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1 Introduction

A solvable group with respect to an automorphism « is called an a-solvable group. An a-solvable
group is a group that a-derived series terminates in the trivial subgroups. In [2], a-solvable groups,
as a generalization of solvable groups, were introduced and some properties of a-solvabel groups
were discussed. Clearly, every solvable group is an a-solvable group, where « is the identity
automorphism.

In 1965, Zadeh [I4] proposed the concept of fuzzy sets. In 1971, Rosenfeld [I2], applied fuzzy
sets in group theory to introduce fuzzy subgroups of a group. Fuzzy hypergroups as a new approach
on fuzzy sets, introduced by Corsini and Tofan [6]. The basic idea is that a fuzzy hyperoperation
assigns to every pair of elements a fuzzy set. Some researchers extended the concepts of abstract
algebra to fuzzy sets (see [B], [8], [9], [8], [@], [M0], [I3]). The study of fuzzy hyperstructures is
an interesting topic on fuzzy sets theory. One way for connecting fuzzy hypergroups and groups
is the fundamental relation. A fundamental relation of a hypergroup is the smallest equivalence
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relation such that a quotient is a group. The fundamental relation, 5, as a vital concept on
hyperstructures, is studied by many scholars [A]. This relation plays an important role in the
theory of hyperstructures. Also, the relation v* is the least equivalence relation on a hypergroup
H such that a quotient is an abelian group [6]. Moreover, v* is a commutative fundamental relation.
It is known that if R is a fuzzy strongly regular equivalence relation on a fuzzy hypergroup S, then
we can define a binary operation ® on the quotient set S/R, the set of all equivalence classes of
S with respect to R, such that (S/R,®) is a group (see [I3]). Ameri and Nozari [0], followed the
results obtained by Sen et. all on fuzzy hypersemigroups to introduce the fundamental relation
of fuzzy hypersemigroups. Now, we introduce an a-solvable fundamental group. In addition, we
define a strongly regular relation £** on a fuzzy hypergroup S. Then we prove that S/&**, the
set of all equivalence classes of £** under usual operation, is an a-solvable group. Finally, by the
notion of £**-part of a fuzzy hypergroup, we try to get an equivalent condition to transitivity of

E*Oi X

2 Preliminaries

Let G be any group and a be an automorphism of G. For two elements z and y of G the a-

commutator of G is [z,y]s = zyz~ty~%, where y~@ is used for a(y~!). For any x1,z2,...,x, of
G one can define inductively [z, z9,. .., Zn]a, the a-commutator of weight n, as follows:
[.Tl,QZQ, .- )xn]a = [351, [5527 .- 73777,]04]04-

For any non-empty subsets X; and Xs of G the a-commutator subgroup of G, denoted by [X1, Xs]a
is defined as the subgroup of G generated by the set {[z1,z2]a|z1 € X1,22 € Xo}. It is clear
that [X1, Xs]s is not equal to [X2, Xi]s in general. Let N be a normal subgroup of G and
N® = N. For the isomorphism @ : G/N — G/N given by 7% = 2*N we have [Z1,Z2,...,Tnla =
[X1,22,...,Zn]aN (see [2]).

The a-derived subgroup of a group G with respect to an automorphism « is defined by D*(G) =
(lz,ylalz,y € G). Also, D§(G) = G, D{(G) = D*(G) and DY(G) = D¥(D$ {(G)). A group G
is a-solvable if and only if for some integer v, D¥(G) = {1}, where 1 is the identity element. The
smallest such r is called length of G (see [2]).

A hypergroupoid is a nonempty set H with a hyperoperation i defined on H, that is, a mapping
of H x H into the family of non-empty subsets of H. If (x,y) € H x H, then its image under > is
denoted by z>y. If A, B are non-empty subsets of H, then A> B is given by A> B = | J{z>y|z €
A,y € B}. Thus x> A is used for {z} > A and Apz for A> {x}. Generally, the singleton a is
identified with its member a. The structure (H,>) is called a semihypergroup if ar(b>c) = (abb)>c
for any a,b,c € H, and a semihypergroup (H,>) is called a hypergroup in the sense of Marty if
x> H =Hprx=H, for any x € H. This axiom means that for any x,y € H there exist u,v € H
such that y € z>pwuw and y € v> 2.

Let S be a non-empty set and F*(S) be the set of all non-zero fuzzy subsets of S. We denote
by 0 the zero fuzzy set. Then o : S x S — F*(S) is a fuzzy hyperoperation on S and the couple
(S, 0) is called a fuzzy hypergroupoid.

Let p, v be two fuzzy subsets of a fuzzy hypergroupoid (S, o). In [I3] for any a,r € S we have
the following statements:

1) (wev)r) =\ (u) Ao (r) Av(g),

P,qES
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(a0 H)(r) A p(t)), p#0 (ult) A (toa)(r)), £ 0
i) o = . S a4 L 8
0. w=0, 0. pw=20

Definition 2.1. [I3]

(i) A fuzzy hypergroupoid (S, o) is a fuzzy semihypergroup if for any x,y,z € S we have (roy)ez =
xe(yoz).

(i1i) A fuzzy semihypergroup is a fuzzy hypergroup (FHG) if t oS = xs = Sox. A fuzzy sub-
hypergroup (K,o) of an FHG (S,0) is a non-empty subset K C S such that for any k € K,
koK =Kok =xg. Let (S1,01) and (S2,02) be two FHG. A map f : S — So is called a fuzzy
hypergroup homomorphism if, for any x,y € S1, f(z o1 y) = f(x) oz f(y).

Definition 2.2. [I3] Let p be an equivalence relation on a fuzzy semihypergroup (S,0) and p,v be
two fuzzy subsets of (S,0). We say that ppv if for all z,y € S such that p(z) > 0 and v(y) > 0,
then xpy.

Definition 2.3. [[3] An equivalence relation p on a fuzzy semihypergroup (S, o) is said to be a
fuzzy strongly reqular relation if apb and o’ pb’ imply aoa’ p boll.

Theorem 2.4. [13] Let (S,0) be a fuzzy semihypergroup and p be an equivalence relation on S.
For any pa, pp € S/p consider the operation & as follows:

pa ® pp = {pc|(a’ o V')(c) >0, apa’, bpb'}.
Then p is a fuzzy strongly regular relation on (S, 0) iff (S/p,®) is a semigroup.
Definition 2.5. [0, [1] Let (S,0) be a fuzzy semihypergroup and S,, be the symmetric group on n
letters (n € N). We define the relations A and €, on S in the following way:

()

a\b < 3y, ...,x, €S, such that (x10...0x,)(a) >0 and (xq0...0x,)(b) > 0.
(i1) € = Uen, where €1 = {(s,s)|s € S} and for any n > 2;
n>1
aepb < Az, ... xy € S, 30 €S, such that (x10...0xy)(a) >0 and (x4, ©...0 x4, )(b) > 0.

One can see that X and € are symmetric and reflexive. Let € and \* be the transitive closure of €
and X, respectively. Then € and \* are equivalence relations.

Definition 2.6. [I3] Let (S,0) be a fuzzy semihypergroup. The smallest equivalence relation p on
S is called the fundamental relation if the quotient structure (S/p, ®) is a semigroup.

Theorem 2.7. [[] The relation €* is the abelian fundamental relation on fuzzy semihypergroup

(5,0).

3 Characterization of a-solvable groups via a fuzzy strongly reg-
ular relation

We introduce a new fuzzy strongly regular relation on an FHG such that the quotient group is an
a-solvable group.

Note: Let (S,0) be an FHG and m € N. From now on for simplify we use the following
notations:
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1)For any z,y € S we use zy instead of x o y.
2) For any fuzzy strongly regular relation p on .S and any x € X we use T for p.

(1)
(2)
(3) For any z1,..., 2z, of S we denote 2z 0 z9,--- 0 2y, by sz
(4)

4) Let Aut(S) denote the set of all one to one and onto fuzzy homomorphisms on an FHG.

Definition 3.1. Let (S,0) be an FHG and o € Aut(S). Suppose AF(S) =S and for any k > 0,
2r1(S) ={t € S|3r € S such that (xy)(r) >0 and (t e y*z)(r) > 0 for some z,y € A7 (S)}.

For integers n > 1 and m > 1, consider {',, is the diagonal relation on S. We define the
relation &, , as follows:

&g, Y = (21,0, 2m) € 8™, 30 € Spywith o(i) =4 if 2; € A (S) such that

Hzl ) > 0 and (ﬁ Zo(i))(y) > 0.
i=1

Consider &5 = U Emone Then &% the transitive closure of £, is an equivalence relation on S,
m>1

since & is symmetric. For this let a{7b. Then there exists an integer m > 1 such that a&p, ,,b. Tt

follows that

321500y 2m) € S™,36 € Spuwith 6(i) =i if 2 ¢ A%(S) such that (] [ zi)(a) > 0and (] ] z5¢))(b) > 0.
=1 =1

Put I = §(i). Now, for (21,...,2m) € S™ and 6~ € Sy, with 6 1(I) =i if 2 & A%(S), then

(Hzl)(a) > 0 and (Hza(l))(b) > (. Therefore, bé%a and so £ is symmetric. Also, £ is reflexive.
=1 =1
Since for any a € S we have a(a) = (xq)(a) = 1.

Example 3.2. Let S = Zy and « be the identity isomorphism. For any x,y € Zs we define a fuzzy
hyper operation o on Zz by x 0y = X{z,- Clearly, (Zg,0) is an FHG and Af(Zz) = Za. Also,

AY(Zo) = {t € Za|3r € Za; (xoy)(r) > 0 and (t e (y* ox))(r) > 0, for some x,y € Za}.
Letr =0,z =0 and y = 1. Then (z 0 y)(r) = X{z,1 (1) = X{0,1}(0) > 0 and

(te(yox))(r) = \/ (tos)(r) Ay ox)(s)

SEZLso

=V Xqt.53(0) A xg0,103(5)

SEZLso
= (x41,01(0) A xq1,01(0)) V (X1£,13(0) A xg1,03(1))
= 1.

Therefore, AY(Zz2) = Zs.
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Example 3.3. Let « be the identity isomorphism and S = {a,b,c}. We define the fuzzy hyperop-
eration” o” on S as follows:

(@oa)(a) = (bob)(a) = (coc)(a) = 0.5, (aod)(b) = (boa)d) = (boc)(b) = (cob)(b) =
0.1, (aoc)(c) =(bob)(c)=(coa)(c)=0.7, and (aoca)(b) = (aoca)(c) = (aob)(a) = (aob)(c) =
(aoc)(a) = (aoc)(b) = (boa)(a) = (boa)(c)= (bob)(b ) (boc)(a) = (boc)(c) = (coa)(a) =
(coa)(b) = (cob)(a) = (cob)(c)=(coc)(b)=(coc)(c) =

Let p = {(a,a), (b,b), (c,c), (a,c),(c,a)}. Then AG(S) =S and AY(S) = {a}.

Theorem 3.4. The relation £ is a fuzzy strongly regular relation.

Proof. 1t is clear that &7, is an equivalence relation. First, we show that for any z,y,z € S

x€yy = ngyz and zxgzy ().
If &3y, then there exists an integer m such that z&7, ,y, and so there exist (21 -y 2m) € 8™
m m

and o € Sy, with o(i) =i if z; & A%(S) such that (H i)(x) > 0 and (][ z0) (@) > 0.
= i=1
Let z € S such that for any r, s we have (xzz)(r ) > 0 and (yz)(s) > 0. Let p =z and ¢ = y.

Then m
((Hzi)Oz \/{ sz (r)} >0
and

((H Zo(i)) ® 2 \/{ H Zoi)) (@) A (gz)(s)} > 0.

=1

Now, suppose that z,,,+1 = z. We define o as follows:

vy o), Vie{l,2,...,m}
U(Z)_{m+1, 1=m+ 1.

It is clear that ¢’ is one to one and onto. Thus for any r,s € S

m—+1 m+1
sz ) >0 and Hz/ (s) > 0.
i=1
Hence ¢ is a permutation of S™t! such that o' (i) = i if z; ¢ A%(S). Therefore, xzéyz.
Now, if xz£;*y, then there exists k € N and wy = z,u1,...,uy_ = y € S such that up =

z&puépudy - Eyur = y. By the above result we have upz = 22E0U1 260222 ... E%Uupz = Yz
and so r2£%yz. By the similar way, we can show that zz£%zy. Therefore, £% is a fuzzy strongly
regular relation on S. O

Proposition 3.5. For any integer n we have §;5; C §*

Proof. Let &5 y. Then there exist m € N, (21,...,2,) € S™ and § € S, with §(i) = i if
m

2 & A (S) such that (H zi)(x) > 0 and (H 25(:))(y) > 0. Now, for (z1,..., 2m,) € S™ and ¢ €
i=1 i=1
Sm with 6(i) = 7 if z; & A5 (S) we have z; & A (S) (since A5 (S) C A5(S)) and so (H zi)(z) >
i=1
0 and (H z5#))(y) > 0. Therefore, z&7y. O

i=1
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Proposition 3.6. For any integer n we have \* C &% C €*. In particular, if S is a commutative
FHG, then € = £/ = \*.

Proof. Tt is clear that \* C &% C €*. It is enough to show that if S is commutative, then
A* = &% = €*. For this, let a&*b. Then there exists an integer m , (x1,22,...,2y) € S™ and
0 € S with p(i) =i if x; ¢ A%(S) such that (zq0...0zy)(a) >0 and(xs, 0...0x4,,)(b) > 0. For
any ¢ since .S is commutative, we conclude that each element z,(;) can commute with others and

SO \* =& = €*. O

Example 3.7. Let S be an FHG as Example 3. Then it is routine to verify that p is a fuzzy
strongly regular relation (1.

Now, we are ready to state one of our main results of this section.
Theorem 3.8. S/§ is an a-solvable group of length at most n + 1.

Proof. Let ¢ be a fuzzy strongly regular relation on S. Then we show that for any integer k
Di(S/e)) = (]t € AZ(S)).

We proceed by induction on k. Put G = S/¢. Since G = (|t € S) the case k = 0 is clear. Now,
suppose that @ € (|t € Aj,,(5)), then there exists t € Aj,,(S5) such that @ = £. By Definition
B0, there exist r; € S and x,y € AZ(S) such that (zy)(r1) > 0 and (t @ y“x)(r1) > 0. It follows
from Theorem P4 that Ty =71 and t B y* T =71 =T PDY. So t = [T, Y|g. The hypotheses of
induction implies that @ = € Dy, | (G).

Conversely, let @ € Dy, (G). Then there exist 7,7 € Dj(G) such that @ = [z,y]z. So
by hypotheses of induction we have Z = w and § = ¥, where u,v € Aj(S). As uv is a non-
zero fuzzy subset of S so there exists ¢ € S such that (uv)(c) > 0. By Definition P71, we have
1 = xs(c) = (Su)(c) = V,eg(ru)(c) and so there exists r € S such that (ru)(c) > 0. Moreover,
1=xs(r)=(Sv*)(r) = \/(tvo‘)(r). Hence, by Definition -1 we have:

tesS

(t e vu)(c) = (tv™ e u)(c) = \/((tv*)(p) A (pu)(e) = (t0)(r) A (ru)(e) > 0.

p

Thus (uv)(c) > 0 and (t e v¥u)(c) > 0. So t € Af (S). It follows from Theorem P4, that
UQV=Cc=1Dv*PU, and so t = [u,V]g = [T,7Y]la = a. Therefore, a =1 € (f;t € Af,(S)) i.e
Dy ((S/p) = (t|t € A}, ,(S)). Consequently, Dy (S/&;*) is an abelian group and Dy, | (S/&:%) =
{e}. O

In the following, we introduce the smallest fuzzy strongly regular relation £*“ on a finite FHG
S such that S/&** is an a-solvable group.

Theorem 3.9. The fuzzy relation £ = ﬂf;a is the smallest fuzzy strongly regular relation on
n>1
a finite FHG S such that S/&** is an a-solvable. In particular, &% is an a-solvable fundamental

relation.

Proof. First, we show that £** is a fuzzy strongly regular relation on S such that S/&** is a-

solvable. By &* = ﬂ & and Theorem B, it is easy to see that £** is a fuzzy strongly regular
n>1
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relation on S. Since S is finite, Proposition B3 implies that there exists an integer k such that
§:5 = &% Thus, for some m £** = £ and so by Theorem B8, S/£* is a-solvable.

Now, we prove £** is the smallest relation with this property. Suppose p is a fuzzy strongly
regular relation on S such that K = S/p is a-solvable of class ¢. We show that £** C p. For this,

let x,y € S and &%y, where £ = ﬂ &+ Then there exists integers n and m such that &5, |,y and

n>1
so there exist (21,...,2m) € S™ and ¢ € S, with §(z) =i if z; ¢ AZ(S) such that (Hzl)(x) >0
i=1
and (H25(i))(y) > 0. Thus by Theorem P4, we get
=1

m m
*:Hzﬁ and y:Hz(;
i=1 i=1
By the proof of Theorem B, we have

De(S/p) = (it € AZ(S)) = {e}.

And so for any z; € A%(S) we get z; = €. Hence, T = 3. Therefore, zpy as required. Now, £** C p,

because, let z,¢t € S and 2£**t. Then for some integer n, z£,*t and so there exist zg, 21,...,2x € S
(k € N) such that (z = 20)§“21&:* ... % (2 = t). So we have (z = z0)pz1p...p(zr = t). Hence,
& C p. Therefore, £** is the smallest relation such that S/£** is an a-solvable group. O

Example 3.10. Let S be an FHG as Example 3. Then, by Proposition B8, we have € = £
and so S/ = S/ex = S. Therefore, it follows from Theorem &3 that S is an a-solvable group.

Example 3.11. Let a be the identity isomorphism and S = {a,b,c}. Consider fuzzy hyperopera-
tion” o” on S as follows:

(aoa)(a) = (bob)(a) = (coc)(a) = 0.5, (aod)(b) = (boa)d) = (boc)(b) = (cob)(b) =
0.1, (aoc)(c) =(bob)(c)=(coa)(c)=0.7, and (aoca)(b) = (aca)(c) = (aob)(a) = (aob)(c) =
(aoc)(a) = (aoc)(b) = (boa)(a) = (boa)(c) = (bob)(b) = (boc)(a) = (boc)(c) = (coa)(a) =
(coa)(b) = (cob)(a) = (cob)(c) = (coc)(b) = (coc)(c)=0.

Let p1 = {(a,a), (b,b), (c,c)}. It is clear that p1 is the smallest fuzzy strongly regular relation.

4 ¢“-part of an FHG

In this section, we use the concept of an £“-part of an FHG to make a transitive fuzzy relation £
on an FHG.

Definition 4.1. Let X be a non-empty subset of S. Then X is called an £%-part of S if for any
meN, (z1,...,2m) € S™ and 0 € Sy, with o(i) =i if z; & UAO‘ , then

n>1
there exists x € X such that (H zi)(x) > 0 implies for all y € S\X, (H Zoi))(y) = 0.
i=1 i=1

Theorem 4.2. Let X be a non-empty subset of S. Then for any x,y € S the following conditions
are equivalent:
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(i) X is an £%-part of S,

(ii) If x € X and €%y, theny € X,

(i5i) If x € X and z&**y, then y € X.

Proof. (i) = (ii) For z,y € S if + € X and 2{%y, then there exist n,m € N such that z&}, ,y
and so there exist (z1,...,2m) € S™ and o € S,, with o(i) = i if 2z ¢ UA%(S) such that

n>1
(H zi)(z) > 0 and (H Zo(i))(y) > 0. As X is an {%part of S and Hz, ) > 0if y ¢ X we have
‘ i=1 i=1

(H Zo(i))(y) = 0, a contradiction. Therefore, y € X.

i=1

(1) = (iii) Let x,y € S, z € X, and x£**y. Then there is an integer m and (zo, ..., z,m) € S™ such
that x = 20§*21£“ ... %2y, = y. Applying (ii) m times, we have y € X.

(i7i) = (i) For (z1,...,2m) € S™ and o € S, with o(i) = i if 2z ¢ UA%(S), let z € X and

n>1
m
(H zi)(x) > 0. If y ¢ X, then ( Hz ) > 0. It follows that z&,y and so z€y. Hence, (iii)
] =1
implies that y € X, a contradiction and so (Hz(,(i))(y) =0, i.e X is an {*part of S. O O

=1

Example 4.3. Let X = {a,c} be as Example B-1. Then by Theorem [-3 and Proposition B4, X
is an £*-part of S.

Theorem 4.4. For any a € S, £*(a) is an *-part of S if and only if £ is transitive.

Proof. (<) Let x,y € S, z € £€*(x) and 2£%y. Since &% is transitive, we have y € £*(z). So, by
Theorem B2, {*(z) is an £*-part of S.
(=) Suppose that z&**y. Then there exists an integer k and (zy, ..., 2;) € S* such that

r=20"218" ... % =y

thus, z; € £€*(z;—1). Since £%*(z;) is an {%part (0 < i < k) it follows that y € £%(x) by Theorem
B2, i.e x£%y and so £ = £°.

O
Deﬁnition 4.5. Let A be a non-empty subset of S. We define K(A) and W(A) as follows:
1) K(A ﬂ{B AC B and B is an £ — part of S}. We use K(a) for K({a}),
2) W(A UW ), where W1(A) = A and for n > 1,
n>1

Wht1(A) = {x € S|3m € N and 3(z1,...,2m) € S™ such that for some a € Wy, (A) we have

sz ) >0 and o € S,, with o(i) =1 if z; & U AS(S) such that (H Zo(i))(a) > 0}
s>1 i=1

Example 4.6. Let A = {a,c} be as Example B1. Since X is an £“-part of S we have K(A) = A.
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Theorem 4.7. The following statements hold:
(1) W(A) = K(A),

= UK(a)

(3) Wn(Wg(;)e)A: Wht1(z), forn>2 and z € S.

m

Proof. (1) We show that W (A) is an £%-part. Let a € W(A), (Hzi)(a) > 0 and o € S,, with
=1
o(i)=1,if z; & UA?(S) Then there exists an integer n such that a € W, (A). If ¢t ¢ W(A) and

s>1
(Hza(i))(t) > 0, then t € Wy41(A) and so t € W(A), a contradiction. Therefore, (H Zo(i)) (1) =
i=1

=1
alnd W(A) is an {“-part.
Now, it is enough to prove that if B is an {%-part and A C B, then for any n, W,,(4) C B i.e
W (A) is the smallest {“-part of S which contains A. We use induction on n. Since W(A) = A C B,
the case n = 1 is clear. Let W,,(A) C B and z € W, 11(A). Then there exists an integer m
and (21,...,2m) € S™ and 0 € S, with o(i) = @ if z; ¢ UA?(S) and t € W,(A) such that
s>1

Hza(l ) >0 and ( sz ) > 0. Since W,,(A) C B we have t € B. Moreover, if z ¢ B as B is
1=1

£%*-part, then (H zi)(z) = 0, a contradiction, and so z € B and the result holds.
i=1
(2) We know that for any a € A, K(a) C K(A). We use induction on n to prove that
A) = | JWa(a). Tt follows from (1) that K (A) = | JW,(A) and Wi(A) = A = | J{a}.
acA n>1 a€A
Suppose that it is true for n and z € Wy,11(A). Then there exists an integer m and (z1, ..., 2m,) €

S™ such that ( HZ’ ) > 0 and there exists o € S,,, with o(¢) =7 if 2; & UA?(S’) such that for

=1 s>1
some a € W, (A4), (H Zo(#))(@) > 0. By the hypotheses of induction we have W, (A4) = UWn(b)
i=1 beA
and so a € U Wy (b). Therefore, for some b € A , a € Wy, (b). Hence, z € Wy,11(b) i.e Wy41(A) C

beA
UWn+1(b)- Since for any a € A, K(a) C K(A) we obtain K(A) = UWn(A) - UUWn(a) =
beA n
U K(a) C K(A) Therefore, K(A) = J,c4 K(a) .
a€A
(3) We proceed by induction on n. For n = 2 we have

Wo(Wa(z)) = {z|3¢ e N,3(a1,...,aq) € STand o €S, with o(i) =1 if 2 UA“ such that
s>1

a
(H i)(z) > 0 and for some y € Wa(z Haa() ) > 0} = Ws(x).
i=1
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Suppose W,,(Wa(z)) = Wy41(z). Then

Wy (Wa(z)) = {z€S|3¢geN,(a1,...,aq) € S? and 0 € Sy with o(i) =i if 2; ¢ UAO‘

s>1

t € W, (Wa(z)) such that (H i)(z) >0 and Ha ) >0}
i=1
= Wn+2(£€>.

This completes the proof.

Theorem 4.8. Let x,y € S.Then the following relation is an equivalence relation on S':

Wy if and only if v € W({y}).

Proof. The relation W is reflexive, since Theorem 274 and Definition B3, imply that W{z} = K{x}
and z € W{z} i.e xWzx. Also, W is transitive, since for x,y, z € S let xtWy and yWz. Therefore,
Theorem B74, implies * € K(y) and y € K(z). For any P, {“part of S which contains z, we
have K(z) C P and so y € P. Then K(y) C P and so x € P. Thus for any P we have
x € P and K(z) is an £“-part of S which contains z, so x € K(z). Therefore, by Theorem
B0, xWz and so W is transitive. W is symmetric. For this first by induction on n we prove
that © € W,(y) if and only if y € W, (x). For n = 2 it is clear. Suppose z € W, 11(y), then
there exists an integer ¢ > 1, (a1,...,a4) € S? and 0 € Sy with o(i) =i if a; & UA?(S) and t €
s>1

W, (y) such that ( H a;)(x) >0 and ( H aq(y)(t) > 0. It follows that t € Wa(z). By hypotheses of

i=1 i=1
induction we have y € W,,(t). Therefore, by Theorem B74(3), we have y € W, (Wa(x)) = Wyi1(x).

O

Example 4.9. Let p = {(a,a), (b,b), (¢, c),(a,c),(c,a)} and m: S — S/p defined by w(x) =7 for
all x € S be the canonical homomorphism. We know that p is a fuzzy strongly reqular relation so
by Theorem 28, S/p is a group. Moreover, S/p = {a,b} and a = {a,c} is the identity element of
S/p. Also,

wg = Ker(r) = {z| = a} = {a,c}.

By Example -3, {a,c} is a p-part of S i.e wg is a p-part of S.

Let M be a non-empty subset of S. We Know that (Mwg)(r) = \/ (moux)(r).

rEwg,mEM

Lemma 4.10. Assume that M is a non-empty subset of S. Then we have
(i) Y x(M)) ={x € S : (wsM)(z) >0} ={z €S : (Mwg)(x) > 0};
(i3) If M is an £%-part of S, then 71 (m(M)) = M.

Proof. (i) Let x € S, t € wg and y € M such that (ty)(z) > 0. Then by Theorem P4, n(z) =
m(t) & 7(y) = Lsjea @7(y) = 7(y) and so v € 71 (7 (y)) € 7~ (x(M)).

Conversely, for any x € 7~ 1(7(M)), there exists b € M such that 7(x) = 7(b). For a € S we
have aS = xg and so (ab)(z) > 0. Since by Theorem 24, 7(b) = 7(z) = 7(a) & w(b) we have
m(a) = lgjga. S0 a € m 1 (1g/exa) = wg. Therefore, (wgM)(x) > 0.
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By the similar way, we can prove that 7=(7(M)) = {z € S : (Mwg)(x) > 0}.
(43) It is clear that M C 7~ 1(w(M)). If z € 7~ 1(w(M)), then there exists b € M such that
m(z) = w(b) i.e £ (x) = £**(b). Therefore, z € M by Theorem BA(iii) and M is {*-part.
O

Theorem 4.11. For all a,b € S, aWb if and only if a&*“b.

Proof. (<) Let a&**b. Then there exist integer n, m such that a&p, ,b. So for any (21, ...,2m) € S™

and o € Sy, with o(i) =7 if z; & UA%( we have 1_[(1Z ) > 0 and ( Ha ) > 0 and so
n>1 =1 =1

a € Wa(b). Thus, by Definition B3, aWb and £ C W.

(=) If xWy, then there exists n € N such that x € W,,(y). So for any integer m, (z1, ..., 2m) € S™

q
and o € Sy, with o(i) =i if 2; ¢ UA%(S) we have (H a;)(x) > 0 and for some z; € W, _;(y) we
i=1

n>1
have ( H ay(;y)(z1) > 0. Thus, x(%x;. Continuing this method there exist Jzo, ..., 2,1 € S such

that ZL‘Z 6 Wi—i(y) and z;—1&%x;. Then (x = x0){3x1&5 ... £5(xn—1 = y). Therefore, W C (*.
O

Theorem 4.12. wg is a fuzzy subhypergroup of S which is also an £*-part of S.

Proof. Tt is clear that wg C S and so for any a,b,c € wg, (ab) e c = a e (bc). Let z,y € wg. Then
Sy = xs implies that there exists u € S such that (uy)(x) > 0. By Theorem 24, u &y = T and

sou = 1. i.e u € wg. Therefore, wsy = xus and wg is a fuzzy subhypergroup of S. Now we prove
that

K(y)=m'(n({y}) = {x € S (wsy)(z) > 0} = ws.
Let y,z € S. Then

zen (r({y})) m(z) = m(y)
£ (z) = €(y)

z €& (y) =W({y}) = K(y).

Moreover, y € wg, we have {x € S : (wgy)(z) > 0} = {z € S : (xwg)(x) > 0} = ws. Therefore,
K(y) = ws and so wg is an £*-part.

1ere

O]

5 Conclusions

In this paper, we defined a new strongly regular relation on an FHG to get an a-solvable group.
Also, we introduced the concept of £*-part of a fuzzy hypergroup. Basically, we studied the relation
between their fundamental relation and £*-parts of a given FHG. In addition, we can extend this
work on a-Engel groups ( a-nilpotant groups).
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