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Abstract

We introduce a specific kind of equivalence relation ξ∗αn
on a fuzzy hypergroup S such that the quotient S/ξ∗αn,
the set of all equivalence classes, is an α-solvable group.
This helps us to introduce the α-solvable fundamental
relation ξ∗α. In particular, we obtain an equivalent con-
dition with transitivity of ξα.
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A Title

1 Introduction

A solvable group with respect to an automorphism α is called an α-solvable group. An α-solvable
group is a group that α-derived series terminates in the trivial subgroups. In [2], α-solvable groups,
as a generalization of solvable groups, were introduced and some properties of α-solvabel groups
were discussed. Clearly, every solvable group is an α-solvable group, where α is the identity
automorphism.

In 1965, Zadeh [14] proposed the concept of fuzzy sets. In 1971, Rosenfeld [12], applied fuzzy
sets in group theory to introduce fuzzy subgroups of a group. Fuzzy hypergroups as a new approach
on fuzzy sets, introduced by Corsini and Tofan [5]. The basic idea is that a fuzzy hyperoperation
assigns to every pair of elements a fuzzy set. Some researchers extended the concepts of abstract
algebra to fuzzy sets (see [3], [5], [9], [8], [7], [10], [13]). The study of fuzzy hyperstructures is
an interesting topic on fuzzy sets theory. One way for connecting fuzzy hypergroups and groups
is the fundamental relation. A fundamental relation of a hypergroup is the smallest equivalence
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relation such that a quotient is a group. The fundamental relation, β, as a vital concept on
hyperstructures, is studied by many scholars [4]. This relation plays an important role in the
theory of hyperstructures. Also, the relation γ∗ is the least equivalence relation on a hypergroup
H such that a quotient is an abelian group [6]. Moreover, γ∗ is a commutative fundamental relation.
It is known that if R is a fuzzy strongly regular equivalence relation on a fuzzy hypergroup S, then
we can define a binary operation ⊗ on the quotient set S/R, the set of all equivalence classes of
S with respect to R, such that (S/R,⊗) is a group (see [13]). Ameri and Nozari [1], followed the
results obtained by Sen et. all on fuzzy hypersemigroups to introduce the fundamental relation
of fuzzy hypersemigroups. Now, we introduce an α-solvable fundamental group. In addition, we
define a strongly regular relation ξ∗α on a fuzzy hypergroup S. Then we prove that S/ξ∗α, the
set of all equivalence classes of ξ∗α under usual operation, is an α-solvable group. Finally, by the
notion of ξ∗α-part of a fuzzy hypergroup, we try to get an equivalent condition to transitivity of
ξ∗α.

2 Preliminaries

Let G be any group and α be an automorphism of G. For two elements x and y of G the α-
commutator of G is [x, y]α = xyx−1y−α, where y−α is used for α(y−1). For any x1, x2, . . . , xn of
G one can define inductively [x1, x2, . . . , xn]α, the α-commutator of weight n, as follows:

[x1, x2, . . . , xn]α = [x1, [x2, . . . , xn]α]α.

For any non-empty subsets X1 and X2 of G the α-commutator subgroup of G, denoted by [X1, X2]α
is defined as the subgroup of G generated by the set {[x1, x2]α|x1 ∈ X1, x2 ∈ X2}. It is clear
that [X1, X2]α is not equal to [X2, X1]α in general. Let N be a normal subgroup of G and
Nα = N . For the isomorphism α : G/N −→ G/N given by xα = xαN we have [x1, x2, . . . , xn]α =
[x1, x2, . . . , xn]αN (see [2]).

The α-derived subgroup of a group G with respect to an automorphism α is defined by Dα(G) =
⟨[x, y]α|x, y ∈ G⟩. Also, Dα

0 (G) = G, Dα
1 (G) = Dα(G) and Dα

i (G) = Dα(Dα
i−1(G)). A group G

is α-solvable if and only if for some integer r, Dα
r (G) = {1}, where 1 is the identity element. The

smallest such r is called length of G (see [2]).
A hypergroupoid is a nonempty set H with a hyperoperation ◃ defined on H, that is, a mapping

of H ×H into the family of non-empty subsets of H. If (x, y) ∈ H ×H, then its image under ◃ is
denoted by x ◃ y. If A,B are non-empty subsets of H, then A◃B is given by A◃B =

∪
{x ◃ y|x ∈

A, y ∈ B}. Thus x ◃ A is used for {x} ◃ A and A ◃ x for A ◃ {x}. Generally, the singleton a is
identified with its member a. The structure (H, ◃) is called a semihypergroup if a◃(b◃c) = (a◃b)◃c
for any a, b, c ∈ H, and a semihypergroup (H, ◃) is called a hypergroup in the sense of Marty if
x ◃ H = H ◃ x = H, for any x ∈ H. This axiom means that for any x, y ∈ H there exist u, v ∈ H
such that y ∈ x ◃ u and y ∈ v ◃ x.

Let S be a non-empty set and F ∗(S) be the set of all non-zero fuzzy subsets of S. We denote
by 0 the zero fuzzy set. Then ◦ : S × S → F ∗(S) is a fuzzy hyperoperation on S and the couple
(S, ◦) is called a fuzzy hypergroupoid.

Let µ, ν be two fuzzy subsets of a fuzzy hypergroupoid (S, ◦). In [13] for any a, r ∈ S we have
the following statements:

(i) (µ⊙ ν)(r) =
∨

p,q∈S
(µ(p) ∧ (p ◦ q)(r) ∧ ν(q)),
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(ii) (a•µ)(r) =


∨
t∈S

((a ◦ t)(r) ∧ µ(t)), µ ̸= 0

0. µ = 0,
(µ•a)(r) =


∨
t∈S

(µ(t) ∧ (t ◦ a)(r)), µ ̸= 0

0. µ = 0

Definition 2.1. [13]
(i) A fuzzy hypergroupoid (S, ◦) is a fuzzy semihypergroup if for any x, y, z ∈ S we have (x◦y)•z =
x • (y ◦ z).
(iii) A fuzzy semihypergroup is a fuzzy hypergroup (FHG) if x ◦ S = χS = S ◦ x. A fuzzy sub-
hypergroup (K, ◦) of an FHG (S, ◦) is a non-empty subset K ⊆ S such that for any k ∈ K,
k ◦K = K ◦ k = χK . Let (S1, ◦1) and (S2, ◦2) be two FHG. A map f : S1 → S2 is called a fuzzy
hypergroup homomorphism if, for any x, y ∈ S1, f(x ◦1 y) = f(x) ◦2 f(y).

Definition 2.2. [13] Let ρ be an equivalence relation on a fuzzy semihypergroup (S, ◦) and µ, ν be
two fuzzy subsets of (S, ◦). We say that µρν if for all x, y ∈ S such that µ(x) > 0 and ν(y) > 0,
then xρy.

Definition 2.3. [13] An equivalence relation ρ on a fuzzy semihypergroup (S, ◦) is said to be a
fuzzy strongly regular relation if aρb and a′ρb′ imply a ◦ a′ ρ b ◦ b′.

Theorem 2.4. [13] Let (S, ◦) be a fuzzy semihypergroup and ρ be an equivalence relation on S.
For any ρa, ρb ∈ S/ρ consider the operation ⊕ as follows:

ρa ⊕ ρb = {ρc|(a′ ◦ b′)(c) > 0, aρa′, bρb′}.

Then ρ is a fuzzy strongly regular relation on (S, ◦) iff (S/ρ,⊕) is a semigroup.

Definition 2.5. [1, 11] Let (S, ◦) be a fuzzy semihypergroup and Sn be the symmetric group on n
letters (n ∈ N). We define the relations λ and ϵn on S in the following way:
(i)

aλb ⇔ ∃x1, ..., xn ∈ S, such that (x1 ◦ ... ◦ xn)(a) > 0 and (x1 ◦ ... ◦ xn)(b) > 0.

(ii) ϵ =
∪
n≥1

ϵn, where ϵ1 = {(s, s)|s ∈ S} and for any n ≥ 2;

aϵnb ⇔ ∃x1, ..., xn ∈ S, ∃σ ∈ Sn such that (x1 ◦ ... ◦ xn)(a) > 0 and (xσ1 ◦ ... ◦ xσn)(b) > 0.

One can see that λ and ϵ are symmetric and reflexive. Let ϵ∗ and λ∗ be the transitive closure of ϵ
and λ, respectively. Then ϵ∗ and λ∗ are equivalence relations.

Definition 2.6. [13] Let (S, ◦) be a fuzzy semihypergroup. The smallest equivalence relation ρ on
S is called the fundamental relation if the quotient structure (S/ρ,⊕) is a semigroup.

Theorem 2.7. [11] The relation ϵ∗ is the abelian fundamental relation on fuzzy semihypergroup
(S, ◦).

3 Characterization of α-solvable groups via a fuzzy strongly reg-
ular relation

We introduce a new fuzzy strongly regular relation on an FHG such that the quotient group is an
α-solvable group.

Note: Let (S, ◦) be an FHG and m ∈ N. From now on for simplify we use the following
notations:
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(1)For any x, y ∈ S we use xy instead of x ◦ y.
(2) For any fuzzy strongly regular relation ρ on S and any x ∈ X we use x for ρx.

(3) For any z1, . . . , zm of S we denote z1 ◦ z2, · · · ◦ zm by

m∏
i=1

zi.

(4) Let Aut(S) denote the set of all one to one and onto fuzzy homomorphisms on an FHG.

Definition 3.1. Let (S, ◦) be an FHG and α ∈ Aut(S). Suppose Aα
0 (S) = S and for any k ≥ 0,

Aα
k+1(S) = {t ∈ S|∃r ∈ S such that (xy)(r) > 0 and (t • yαx)(r) > 0 for some x, y ∈ Aα

k (S)}.

For integers n ≥ 1 and m > 1, consider ξα1,n is the diagonal relation on S. We define the
relation ξαm,n as follows:

xξαm,ny ⇔ ∃(z1, ..., zm) ∈ Sm, ∃σ ∈ Smwith σ(i) = i if zi ̸∈ Aα
n(S) such that

(

m∏
i=1

zi)(x) > 0 and (

m∏
i=1

zσ(i))(y) > 0.

Consider ξαn =
∪
m≥1

ξαm,n. Then ξ∗αn , the transitive closure of ξαn , is an equivalence relation on S,

since ξαn is symmetric. For this let aξαnb. Then there exists an integer m ≥ 1 such that aξαm,nb. It
follows that

∃(z1, ..., zm) ∈ Sm, ∃δ ∈ Smwith δ(i) = i if zi ̸∈ Aα
n(S) such that (

m∏
i=1

zi)(a) > 0 and (

m∏
i=1

zδ(i))(b) > 0.

Put I = δ(i). Now, for (z1, ..., zm) ∈ Sm and δ−1 ∈ Sm with δ−1(I) = i if zI ̸∈ Aα
n(S), then

(
m∏
I=1

zI)(a) > 0 and (
m∏
I=1

zδ(I))(b) > 0. Therefore, bξαna and so ξαn is symmetric. Also, ξαn is reflexive.

Since for any a ∈ S we have a(a) = (χa)(a) = 1.

Example 3.2. Let S = Z2 and α be the identity isomorphism. For any x, y ∈ Z2 we define a fuzzy
hyper operation ◦ on Z2 by x ◦ y = χ{x,y}. Clearly, (Z2, ◦) is an FHG and Aα

0 (Z2) = Z2. Also,

Aα
1 (Z2) = {t ∈ Z2|∃r ∈ Z2; (x ◦ y)(r) > 0 and (t • (yα ◦ x))(r) > 0, for some x, y ∈ Z2}.

Let r = 0, x = 0 and y = 1. Then (x ◦ y)(r) = χ{x,y}(r) = χ{0,1}(0) > 0 and

(t • (yα ◦ x))(r) =
∨
s∈Z2

(t ◦ s)(r) ∧ (yα ◦ x)(s)

=
∨
s∈Z2

χ{t,s}(0) ∧ χ{0,1α}(s)

= (χ{t,0}(0) ∧ χ{1,0}(0)) ∨ (χ{t,1}(0) ∧ χ{1,0}(1))

= 1.

Therefore, Aα
1 (Z2) = Z2.



On α-solvable fundamental groups 39

Example 3.3. Let α be the identity isomorphism and S = {a, b, c}. We define the fuzzy hyperop-
eration ” ◦ ” on S as follows:
(a ◦ a)(a) = (b ◦ b)(a) = (c ◦ c)(a) = 0.5, (a ◦ b)(b) = (b ◦ a)(b) = (b ◦ c)(b) = (c ◦ b)(b) =
0.1, (a ◦ c)(c) = (b ◦ b)(c) = (c ◦ a)(c) = 0.7, and (a ◦ a)(b) = (a ◦ a)(c) = (a ◦ b)(a) = (a ◦ b)(c) =
(a ◦ c)(a) = (a ◦ c)(b) = (b ◦ a)(a) = (b ◦ a)(c) = (b ◦ b)(b) = (b ◦ c)(a) = (b ◦ c)(c) = (c ◦ a)(a) =
(c ◦ a)(b) = (c ◦ b)(a) = (c ◦ b)(c) = (c ◦ c)(b) = (c ◦ c)(c) = 0.
Let ρ = {(a, a), (b, b), (c, c), (a, c), (c, a)}. Then Aα

0 (S) = S and Aα
1 (S) = {a}.

Theorem 3.4. The relation ξ∗αn is a fuzzy strongly regular relation.

Proof. It is clear that ξ∗αm,n is an equivalence relation. First, we show that for any x, y, z ∈ S

xξαny ⇒ xzξαnyz and zxξαnzy (∗).

If xξαny, then there exists an integer m such that xξαm,ny, and so there exist (z1, . . . , zm) ∈ Sm

and σ ∈ Sm with σ(i) = i if zi ̸∈ Aα
n(S) such that (

m∏
i=1

zi)(x) > 0 and (
m∏
i=1

zσ(i))(y) > 0.

Let z ∈ S such that for any r, s we have (xz)(r) > 0 and (yz)(s) > 0. Let p = x and q = y.
Then

((
m∏
i=1

zi) • z)(r) =
∨
p

{(
m∏
i=1

zi)(p) ∧ (pz)(r)} > 0

and

((

m∏
i=1

zσ(i)) • z)(s) =
∨
q

{(
m∏
i=1

zσ(i))(q) ∧ (qz)(s)} > 0.

Now, suppose that zm+1 = z. We define σ
′
as follows:

σ
′
(i) =

{
σ(i), ∀i ∈ {1, 2, . . . ,m}
m+ 1, i = m+ 1.

It is clear that σ′ is one to one and onto. Thus for any r, s ∈ S

(

m+1∏
i=1

zi)(r) > 0 and (

m+1∏
i=1

zσ′
(i))(s) > 0.

Hence σ
′
is a permutation of Sm+1 such that σ

′
(i) = i if zi ̸∈ Aα

n(S). Therefore, xzξαnyz.
Now, if xξ∗αn y, then there exists k ∈ N and u0 = x, u1, . . . , uk = y ∈ S such that u0 =

xξαnu1ξ
α
nu2ξ

α
n . . . ξαnuk = y. By the above result we have u0z = xzξαnu1zξ

α
nu2zξ

α
n . . . ξαnukz = yz

and so xzξαnyz. By the similar way, we can show that zxξαnzy. Therefore, ξ∗αn is a fuzzy strongly
regular relation on S.

Proposition 3.5. For any integer n we have ξ∗αn+1 ⊆ ξ∗αn .

Proof. Let xξαn+1y. Then there exist m ∈ N, (z1, ..., zm) ∈ Sm and δ ∈ Sm with δ(i) = i if

zi ̸∈ Aα
n+1(S) such that (

m∏
i=1

zi)(x) > 0 and (
m∏
i=1

zδ(i))(y) > 0. Now, for (z1, ..., zm) ∈ Sm and δ ∈

Sm with δ(i) = i if zi ̸∈ Aα
n(S) we have zi ̸∈ Aα

n+1(S) (since A
α
n+1(S) ⊆ Aα

n(S)) and so (

m∏
i=1

zi)(x) >

0 and (

m∏
i=1

zδ(i))(y) > 0. Therefore, xξαny.
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Proposition 3.6. For any integer n we have λ∗ ⊆ ξ∗αn ⊆ ϵ∗. In particular, if S is a commutative
FHG, then ϵ∗ = ξ∗αn = λ∗.

Proof. It is clear that λ∗ ⊆ ξ∗αn ⊆ ϵ∗. It is enough to show that if S is commutative, then
λ∗ = ξ∗αn = ϵ∗. For this, let aξ∗αn b. Then there exists an integer m , (x1, x2, . . . , xm) ∈ Sm and
ϱ ∈ Sm with ϱ(i) = i if xi ̸∈ Aα

n(S) such that (x1 ◦ ... ◦xm)(a) > 0 and(xσ1 ◦ ... ◦xσm)(b) > 0. For
any i since S is commutative, we conclude that each element xϱ(i) can commute with others and
so λ∗ = ξ∗αn = ϵ∗.

Example 3.7. Let S be an FHG as Example 3.3. Then it is routine to verify that ρ is a fuzzy
strongly regular relation [1].

Now, we are ready to state one of our main results of this section.

Theorem 3.8. S/ξ∗αn is an α-solvable group of length at most n+ 1.

Proof. Let φ be a fuzzy strongly regular relation on S. Then we show that for any integer k

Dα
k (S/φ)) = ⟨t|t ∈ Aα

k (S)⟩.

We proceed by induction on k. Put G = S/φ. Since G = ⟨t|t ∈ S⟩ the case k = 0 is clear. Now,
suppose that a ∈ ⟨t|t ∈ Aα

k+1(S)⟩, then there exists t ∈ Aα
k+1(S) such that a = t. By Definition

3.1, there exist r1 ∈ S and x, y ∈ Aα
k (S) such that (xy)(r1) > 0 and (t • yαx)(r1) > 0. It follows

from Theorem 2.4 that x⊕ y = r1 and t⊕ yα ⊕ x = r1 = x⊕ y. So t = [x, y]α. The hypotheses of
induction implies that a = t ∈ Dα

k+1(G).
Conversely, let a ∈ Dα

k+1(G). Then there exist x, y ∈ Dα
k (G) such that a = [x, y]α. So

by hypotheses of induction we have x = u and y = v, where u, v ∈ Aα
k (S). As uv is a non-

zero fuzzy subset of S so there exists c ∈ S such that (uv)(c) > 0. By Definition 2.1, we have
1 = χS(c) = (Su)(c) =

∨
r∈S(ru)(c) and so there exists r ∈ S such that (ru)(c) > 0. Moreover,

1 = χS(r) = (Svα)(r) =
∨
t∈S

(tvα)(r). Hence, by Definition 2.1 we have:

(t • vαu)(c) = (tvα • u)(c) =
∨
p

((tvα)(p) ∧ (pu)(c)) ≥ (tvα)(r) ∧ (ru)(c) > 0.

Thus (uv)(c) > 0 and (t • vαu)(c) > 0. So t ∈ Aα
k+1(S). It follows from Theorem 2.4, that

u ⊕ v = c = t ⊕ vα ⊕ u, and so t = [u, v]α = [x, y]α = a. Therefore, a = t ∈ ⟨t; t ∈ Aα
k+1(S)⟩ i.e

Dα
k+1(S/φ) = ⟨t|t ∈ Aα

k+1(S)⟩. Consequently, Dα
n(S/ξ

∗α
n ) is an abelian group and Dα

n+1(S/ξ
∗α
n ) =

{e}.

In the following, we introduce the smallest fuzzy strongly regular relation ξ∗α on a finite FHG
S such that S/ξ∗α is an α-solvable group.

Theorem 3.9. The fuzzy relation ξ∗α =
∩
n≥1

ξ∗αn is the smallest fuzzy strongly regular relation on

a finite FHG S such that S/ξ∗α is an α-solvable. In particular, ξ∗α is an α-solvable fundamental
relation.

Proof. First, we show that ξ∗α is a fuzzy strongly regular relation on S such that S/ξ∗α is α-

solvable. By ξ∗α =
∩
n≥1

ξ∗αn and Theorem 3.4, it is easy to see that ξ∗α is a fuzzy strongly regular
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relation on S. Since S is finite, Proposition 3.5 implies that there exists an integer k such that
ξ∗αk+1 = ξ∗αk . Thus, for some m ξ∗α = ξ∗αm and so by Theorem 3.8, S/ξ∗α is α-solvable.

Now, we prove ξ∗α is the smallest relation with this property. Suppose ρ is a fuzzy strongly
regular relation on S such that K = S/ρ is α-solvable of class c. We show that ξ∗α ⊆ ρ. For this,

let x, y ∈ S and xξαy, where ξα =
∩
n≥1

ξαn . Then there exists integers n and m such that xξαm,ny and

so there exist (z1, . . . , zm) ∈ Sm and δ ∈ Sm with δ(i) = i if zi ̸∈ Aα
n(S) such that (

m∏
i=1

zi)(x) > 0

and (

m∏
i=1

zδ(i))(y) > 0. Thus by Theorem 2.4, we get

x =
m∏
i=1

zi and y =
m∏
i=1

zδ(i).

By the proof of Theorem 3.8, we have

Dc(S/ρ) = ⟨t|t ∈ Aα
c (S)⟩ = {e}.

And so for any zi ∈ Aα
c (S) we get zi = e. Hence, x = y. Therefore, xρy as required. Now, ξ∗α ⊆ ρ,

because, let z, t ∈ S and zξ∗αt. Then for some integer n, zξ∗αn t and so there exist z0, z1, . . . , zk ∈ S
(k ∈ N) such that (z = z0)ξ

∗α
n z1ξ

∗α
n . . . ξ∗αn (zk = t). So we have (z = z0)ρz1ρ . . . ρ(zk = t). Hence,

ξ∗α ⊆ ρ. Therefore, ξ∗α is the smallest relation such that S/ξ∗α is an α-solvable group.

Example 3.10. Let S be an FHG as Example 3.2. Then, by Proposition 3.6, we have ϵ∗ = ξ∗αn
and so S/ξ∗αn = S/ϵ∗ ∼= S. Therefore, it follows from Theorem 3.8 that S is an α-solvable group.

Example 3.11. Let α be the identity isomorphism and S = {a, b, c}. Consider fuzzy hyperopera-
tion ” ◦ ” on S as follows:
(a ◦ a)(a) = (b ◦ b)(a) = (c ◦ c)(a) = 0.5, (a ◦ b)(b) = (b ◦ a)(b) = (b ◦ c)(b) = (c ◦ b)(b) =
0.1, (a ◦ c)(c) = (b ◦ b)(c) = (c ◦ a)(c) = 0.7, and (a ◦ a)(b) = (a ◦ a)(c) = (a ◦ b)(a) = (a ◦ b)(c) =
(a ◦ c)(a) = (a ◦ c)(b) = (b ◦ a)(a) = (b ◦ a)(c) = (b ◦ b)(b) = (b ◦ c)(a) = (b ◦ c)(c) = (c ◦ a)(a) =
(c ◦ a)(b) = (c ◦ b)(a) = (c ◦ b)(c) = (c ◦ c)(b) = (c ◦ c)(c) = 0.
Let ρ1 = {(a, a), (b, b), (c, c)}. It is clear that ρ1 is the smallest fuzzy strongly regular relation.

4 ξα-part of an FHG

In this section, we use the concept of an ξα-part of an FHG to make a transitive fuzzy relation ξα

on an FHG.

Definition 4.1. Let X be a non-empty subset of S. Then X is called an ξα-part of S if for any

m ∈ N, (z1, ..., zm) ∈ Sm and σ ∈ Sm with σ(i) = i if zi ̸∈
∪
n≥1

Aα
n(S), then

there exists x ∈ X such that (

m∏
i=1

zi)(x) > 0 implies for all y ∈ S\X, (

m∏
i=1

zσ(i))(y) = 0.

Theorem 4.2. Let X be a non-empty subset of S. Then for any x, y ∈ S the following conditions
are equivalent:
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(i) X is an ξα-part of S,
(ii) If x ∈ X and xξαy, then y ∈ X,
(iii) If x ∈ X and xξ∗αy, then y ∈ X.

Proof. (i) ⇒ (ii) For x, y ∈ S if x ∈ X and xξαy, then there exist n,m ∈ N such that xξαm,ny

and so there exist (z1, ..., zm) ∈ Sm and σ ∈ Sm with σ(i) = i if zi ̸∈
∪
n≥1

Aα
n(S) such that

(

m∏
i=1

zi)(x) > 0 and (

m∏
i=1

zσ(i))(y) > 0. As X is an ξα-part of S and (

m∏
i=1

zi)(x) > 0 if y /∈ X we have

(

m∏
i=1

zσ(i))(y) = 0, a contradiction. Therefore, y ∈ X.

(ii) ⇒ (iii) Let x, y ∈ S, x ∈ X, and xξ∗αy. Then there is an integer m and (z0, ..., zm) ∈ Sm such
that x = z0ξ

αz1ξ
α . . . ξαzm = y. Applying (ii) m times, we have y ∈ X.

(iii) ⇒ (i) For (z1, ..., zm) ∈ Sm and σ ∈ Sm with σ(i) = i if zi ̸∈
∪
n≥1

Aα
n(S), let x ∈ X and

(
m∏
i=1

zi)(x) > 0. If y /∈ X, then (
m∏
i=1

zσ(i))(y) > 0. It follows that xξny and so xξy. Hence, (iii)

implies that y ∈ X, a contradiction and so (
∏
i=1

zσ(i))(y) = 0, i.e X is an ξα-part of S. �

Example 4.3. Let X = {a, c} be as Example 3.7. Then by Theorem 4.2 and Proposition 3.6, X
is an ξα-part of S.

Theorem 4.4. For any a ∈ S, ξα(a) is an ξα-part of S if and only if ξα is transitive.

Proof. (⇐) Let x, y ∈ S, z ∈ ξα(x) and zξαy. Since ξα is transitive, we have y ∈ ξα(x). So, by
Theorem 4.2, ξα(x) is an ξα-part of S.
(⇒) Suppose that xξ∗αy. Then there exists an integer k and (z1, . . . , zk) ∈ Sk such that

x = z0ξ
αz1ξ

α . . . ξαzk = y

thus, zi ∈ ξα(zi−1). Since ξα(zi) is an ξα-part (0 ≤ i ≤ k ) it follows that y ∈ ξα(x) by Theorem
4.2, i.e xξαy and so ξ∗α = ξα.

Definition 4.5. Let A be a non-empty subset of S. We define K(A) and W (A) as follows:

1) K(A) =
∩

{B : A ⊆ B and B is an ξα − part of S}. We use K(a) for K({a}),
2) W (A) =

∪
n≥1

Wn(A), where W1(A) = A and for n ≥ 1,

Wn+1(A) = {x ∈ S|∃m ∈ N and ∃(z1, . . . , zm) ∈ Sm such that for some a ∈ Wn(A) we have

(

m∏
i=1

zi)(x) > 0 and ∃σ ∈ Sm with σ(i) = i if zi ̸∈
∪
s≥1

Aα
s (S) such that (

m∏
i=1

zσ(i))(a) > 0}.

Example 4.6. Let A = {a, c} be as Example 3.7. Since X is an ξα-part of S we have K(A) = A.
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Theorem 4.7. The following statements hold:
(1) W (A) = K(A),

(2) K(A) =
∪
a∈A

K(a),

(3) Wn(W2(z)) = Wn+1(z), for n ≥ 2 and z ∈ S.

Proof. (1) We show that W (A) is an ξα-part. Let a ∈ W (A), (
m∏
i=1

zi)(a) > 0 and σ ∈ Sm with

σ(i) = i, if zi ̸∈
∪
s≥1

Aα
s (S). Then there exists an integer n such that a ∈ Wn(A). If t /∈ W (A) and

(
∏
i=1

zσ(i))(t) > 0, then t ∈ Wn+1(A) and so t ∈ W (A), a contradiction. Therefore, (

m∏
i=1

zσ(i))(t) = 0

and W (A) is an ξα-part.
Now, it is enough to prove that if B is an ξα-part and A ⊆ B, then for any n, Wn(A) ⊆ B i.e

W (A) is the smallest ξα-part of S which contains A. We use induction on n. SinceW1(A) = A ⊆ B,
the case n = 1 is clear. Let Wn(A) ⊆ B and z ∈ Wn+1(A). Then there exists an integer m

and (z1, . . . , zm) ∈ Sm and σ ∈ Sm with σ(i) = i if zi ̸∈
∪
s≥1

Aα
s (S) and t ∈ Wn(A) such that

(

m∏
i=1

zσ(i))(t) > 0 and (

m∏
i=1

zi)(z) > 0. Since Wn(A) ⊆ B we have t ∈ B. Moreover, if z /∈ B as B is

ξα-part, then (

m∏
i=1

zi)(z) = 0, a contradiction, and so z ∈ B and the result holds.

(2) We know that for any a ∈ A, K(a) ⊆ K(A). We use induction on n to prove that

Wn(A) =
∪
a∈A

Wn(a). It follows from (1) that K(A) =
∪
n≥1

Wn(A) and W1(A) = A =
∪
a∈A

{a}.

Suppose that it is true for n and z ∈ Wn+1(A). Then there exists an integer m and (z1, . . . , zm) ∈

Sm such that (

m∏
i=1

zi)(z) > 0 and there exists σ ∈ Sm with σ(i) = i if zi ̸∈
∪
s≥1

Aα
s (S) such that for

some a ∈ Wn(A), (
m∏
i=1

zσ(i))(a) > 0. By the hypotheses of induction we have Wn(A) =
∪
b∈A

Wn(b)

and so a ∈
∪
b∈A

Wn(b). Therefore, for some b ∈ A , a ∈ Wn(b). Hence, z ∈ Wn+1(b) i.e Wn+1(A) ⊆∪
b∈A

Wn+1(b). Since for any a ∈ A,K(a) ⊆ K(A) we obtain K(A) =
∪
n

Wn(A) ⊆
∪
n

∪
a

Wn(a) =∪
a∈A

K(a) ⊆ K(A) Therefore, K(A) =
∪

a∈AK(a) .

(3) We proceed by induction on n. For n = 2 we have

W2(W2(x)) = {z|∃q ∈ N, ∃(a1, . . . , aq) ∈ Sq and σ ∈ Sq with σ(i) = i if zi ̸∈
∪
s≥1

Aα
s (S) such that

(

q∏
i=1

ai)(z) > 0 and for some y ∈ W2(x), (

q∏
i=1

aσ(i))(y) > 0} = W3(x).
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Suppose Wn(W2(x)) = Wn+1(x). Then

Wn+1(W2(x)) = {z ∈ S|∃q ∈ N, (a1, . . . , aq) ∈ Sq and σ ∈ Sq with σ(i) = i if zi ̸∈
∪
s≥1

Aα
s (S),

t ∈ Wn(W2(x)) such that (

q∏
i=1

ai)(z) > 0 and

q∏
i=1

aσ(i))(t) > 0}

= Wn+2(x).

This completes the proof.

Theorem 4.8. Let x, y ∈ S.Then the following relation is an equivalence relation on S:

xWy if and only if x ∈ W ({y}).

Proof. The relationW is reflexive, since Theorem 4.7 and Definition 4.5, imply thatW{x} = K{x}
and x ∈ W{x} i.e xWx. Also, W is transitive, since for x, y, z ∈ S let xWy and yWz. Therefore,
Theorem 4.7, implies x ∈ K(y) and y ∈ K(z). For any P , ξα-part of S which contains z, we
have K(z) ⊆ P and so y ∈ P . Then K(y) ⊆ P and so x ∈ P . Thus for any P we have
x ∈ P and K(z) is an ξα-part of S which contains z, so x ∈ K(z). Therefore, by Theorem
4.7, xWz and so W is transitive. W is symmetric. For this first by induction on n we prove
that x ∈ Wn(y) if and only if y ∈ Wn(x). For n = 2 it is clear. Suppose x ∈ Wn+1(y), then

there exists an integer q ≥ 1, (a1, . . . , aq) ∈ Sq and σ ∈ Sq with σ(i) = i if ai ̸∈
∪
s≥1

Aα
s (S) and t ∈

Wn(y) such that (

q∏
i=1

ai)(x) > 0 and (

q∏
i=1

aσ(i))(t) > 0. It follows that t ∈ W2(x). By hypotheses of

induction we have y ∈ Wn(t). Therefore, by Theorem 4.7(3), we have y ∈ Wn(W2(x)) = Wn+1(x).

Example 4.9. Let ρ = {(a, a), (b, b), (c, c), (a, c), (c, a)} and π : S → S/ρ defined by π(x) = x for
all x ∈ S be the canonical homomorphism. We know that ρ is a fuzzy strongly regular relation so
by Theorem 2.6, S/ρ is a group. Moreover, S/ρ = {a, b} and a = {a, c} is the identity element of
S/ρ. Also,

ωS = Ker(π) = {x|x = a} = {a, c}.

By Example 4.3, {a, c} is a ρ-part of S i.e ωS is a ρ-part of S.

Let M be a non-empty subset of S. We Know that (MωS)(r) =
∨

x∈ωS ,m∈M
(m ◦ x)(r).

Lemma 4.10. Assume that M is a non-empty subset of S. Then we have
(i) π−1(π(M)) = {x ∈ S : (ωSM)(x) > 0} = {x ∈ S : (MωS)(x) > 0};
(ii) If M is an ξα-part of S, then π−1(π(M)) = M .

Proof. (i) Let x ∈ S, t ∈ ωS and y ∈ M such that (ty)(x) > 0. Then by Theorem 2.4, π(x) =
π(t)⊕ π(y) = 1S/ξ∗α ⊕ π(y) = π(y) and so x ∈ π−1(π(y)) ⊂ π−1(π(M)).

Conversely, for any x ∈ π−1(π(M)), there exists b ∈ M such that π(x) = π(b). For a ∈ S we
have aS = χS and so (ab)(x) > 0. Since by Theorem 2.4, π(b) = π(x) = π(a) ⊕ π(b) we have
π(a) = 1S/ξ∗α . So a ∈ π−1(1S/ξ∗α) = ωS . Therefore, (ωSM)(x) > 0.
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By the similar way, we can prove that π−1(π(M)) = {x ∈ S : (MωS)(x) > 0}.
(ii) It is clear that M ⊆ π−1(π(M)). If x ∈ π−1(π(M)), then there exists b ∈ M such that
π(x) = π(b) i.e ξ∗α(x) = ξ∗α(b). Therefore, x ∈ M by Theorem 4.2(iii) and M is ξα-part.

Theorem 4.11. For all a, b ∈ S, aWb if and only if aξ∗αb.

Proof. (⇐) Let aξ∗αb. Then there exist integer n,m such that aξαm,nb. So for any (z1, ..., zm) ∈ Sm

and σ ∈ Sm with σ(i) = i if zi ̸∈
∪
n≥1

Aα
n(S) we have (

q∏
i=1

ai)(a) > 0 and (

q∏
i=1

aσ(i))(b) > 0 and so

a ∈ W2(b). Thus, by Definition 4.5, aWb and ξ∗α ⊂ W .
(⇒) If xWy, then there exists n ∈ N such that x ∈ Wn(y). So for any integer m, (z1, ..., zm) ∈ Sm

and σ ∈ Sm with σ(i) = i if zi ̸∈
∪
n≥1

Aα
n(S) we have (

q∏
i=1

ai)(x) > 0 and for some x1 ∈ Wn−1(y) we

have (

q∏
i=1

aσ(i))(x1) > 0. Thus, xζαnx1. Continuing this method there exist ∃x2, . . . , xn−1 ∈ S such

that xi ∈ Wn−i(y) and xi−1ξ
α
nxi. Then (x = x0)ξ

α
nx1ξ

α
n . . . ξαn (xn−1 = y). Therefore, W ⊆ ζ∗α.

Theorem 4.12. ωS is a fuzzy subhypergroup of S which is also an ξα-part of S.

Proof. It is clear that ωS ⊆ S and so for any a, b, c ∈ ωS , (ab) • c = a • (bc). Let x, y ∈ ωS . Then
Sy = χS implies that there exists u ∈ S such that (uy)(x) > 0. By Theorem 2.4, u ⊕ y = x and
so u = 1. i.e u ∈ ωS . Therefore, ωSy = χωS and ωS is a fuzzy subhypergroup of S. Now we prove
that

K(y) = π−1(π({y})) = {x ∈ S : (ωSy)(x) > 0} = ωS .

Let y, z ∈ S. Then

z ∈ π−1(π({y})) ⇐⇒ π(z) = π(y)

⇐⇒ ξ∗α(z) = ξ∗α(y)

⇐⇒ zξ∗αy

⇐⇒ z ∈ ξ∗α(y) = W ({y}) = K(y).

Moreover, y ∈ ωS , we have {x ∈ S : (ωSy)(x) > 0} = {x ∈ S : (χωS )(x) > 0} = ωS . Therefore,
K(y) = ωS and so ωS is an ξα-part.

5 Conclusions

In this paper, we defined a new strongly regular relation on an FHG to get an α-solvable group.
Also, we introduced the concept of ξα-part of a fuzzy hypergroup. Basically, we studied the relation
between their fundamental relation and ξα-parts of a given FHG. In addition, we can extend this
work on α-Engel groups ( α-nilpotant groups).
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