-
tally irregular, neighborly totally irregular, edge-irregular
of vague graphs are introduced and generalized, and some
properties and related results are investigated. Then,
we present the concepts of homomorphism, weak isomor-
phism, co-weak isomorphism and isomorphism of irregu-
lar vague graphs and some results on (total) domination
number, (total) 2-domination number, (total) cobondage
number and (total) 2-cobondage number. Finally, one
of their applications related to location map of Fire Sta-
tions and Emergency Medical centers in urban regions of
a metropolis is presented.
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A Title

1 Introduction

Euler first introduced the concept of graph theory in 1736. The theory of graph is regarded as an
extremely useful tool for solving combinatorial problems in different areas such as geometry, alge-
bra, number theory, topology, operations research, optimization and computer science. Gau and
Buehrer [9] proposed the concept of the vague set by replacing the value of an element in a set with
a subinterval of [0, 1]. Namely, a true-membership function tv(x) and a false membership function
fv(x) are used to describe the boundaries of the membership degree. Accordingly, Ramakrishna
[11] introduced the concept of vague graphs, along with some of their properties. Akram, Feng,
Sawar and Jun [1] introduced the concept of highly and neighborly irregular of vague graphs. Bor-
zooei and Rashmanlou [5] studied different types of dominating set in vague graphs. Borzooei and
Banitalebi [3] introduced concepts of additions of an arc, cobondage sets, and cobondage numbers
in vague graphs. Borzooei and Banitalebi [4] introduced concepts 2-dominating sets, 2-domination
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numbers, 2-cobondage sets and 2-cobondage numbers in vague graphs. The concepts of dominating
sets, cobondage sets are considered as the fundemental concepts in the theory of vague graphs and
have applications in several fields, especially in the fields of operations research, neural networks,
electrical networks and monitoring communication.
According to the definition of the concept of regular vague graph in [8], it is possible to define the
class of irregular vague graphs, which is much wider than the class of regular vague graph, using
the concepts of vertex and edge degree.
The purpose of this paper is to discuss concepts (totally) irregular, strongly (totally) irregular,
highly totally irregular, neighborly totally irregular, edge-irregular, homomorphism, weak isomor-
phism, co-weak isomorphism and isomorphism of vague graphs. Finally, we will provide a model
for optimizing the domination parameters while maintaining stability in the cobondage parameters
using these concepts.

2 Preliminaries

A fuzzy graph [10, 12] G = (σ, µ) on simple graph G∗ = (V,E) is a pair of functions σ : V → [0, 1]
and µ : E → [0, 1] such that, for any uv ∈ E, µ(uv) ≤ σ(u) ∧ σ(v), where ∧ denote minimum. A
vague set A in an ordinary finite non-empty set X, is a pair (tA, fA), where tA : X → [0, 1] and
fA : X → [0, 1] are true and false membership functions, respectively, such that for all x ∈ X,
0 ≤ tA(x) + fA(x) ≤ 1. Note that tA(x) is considered as the lower bound for positive degree
of membership of x in A and fA(x) is the lower bound for negative degree of membership of x
in A. So, the degree of membership of x in the vague set A, is characterized by the interval
[tA(x), 1− fA(x)].
A vague graph [11] on simple graph G∗ = (V,E) is defined to be a pair G = (A,B), where
A = (tA, fA) is a vague set on V and B = (tB, fB) is a vague set on E such that for any edge
xy ∈ E,

tB(xy) ≤ min{tA(x), tA(y)}, fB(xy) ≥ max{fA(x), fA(y)}.

The underlying crisp graph of a vague graph G = (A,B), is the graph H = (V1, E1), where
V1 = {v ∈ V : tA(v) > 0 and fA(v) > 0} ⊆ V and E1 =

{
uv ∈ E : tB(uv) > 0, fB(uv) > 0

}
⊆ E.

A vague graph G is called complete [11] if for any vi, vj ∈ V,

tB(vivj) = min{tA(vi), tA(vj)}, fB(vivj) = max{fA(vi), fA(vj)}.

Definition 2.1. [5] Let G = (A,B) be a vague graph on simple graph G∗ = (V,E). Then:
(i) The vertex cardinality of G is defined by,

|V | =
∑
vi∈V

( tA(vi) + (1− fA(vi))

2

)
.

(ii) The edge cardinality of G is defined by,

|E| =
∑

vivj∈E

( tB(vivj) + (1− fB(vivj))

2

)
.

(iii) The cardinality of G is defined by,

|G| = |V |+ |E|.
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(iv) For any U ⊆ V , the vertex cardinality of U is denoted by O(U) and defined by,

O(U) =
∑
vi∈U

( tA(vi) + (1− fA(vi))

2

)
.

(v) For any F ⊆ E, the edge cardinality of F is denoted by S(F ) and defined by,

S(F ) =
∑

vivj∈F

( tB(vivj) + (1− fB(vivj))

2

)
.

Definition 2.2. [3, 5] Let G = (A,B) be a vague graph on simple graph G∗ = (V,E). Then:
(i) An edge e = uv ∈ E is called a strong edge in G if tB(uv) ≥ (tB)

∞(uv) and fB(uv) ≤
(fB)

∞(uv), where

(tB)
∞(uv) = max{(tB)k(uv)| k = 1, 2, · · · , n}, (fB)

∞(uv) = min{(fB)k(uv)| k = 1, 2, · · · , n},

and

tkB(uv) = min{tB(ux1), tB(x1x2), · · · , tB(xk−1v)
∣∣u, x1, · · · , xk−1, v ∈ V, k = 1, 2, · · · , n},

fk
B(uv) = max{fB(ux1), fB(x1x2), · · · , fB(xk−1v)

∣∣u, x1, · · · , xk−1, v ∈ V, k = 1, 2, · · · , n}.

(ii) The neighborhood of u ∈ V is denoted by N(u) and defined as follows:

N(u) = {v ∈ V | uv is a strong edge in G}.

(iii) We say that u dominate v in G if there exists a strong edge between u and v.
(iv) S ⊂ V is called a dominating set in G if for any v ∈ V \ S, there exists u ∈ S such that u
dominates v.
(v) A dominating set S in G is called a minimal dominating set if no proper subset of S is a
dominating set.
(vi) The lower domination number of G is denoted by dV (G) and defined by,

dV (G) = min{O(D)
∣∣D is a minimal domination set of G}.

(vii) The upper domination number of G is denoted by DV (G) and defined by,

DV (G) = max{O(D)
∣∣D is a minimal domination set of G}.

(viii) The domination number of G is denoted by ∆V (G) and defined by,

∆V (G) =
dV (G) +DV (G)

2
.

Definition 2.3. [3, 5] Let G = (A,B) be a vague graph on simple graph G∗ = (V,E) without
isolated vertices. Then:
(i) S ⊂ V is called a total dominating set in G if for any v ∈ V , there exists u ∈ S such that u ̸= v
and u dominates v.
(ii) A total dominating set S of G is called a minimal total dominating set if no proper subset of
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S is a total dominating set of G.
(iii) Minimum vertex cardinality among all minimal total dominating sets of G is called lower total
domination number of G and is denoted by tV (G).
(iv) Maximum vertex cardinality among all minimal total dominating sets of G is called upper total
domination number of G and is denoted by TV (G).
(v) The t-domination number of G is denoted by ∆t

V (G) and defined as follows,

∆t
V (G) =

tV (G) + TV (G)

2
.

Definition 2.4. [3] Let G = (A,B) be a vague graph on simple graph G∗ = (V,E). Then:
(i) The cobondage set of a vague graph G is the set C of additional strong edges of Ge, that reduces
the domination number of G. i.e.

∆V (GC) < ∆V (G).

(ii) A cobondage set C of G is said to be a minimal cobondage set if no proper subset of X is a
cobondage set.
(iii) The lower cobondage number of G is denoted by bE(G) and defined by,

bE(G) = min{S(C)
∣∣C is a minimal cobondage set of G}.

(iv) The upper cobondage number of G is denoted by BE(G) and defined by,

BE(G) = max{S(C)
∣∣C is a minimal cobondage set of G}.

(v) The t-cobondage set of a vague graph G is the set Ct of additional strong arcs to G that reduces
the t-domination number, i.e, ∆t

V (GCt) < ∆t
V (G).

(vi) A t-cobondage set Ct of G is called a minimal t-cobondage set if no proper subset of Ct is a
t-cobondage set.
(vii) Minimum edge cardinality among all minimal t-cobondage sets of G is called a lower t-
cobondage number of G and is denoted by btE(G).
(viii) Maximum edge cardinality among all minimal t-cobondage sets of G is called an upper t-
cobondage number of G and is denoted by Bt

E(G).

Definition 2.5. [3, 5] Let G = (A,B) be a vague graph on simple graph G∗ = (V,E). Then:
(i) Two vertices u, v ∈ V are called independent if there is not any strong edge between them.
(ii) S ⊂ V is called an independent set in G if for any u, v ∈ S, tB(uv) < (tB)

∞(uv) and
fB(uv) > (fB)

∞(uv).
(iii) An independent set S in G is called a maximal independent set if for any vertex v ∈ V \ S,
the set S ∪ {v} is not independent.
(iv) Minimum vertex cardinality among all maximal independent sets is called a lower independent
number of G and is denoted by iV (G).
(v) Maximum vertex cardinality among all maximal independent sets is called an upper independent
number of G and is denoted by IV (G).
(vi) The independent number of G is denoted by I(G) and defined as follows,

I(G) =
iV (G) + IV (G)

2
.
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Definition 2.6. [6, 8] Let G = (A,B) be a vague graph on simple graph G∗ = (V,E). Then:
(i) The t-degree of a vertex u is denoted by dt(u) and defined by,

dt(u) =
∑

v∈N(u)

tB(uv).

(ii) The f-degree of a vertex u is denoted by df (u) and defined by,

df (u) =
∑

v∈N(u)

fB(uv).

(iii) The degree of a vertex u is denoted by d(u) and defined by,

d(u) = [dt(u), df (u)].

(iv) The total degree of a vertex u is denoted by td(u) and defined by,

td(u) = [dt(u) + tA(u), df (u) + fA(u)].

(v) The t-degree of an edge eij ∈ E is denoted by dt(eij) and defined by,

dt(eij) = dt(vi) + dt(vj)− 2tB(vivj).

(vi) The f-degree of an edge eij ∈ E is denoted by df (eij) and defined by,

df (eij) = df (vi) + df (vj)− 2fB(vivj).

(vii) The degree of an edge eij ∈ E is denoted by d(eij) and defined by,

d(eij) = [dt(eij), df (eij)].

Definition 2.7. [1, 2, 7] Let G(A,B) be a connected vague graph on G∗(A,B). Then:
(i) G is said to be a highly irregular vague graph if every vertex of G is adjacent to vertices with
distinct degrees.
(ii) G is said to be a neighborly irregular vague graph if every pair of adjacent vertices of G have
distinct degrees.

Notation. From now on, in this paper, we let G = (A,B) be a connected vague graph on a
simple graph G∗ = (V,E).

3 New concepts of irregularity in vague graphs

In this section, we discuss about the new concepts of irregular vague graphs.

Definition 3.1. Let G be a connected vague graph. Then:
(i) G is called an irregular vague graph if there exists a vertex of G which is adjacent to vertices
with distinct degrees.
(ii) G is called a strongly irregular vague graph if every pair of vertices of G have distinct degrees.
(iii) G is called a totally irregular vague graph if there exists a vertex of G which is adjacent to
vertices with distinct total degrees.
(iv) G is called a highly totally irregular vague graph if every vertex of G is adjacent to vertices
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with distinct total degrees.
(v) G is called a strongly totally irregular vague graph if every pair of vertices of G have distinct
total degrees.
(vi) G is called a neighborly totally irregular vague graph if every pair of adjacent vertices of G
have distinct totally degrees.
(vii) G is called an edge-irregular vague graph if there exists an edge of G which is adjacent to
edges with distinct degrees.

Example 3.2. Consider a vague graph G in Figure 1. Obviously,

dt(a) = 0.3, dt(b) = 0.4, dt(c) = 0.2, dt(d) = 0.3, dt(e) = 0.2.

df (a) = 0.7, df (b) = 1.3, df (c) = 1.1, df (d) = 1, df (e) = 0.5.

Then,

d(a) = [0.3, 0.7], d(b) = [0.4, 1.3], d(c) = [0.2, 1.1], d(d) = [0.3, 1], d(e) = [0.2, 0.5],

and
tdt(a) = 0.6, tdt(b) = 0.8, tdt(c) = 0.3, tdt(d) = 0.5, tdt(e) = 0.5.

tdf (a) = 1.4, tdf (b) = 1.9, tdf (c) = 1.4, tdf (d) = 1.5, tdf (e) = 0.9.

Then,

td(a) = [0.6, 1.4], td(b) = [0.8, 1.9], td(c) = [0.3, 1.4], td(d) = [0.5, 1.5], td(e) = [0.5, 0.9].

Therefore, G is a strongly irregular and strongly totally irregular vague graph.

Figure 1: Vague graph G.

Example 3.3. Consider a vague graph G in Figure 2. Obviously,

dt(a) = 0.3, dt(b) = 0.5, dt(c) = 0.7, dt(d) = 0.5, dt(e) = 0.8.

df (a) = 1.6, df (b) = 1.8, df (c) = 2, df (d) = 1.8, df (e) = 2.8.
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Then,

d(a) = [0.3, 1.6], d(b) = [0.5, 1.8], d(c) = [0.7, 2], d(d) = [0.5, 1.8], d(e) = [0.8, 2.8],

and
tdt(a) = 0.4, tdt(b) = 0.7, tdt(c) = 1, tdt(d) = 0.7, tdt(e) = 1.1.

tdf (a) = 1.9, tdf (b) = 2.2, tdf (c) = 2.6, tdf (d) = 2.3, tdf (e) = 3.5.

Then,

td(a) = [0.4, 1.9], td(b) = [0.7, 2.2], td(c) = [1, 2.6], td(d) = [0.7, 2.3], td(e) = [1.1, 3.5].

Therefore, G is a highly irregular and strongly totally irregular vague graph.

Figure 2: Vague graph G.

Example 3.4. Consider a vague graph G in Figure 2. Obviously,

dt(ab) = 0.6, dt(ae) = 0.9, dt(ad) = 0.6, dt(be) = 0.9, dt(bc) = 0.8, dt(ce) = 0.9, dt(cd) = 0.8, dt(de) = 0.9.

df (ab) = 2.6, df (ae) = 3, df (ad) = 2.4, df (be) = 3.2, df (bc) = 2.4, df (ce) = 3.4, df (cd) = 2.6, df (de) = 3.2.

Then,
d(ab) = [0.6, 2.6], d(ae) = [0.9, 3], d(ad) = [0.6, 2.4], d(be) = [0.9, 3.2],

d(bc) = [0.8, 2.4], d(ce) = [0.9, 3.4], d(cd) = [0.8, 2.6], d(de) = [0.9, 3.2],

and

tdt(ab) = 0.7, tdt(ae) = 1, tdt(ad) = 0.7, tdt(be) = 1.1, tdt(bc) = 1, tdt(ce) = 1.2, tdt(cd) = 1, tdt(de) = 1.1.

tdf (ab) = 3, tdf (ae) = 3.7, tdf (ad) = 2.9, tdf (be) = 3.9, tdf (bc) = 3.1,

tdf (ce) = 4.1, tdf (cd) = 3.2, tdf (de) = 3.9.

Then,

td(ab) = [0.7, 3], td(ae) = [1, 3.7], td(ad) = [0.7, 2.9], td(be) = [1.1, 3.9], td(bc) = [1, 3.1],

td(ce) = [1.2, 4.1], td(cd) = [1, 3.2], td(de) = [1.1, 3.9].

Therefore, G is an edge-irregular vague graph.
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Remark 3.5. The Example 3.3 shows that if G is a highly irregular vague graph, then G is not a
necessarily strongly irregular vague graph.

Theorem 3.6. Let G be a complete vague graph and the set of all vertices of G be denoted by
V = {v1, v2, v3, ..., vn} such that tA(v1) < tA(v2) < tA(v3) < ... < tA(vn). Then G is an irregular
vague graph.

Proof. Let G be a complete vague graph. Then for any vi, vj ∈ V ,

fB(vivj) = fA(vi) ∨ fA(vj), tB(vivj) = tA(vi) ∧ tA(vj).

Also, for v1, v3 ∈ V , we have

dt(v3) = tA(v1) + tA(v2) + (n− 3)tA(v3), dt(v1) = (n− 1)tA(v1).

Therefore, dt(v1) ̸= dt(v3) and v2 adjacent to v1 and v3 with distinct degrees.

Note. If f and t are two strictly increasing or strictly decreasing chains on vertex-set V of G,
then Theorem 3.5 is true.

Theorem 3.7. Let G be a connected vague graph and G∗ be a cycle with 2n + 1 vertices. If
alternate edges take same membership values, then G is an irregular vague graph.

Proof. Assum that alternate edges take same membership values. Then,

tB(ei) =

{
α1, if i is odd,
α2, if i is even,

and

fB(ei) =

{
β1, if i is odd,
β2, if i is even,

and so,
d(v1) = (2α1, 2β1), d(vi) = (α1 + α2, β1 + β2),

where i = 2, 3, ..., 2n + 1. Hence there exists a vertex v2 which is adjacent to v1, v3 with distinct
degrees. Therefore, G is an irregular vague graph.

Theorem 3.8. Let G be a connected vague graph and G∗ be a cycle with 2n + 1 vertices. If
alternate edges take same membership values, then G is an edge-irregular vague graph.

Proof. Assum that alternate edges take same membership values. Then,

tB(ei) =

{
α1, if i is odd,
α2, if i is even,

and

fB(ei) =

{
β1, if i is odd,
β2, if i is even,

and so,

dG(e1) = (α1 + α2, β1 + β2), dG(ei) = (2α1 + 2α2 − 2tB(ei), 2β1 + 2β2 − 2fB(ei)),

where i = 2, 3, ..., 2n + 1. Hence there exists an edge e2 which is adjacent to e1, e3 with distinct
degrees. Therefore, G is an edge-irregular vague graph.
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Theorem 3.9. Let G be a connected vague graph and A = (tA, fA) be a constant function. Then
the following expressions are equivalent:

(i) G is a strongly irregular vague graph.

(ii) G is a strongly totally irregular vague graph.

Proof. Assume that for any u ∈ V ,

A(u) = (tA(u), fA(u)) = (c1, c2),

where c1 and c2 are constant values. Then,

tdt(u) = dt(u) + c1, tdf (u) = df (u) + c2.

Hence for any u, v ∈ V , we have

tdt(u) ̸= tdt(v) ⇔ dt(u) ̸= dt(v),

and
tdf (u) ̸= tdf (v) ⇔ df (u) ̸= df (v).

Theorem 3.10. Let G be a connected vague graph and B = (tB, fB) be a constant function. Then
the following expressions are equivalent:

(i) G∗ is a strongly irregular graph,

(ii) G is a strongly irregular vague graph.

Proof. Assume that for any uv ∈ E,

B(uv) = (tB(uv), fB(uv)) = (c1, c2),

where c1 and c2 are constant values. If G∗ is a strongly irregular graph, then for any pair (u, v) of
V , we have dG∗(u) ̸= dG∗(v). Otherwise (tB(uv), fB(uv)) = (c1, c2), so that

dt(u) = dG∗(u).c1, df (u) = dG∗(u).c2.

Therefore,
dG∗(u) ̸= dG∗(v) ⇔ dt(u) ̸= dt(v) ⇔ df (u) ̸= df (v).

Theorem 3.11. Let G be a connected vague graph and B = (tB, fB) be a constant function. If G
is an edge-irregular vague graph, then G is an irregular vague graph.

Proof. Assame that B = (tB, fB) is a constant function. Suppose

B(e) = (tB(e), fB(e)) = (c1, c2),

for all e ∈ E, where c1 and c2 are constants. Then every edge of G is a strong edge. Now, by
definition of edge degree, we have

dt(eij) = (dG∗(vi) + dG∗(vj)− 2).c1 , df (eij) = (dG∗(vi) + dG∗(vj)− 2).c2.

Next by definition of vertex degree and from the above argument, the proof is clear.
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Note. If G is a complete vague graph, then concepts of strongly irregular and neighborly
irregular are equivalent.

Proposition 3.12. Let G be a neighborly irregular vague graph with n ≥ 4 vertices and B =
(tB, fB) be a constant function. Then G∗ is not a path and so there exists v ∈ V such that
dG∗(v) ≥ 3.

Proof. The proof is straightforward.

Definition 3.13. A homomorphism h of irregular vague graphs G1 and G2 is a mapping h : V1 →
V2 which satisfies the following conditions:
(i) h(u) = u′ where u adjacent to vertices with distinct degrees in G1 and u′ adjacent to vertices
with distinct degrees in G2,
(ii) for any u ∈ V1, tA1(u) ≤ tA2(h(u)), fA1(u) ≥ fA2(h(u)),
(iii) for any uv ∈ E1, tB1(uv) ≤ tB2(h(u)h(v)), fB1(uv) ≥ fB2(h(u)h(v)).

Definition 3.14. Let h be a bijective homomorphism of irregular vague graphs G1 and G2. Then:
(i) h is called a weak isomorphism of irregular vague graphs G1 and G2 if for any u ∈ V1,

tA1(u) = tA2(h(u)), fA1(u) = fA2(h(u)),

(ii) h is called a co-weak isomorphism of irregular vague graphs G1 and G2 if for any uv ∈ E1,

tB1(uv) = tB2(h(u)h(v)), fB1(uv) = fB2(h(u)h(v)),

(iii) h is called an isomorphism of irregular vague graphs G1 and G2 if it is a weak isomorphism
and a co-weak isomorphism.

Notation. If h is an isomorphism of irregular vague graphs G1 and G2, then we say G1 is an
isomorphic irregular vague graph of G2 and denote it by G1

∼= G2.

Example 3.15. Consider irregular vague graphs G1 and G2 in Figure 3. If h is a mapping
h : V1 → V2 such that

h(u1) = a, h(u2) = b, h(u3) = c, h(u4) = d,

then by routine computations, it is clear that h is a homomorphism of irregular vague graphs G1

and G2.

Example 3.16. Consider irregular vague graphs G1 and G2 in Figure 4. If h : V1 → V2 is a
homomorphism of irregular vague graphs G1 and G2 such that

h(u1) = a, h(u2) = e, h(u3) = d, h(u4) = c, h(u5) = b,

then by routine computations, it is clear that h is a weak isomorphism of irregular vague graphs
G1 and G2.

Example 3.17. Consider irregular vague graphs G1 and G2 in Figure 5. If h : V1 → V2 is a
homomorphism of irregular vague graphs G1 and G2 such that

h(u1) = e, h(u2) = d, h(u3) = b, h(u4) = c, h(u5) = f, h(u6) = a,

then by routine calculations, it is clear that h is a co-weak isomorphism of irregular vague graphs
G1 and G2.
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Figure 3: Irregular vague graphs G1 and G2.

Proposition 3.18. If G1
∼= G2, then O(G1) = O(G2) and S(G1) = S(G2).

Proof. Assum that h is an isomorphism of irregular vague graphs G1 and G2. Then for any
u, v ∈ V1,

tA1(u) = tA2(h(u)), fA1(u) = fA2(h(u)),

also,
tB1(uv) = tB2(h(u)h(v)), fB1(uv) = fB2(h(u)h(v)).

Hence,

O(G1) =
( ∑
u∈V1

tA1(u),
∑
u∈V1

fA1(u)
)
=

( ∑
u∈V1

tA2(h(u)),
∑
u∈V1

fA2(h(u))
)
= O(G2),

and

S(G1) =
( ∑
uv∈E1

tB1(uv),
∑

uv∈E1

fB1(uv)
)
=

( ∑
u,v∈V1

tB2(h(u)h(v)),
∑

u,v∈V1

fB2(h(u)h(v))
)
= S(G2).

Note. (i) If G1 and G2 are weak isomorphic, then O(G1) = O(G2).
(ii) If G1 and G2 are co-weak isomorphic, then S(G1) = S(G2).

Theorem 3.19. If G1
∼= G2, then

(i) dV1(G1) = dV2(G2) and DV1(G1) = DV2(G2), and so ∆V1(G1) = ∆V2(G2).
(ii) tV1(G1) = tV2(G2) and TV1(G1) = TV2(G2), and so ∆t

V1
(G1) = ∆t

V2
(G2).

Proof. (i) Assum that h : V1 → V2 is an isomorphism of G1 and G2. If D1 is a minimal dominating
set of G1, then by Definition 3.14, we get h(D1) is a minimal dominating set of G2 and∑

vi∈D1

(
tA1(vi) + (1− fA1(vi))

2

)
=

∑
h(vi)∈h(D1)

(
tA2(vi) + (1− fA2(vi))

2

)
.
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Figure 4: Irregular vague graphs G1 and G2.

Therefore, dV1(G1) = dV2(G2), DV1(G1) = DV2(G2) and so ∆V1(G1) = ∆V2(G2).

(ii) Assum that h : V1 → V2 is an isomorphism of G1 and G2. If Dt
1 is a minimal total dom-

inating set of G1, then by Definition 3.14, we get h(Dt
1) is a minimal total dominating set of G2

and ∑
vi∈D1

(
tA1(vi) + (1− fA1(vi))

2

)
=

∑
h(vi)∈h(Dt

1)

(
tA2(vi) + (1− fA2(vi))

2

)
.

Therefore, tV1(G1) = tV2(G2), TV1(G1) = TV2(G2), and so ∆t
V1
(G1) = ∆t

V2
(G2).

Theorem 3.20. If G1 is a co-weak isomorphic irregular vague graph of G2, then
(i) dV1(G1) ≤ dV2(G2) and DV1(G1) ≤ DV2(G2), and so ∆V1(G1) ≤ ∆V2(G2).
(ii) tV1(G1) ≤ tV2(G2) and TV1(G1) ≤ TV2(G2), and so ∆t

V1
(G1) ≤ ∆t

V2
(G2).

Proof. (i) Assum that h : V1 → V2 is a co-weak isomorphism of G1 and G2. If D1 is a mini-
mal dominating set of G1, then by Definition 3.14, we get h(D1) is a minimal dominating set of
G2 such that O(D1) ≤ O(h(D1)). Therefore, dV1(G1) ≤ dV2(G2), DV1(G1) ≤ DV2(G2), and so
∆V1(G1) ≤ ∆V2(G2).

(ii) Assum that h : V1 → V2 is a co-weak isomorphism of G1 and G2. If Dt
1 is a minimal to-

tal dominating set of G1, then by Definition 3.14, we get h(Dt
1) is a minimal total dominating set

of G2 such that O(Dt
1) ≤ O(h(Dt

1)). Therefore, tV1(G1) ≤ tV2(G2), TV1(G1) ≤ TV2(G2), and so
∆t

V1
(G1) ≤ ∆t

V2
(G2).

Theorem 3.21. If G1 is a co-weak isomorphic irregular vague graph of G2, then
(i) bE1(G1) = bE2(G2) and BE1(G1) = BE2(G2).

(ii) btE1
(G1) = btE2

(G2) and Bt
E1
(G1) = Bt

E2
(G2).
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Figure 5: Irregular vague graphs G1 and G2.

Proof. (i) Assum that h : V1 → V2 is a co-weak isomorphism of G1 and G2. If e = uv is an addi-
tional strong arc in G∗

1, then by Definition 3.14, we get e
′
= h(u)h(v), with coordinates tB1(e) =

tB2(e
′) and fB1(e) = fB2(e

′), is an additional strong arc in G∗
2. Therefore, bE1(G1) = bE2(G2) and

BE1(G1) = BE2(G2).

(ii) Assum that h : V1 → V2 is a co-weak isomorphism of G1 and G2. If e = uv is an additional
strong arc in G∗

1, then by Definition 3.14, we get e
′
= h(u)h(v), with coordinates tB1(e) = tB2(e

′)
and fB1(e) = fB2(e

′), is an additional strong arc in G∗
2. Therefore, btE1

(G1) = btE2
(G2) and

Bt
E1
(G1) = Bt

E2
(G2).

Theorem 3.22. If G1
∼= G2, then

(i) bE1(G1) = bE2(G2) and BE1(G1) = BE2(G2).

(ii) btE1
(G1) = btE2

(G2) and Bt
E1
(G1) = Bt

E2
(G2).

Proof. The proof is straightforward.

Proposition 3.23. If G1
∼= G2, then

(i) d2V1
(G1) = d2V2

(G2), D
2
V1
(G1) = D2

V2
(G2), and so ∆2

V1
(G1) = ∆2

V2
(G2).

(ii) td2V1
(G1) = td2V2

(G2), TD
2
V1
(G1) = TD2

V2
(G2), and so T∆2

V1
(G1) = T∆2

V2
(G2).

Proof. (i) Assum that h : V1 → V2 is an isomorphism of G1 and G2. If D2 is a minimal 2-
dominating set of G1, then by Definition 3.14, we get h(D2) is a minimal 2-dominating set of G2

and ∑
vi∈D1

(
tA1(vi) + (1− fA1(vi))

2

)
=

∑
h(vi)∈h(D2)

(
tA2(vi) + (1− fA2(vi))

2

)
.

Therefore, d2V1
(G1) = d2V2

(G2), D
2
V1
(G1) = D2

V2
(G2), and so ∆2

V1
(G1) = ∆2

V2
(G2).
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(ii) Assum that h : V1 → V2 is an isomorphism of G1 and G2. If Dt
2 is a minimal total dom-

inating set of G1, then by Definition 3.14, we get h(Dt
2) is a minimal total 2-dominating set of G2

and ∑
vi∈D1

(
tA1(vi) + (1− fA1(vi))

2

)
=

∑
h(vi)∈h(Dt

2)

(
tA2(vi) + (1− fA2(vi))

2

)
.

Therefore, td2V1
(G1) = td2V2

(G2), TD
2
V1
(G1) = TD2

V2
(G2), and so T∆2

V1
(G1) = T∆2

V2
(G2).

Proposition 3.24. If G1 is a co-weak isomorphic irregular vague graph of G2, then
(i) d2V1

(G1) ≤ d2V2
(G2), D

2
V1
(G1) ≤ D2

V2
(G2), and so ∆2

V1
(G1) ≤ ∆2

V2
(G2).

(ii) td2V1
(G1) ≤ td2V2

(G2), TD
2
V1
(G1) ≤ TD2

V2
(G2), and so T∆2

V1
(G1) ≤ T∆2

V2
(G2).

Proof. (i) Assum that h : V1 → V2 is a co-weak isomorphism of G1 and G2. If D2 is a minimal
2-dominating set of G1, then by Definition 3.14, we get h(D2) is a minimal 2-dominating set of
G2 such that O(D2) ≤ O(h(D2)). Therefore, d

2
V1
(G1) ≤ d2V2

(G2), D
2
V1
(G1) ≤ D2

V2
(G2), and so

∆2
V1
(G1) ≤ ∆2

V2
(G2).

(ii) Assum that h : V1 → V2 is a co-weak isomorphism of G1 and G2. If Dt
2 is a minimal to-

tal 2-dominating set of G1, then by Definition 3.14, we get h(Dt
2) is a minimal total 2-dominating

set of G2 such that O(Dt
2) ≤ O(h(Dt

2)). Therefore, td
2
V1
(G1) ≤ td2V2

(G2), TD
2
V1
(G1) ≤ TD2

V2
(G2),

and so T∆2
V1
(G1) ≤ T∆2

V2
(G2).

Proposition 3.25. If G1
∼= G2, then

(i) b2E1
(G1) = b2E2

(G2) and B2
E1
(G1) = B2

E2
(G2).

(ii) tb2E1
(G1) = tb2E2

(G2) and TB2
E1
(G1) = TB2

E2
(G2).

Proof. The proof is straightforward.

Proposition 3.26. If G1 is a co-weak isomorphic irregular vague graph of G2, then
(i) b2E1

(G1) = b2E2
(G2) and B2

E1
(G1) = B2

E2
(G2).

(ii) tb2E1
(G1) = tb2E2

(G2) and TB2
E1
(G1) = TB2

E2
(G2).

Proof. (i) Assum that h : V1 → V2 is a co-weak isomorphism of G1 and G2. If e = uv is an addi-
tional strong arc in G∗

1, then by Definition 3.14, we get e
′
= h(u)h(v), with coordinates tB1(e) =

tB2(e
′) and fB1(e) = fB2(e

′), is an additional strong arc in G∗
2. Therefore, b

2
E1
(G1) = b2E2

(G2) and
B2

E1
(G1) = B2

E2
(G2).

(ii) Assum that h : V1 → V2 is a co-weak isomorphism of G1 and G2. If e = uv is an additional
strong arc inG∗

1, then by Definition 3.14, we obtain e
′
= h(u)h(v), with coordinates tB1(e) = tB2(e

′)
and fB1(e) = fB2(e

′), is an additional strong arc in G∗
2. Therefore, tb2E1

(G1) = tb2E2
(G2) and

TB2
E1
(G1) = TB2

E2
(G2).

Theorem 3.27. If G1
∼= G2, then I(G1) = I(G2).
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Proof. Assum that h : V1 → V2 is an isomorphism of G1 and G2. If S1 is a maximal independent
set of G1, then by Definition 3.14, we have h(S1) is a maximal independent set of G2 and∑

vi∈S1

(
tA1(vi) + (1− fA1(vi))

2

)
=

∑
h(vi)∈h(S1)

(
tA2(vi) + (1− fA2(vi))

2

)
.

Therefore, iV1(G1) = iV2(G2) and IV1(G1) = IV2(G2), and so I(G1) = I(G2).

Theorem 3.28. If G1 is a co-weak isomorphic irregular vague graph of G2, then I(G1) ≤ I(G2).

Proof. Assum that h : V1 → V2 is a co-weak isomorphism of G1 and G2. If S1 is a maximal
independent set of G1, then by Definition 3.14, we get h(S1) is a maximal independent set of
G2 such that O(S1) ≤ O(h(S1)). Therefore, iV1(G1) ≤ iV2(G2) and IV1(G1) ≤ IV2(G2), and so
I(G1) ≤ I(G2).

4 Application

The theory of vague graphs has many applications in new sciences and technologies. Now days,
the concepts of dominating sets, cobondage sets, and numbers are considered as the fundamental
concepts in the theory of vague graphs and have applications in several fields, especially in the
fields of operations research, neural networks, electrical networks and monitoring communications.
By comparing the definition of the concept of irregular vague graphs in this paper and the definition
of the concept of regular vague graphs in [8], we find that the class of irregular vague graphs is
much wider than the class of regular vague graphs, so studing and investigating of the concepts
of dominating sets, cobondage sets, dominating numbers and cobondage numbers is particularly
important in the class of irregular vague graphs. In [3, 4], using the concept of additional strong arc,
a model was proposed to reduce vertex cardinality of dominating set and 2-dominating set, while
increasing optimal effective weight of vague graph. What is now considered is the enhancement
and increasement of domination number and 2-domination number parameters of an irregular
vague graph and its apparent deformation, while remaining stability of the cobondage number and
2-cobondage number parameters and its inherent pattern by meaning of the concepts presented in
the isomorphic images of an irregular vague graph.

4.1 Locating fire stations and emergency medical centers in urban regions of
the metropolis (based on a fixed inherent model and optimal assurance of
non-accidental variability).

The location map of fire stations and emergency medical centers in each urban regions of a metropo-
lis can be considered as an irregularly vague graph. In these graphs, the vertices indicate that the
Fire Stations (F.S) and the emergency medical center (E.M.C) and edge indicate their communi-
cation paths in these regions. We define the values of f -strength and t-strength for any v ∈ V and
e ∈ E, as follows:
tA(v): The minimum assurance of non-incidentalism in mission scope of v.
fA(v): The minimum assurance of incidentalism in mission scope of v.
tB(e): The minimum assurance of the timely presence at the incident scene through the e path.
fB(e): The minimum assurance of the timely absence at the incident scene through the e path.

Thus, the size of each vertex stands for |v| = 1 + tA(v)− fA(v)

2
, for any v ∈ V , represents the

optimal level of assurance of the non-incidentalism of that region. Also, the size of each edge
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stands for |e| = 1 + tB(e)− fB(e)

2
, represents the optimal level of assurance of timely presence in

the incident scene through that edge (path). It should be noted that such things as urban texture,
the driving culture and the extent to which drivers and pedestrians follow driving rules, the type
of industry and the presence of high-risk industries in one scope, etc., are factors that contribute
to the estimation of the incidentalism or non-incidentalism in that scope. Also, the factors such
as the volume of traffic, the number of traffic lights, the squares, the overpasses and pedestrian
underpasses and the maximum and minimum speed of vehicles per path, etc., are affected by the
route in the estimation of the assurance of timely presence or absence in that path. According to
the above comparison, the dominating sets could be considered as the location of fire stations and
medical emergency centers in the city.
Therefore, locating fire stations and emergency medical centers as dominating set or 2-dominating
set in each urban regions of a metropolis based on a fixed inherent model and pattern, as well as
a map of constant optimization when necessary (cobondage set or 2-cobondage set) in decision-
making in various urban development issues, passive defense issues in a metropolis, and so on are
of great importance, and the application of concepts and findings related to isomorphic images
of an irregularly vague graph plays an important role in achieving this goal. For example, in the
Figure 6, the G vague graph and co-weak isomorphic images are examined as locating maps of fire
stations and medical emergency centers in urban regions of a metropolis. It is noteworthy that
the number of strong arcs as well as the number of vertices of dominating sets are all constant and
only the standard size of each vertex has changed according to cultural, social, urban, industrial,
etc, requirements.

Figure 6: Vague graph G and co-weak isomorphic images of G.
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a b c d k ∆V bE
C (0.2,0.5) (0.2,0.5) (0.2,0.5) (0.2,0.5) (0.2,0.5) 0.875 0.35

C1 (0.2,0.4) (0.2,0.5) (0.3,0.5) (0.2,0.5) (0.2,0.5) 0.9 0.35

C2 (0.2,0.5) (0.2,0.5) (0.2,0.4) (0.3,0.5) (0.2,0.5) 0.925 0.35

C3 (0.3,0.4) (0.2,0.5) (0.2,0.5) (0.2,0.5) (0.2,0.5) 0.875 0.35

C4 (0.2,0.5) (0.2,0.5) (0.3,0.4) (0.2,0.5) (0.2,0.5) 0.925 0.35

C5 (0.2,0.5) (0.2,0.5) (0.2,0.5) (0.2,0.4) (0.3,0.4) 0.925 0.35

5 Conclusion

The theory of vague graphs has many applications in new science and technology. Since the vague
models compare the classical and fuzzy models to the system, they give more accuracy, flexibility
and compatibility. In this paper, irregular and irregular edges and some of its variants are presented
and examined. Also discussed some special conditions in which irregularities are matched together
are discussed. Finally, by using isomorphic images of an irregularly vague graph, a model for
optimizing the domination number and 2-domination number parameters was presented, while
unlike the model presented in [3], the number of vertices of dominating set as well as the cobondage
number and 2-cobondage number parameters remain constant.
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