

Journal of Algebraic Hyperstructures and Logical Algebras

Volume 2, Number 2, (2021), pp. 35-46

On α -solvable fundamental groups

 $F.\ Mohammadzadeh^1$ and $E.\ Mohammadzadeh^2$

^{1,2}Department of Mathematics, Faculty of Science, Payame Noor University, 19395-3697, Tehran, Iran

mohamadzadef464@gmail.com, mohamadzadeh36@gmail.com

Abstract

We introduce a specific kind of equivalence relation $\xi_n^*\alpha$ on a fuzzy hypergroup S such that the quotient $S/\xi_n^*\alpha$, the set of all equivalence classes, is an α -solvable group. This helps us to introduce the α -solvable fundamental relation $\xi^{*\alpha}$. In particular, we obtain an equivalent condition with transitivity of ξ^{α} .

Article Information

Corresponding Author: F. Mohammadzadeh; Received: April 2021; Revised: May 2021; Accepted: June 2021; Paper type: Original.

Keywords:

Fuzzy hypergroup, fundamental relation, α -solvable group.

1 Introduction

A solvable group with respect to an automorphism α is called an α -solvable group. An α -solvable group is a group that α -derived series terminates in the trivial subgroups. In [2], α -solvable groups, as a generalization of solvable groups, were introduced and some properties of α -solvable groups were discussed. Clearly, every solvable group is an α -solvable group, where α is the identity automorphism.

In 1965, Zadeh [14] proposed the concept of fuzzy sets. In 1971, Rosenfeld [12], applied fuzzy sets in group theory to introduce fuzzy subgroups of a group. Fuzzy hypergroups as a new approach on fuzzy sets, introduced by Corsini and Tofan [5]. The basic idea is that a fuzzy hyperoperation assigns to every pair of elements a fuzzy set. Some researchers extended the concepts of abstract algebra to fuzzy sets (see [3], [5], [9], [8], [7], [10], [13]). The study of fuzzy hyperstructures is an interesting topic on fuzzy sets theory. One way for connecting fuzzy hypergroups and groups is the fundamental relation. A fundamental relation of a hypergroup is the smallest equivalence

relation such that a quotient is a group. The fundamental relation, β , as a vital concept on hyperstructures, is studied by many scholars [4]. This relation plays an important role in the theory of hyperstructures. Also, the relation γ^* is the least equivalence relation on a hypergroup H such that a quotient is an abelian group [6]. Moreover, γ^* is a commutative fundamental relation. It is known that if R is a fuzzy strongly regular equivalence relation on a fuzzy hypergroup S, then we can define a binary operation \otimes on the quotient set S/R, the set of all equivalence classes of S with respect to R, such that $(S/R, \otimes)$ is a group (see [13]). Ameri and Nozari [1], followed the results obtained by Sen et. all on fuzzy hypersemigroups to introduce the fundamental relation of fuzzy hypersemigroups. Now, we introduce an α -solvable fundamental group. In addition, we define a strongly regular relation $\xi^{*\alpha}$ on a fuzzy hypergroup S. Then we prove that $S/\xi^{*\alpha}$, the set of all equivalence classes of $\xi^{*\alpha}$ under usual operation, is an α -solvable group. Finally, by the notion of $\xi^{*\alpha}$ -part of a fuzzy hypergroup, we try to get an equivalent condition to transitivity of $\xi^{*\alpha}$.

2 Preliminaries

Let G be any group and α be an automorphism of G. For two elements x and y of G the α -commutator of G is $[x, y]_{\alpha} = xyx^{-1}y^{-\alpha}$, where $y^{-\alpha}$ is used for $\alpha(y^{-1})$. For any x_1, x_2, \ldots, x_n of G one can define inductively $[x_1, x_2, \ldots, x_n]_{\alpha}$, the α -commutator of weight n, as follows:

$$[x_1, x_2, \dots, x_n]_{\alpha} = [x_1, [x_2, \dots, x_n]_{\alpha}]_{\alpha}.$$

For any non-empty subsets X_1 and X_2 of G the α -commutator subgroup of G, denoted by $[X_1, X_2]_{\alpha}$ is defined as the subgroup of G generated by the set $\{[x_1, x_2]_{\alpha} | x_1 \in X_1, x_2 \in X_2\}$. It is clear that $[X_1, X_2]_{\alpha}$ is not equal to $[X_2, X_1]_{\alpha}$ in general. Let N be a normal subgroup of G and $N^{\alpha} = N$. For the isomorphism $\overline{\alpha}: G/N \longrightarrow G/N$ given by $\overline{x}^{\overline{\alpha}} = x^{\alpha}N$ we have $[\overline{x_1}, \overline{x_2}, \dots, \overline{x_n}]_{\overline{\alpha}} = [x_1, x_2, \dots, x_n]_{\alpha}N$ (see [2]).

The α -derived subgroup of a group G with respect to an automorphism α is defined by $D^{\alpha}(G) = \langle [x,y]_{\alpha}|x,y\in G\rangle$. Also, $D_0^{\alpha}(G)=G$, $D_1^{\alpha}(G)=D^{\alpha}(G)$ and $D_i^{\alpha}(G)=D^{\alpha}(D_{i-1}^{\alpha}(G))$. A group G is α -solvable if and only if for some integer r, $D_r^{\alpha}(G)=\{1\}$, where 1 is the identity element. The smallest such r is called *length* of G (see [2]).

A hypergroupoid is a nonempty set H with a hyperoperation \triangleright defined on H, that is, a mapping of $H \times H$ into the family of non-empty subsets of H. If $(x,y) \in H \times H$, then its image under \triangleright is denoted by $x \triangleright y$. If A, B are non-empty subsets of H, then $A \triangleright B$ is given by $A \triangleright B = \bigcup \{x \triangleright y | x \in A, y \in B\}$. Thus $x \triangleright A$ is used for $\{x\} \triangleright A$ and $A \triangleright x$ for $A \triangleright \{x\}$. Generally, the singleton a is identified with its member a. The structure (H, \triangleright) is called a semihypergroup if $a \triangleright (b \triangleright c) = (a \triangleright b) \triangleright c$ for any $a, b, c \in H$, and a semihypergroup (H, \triangleright) is called a hypergroup in the sense of Marty if $x \triangleright H = H \triangleright x = H$, for any $x \in H$. This axiom means that for any $x, y \in H$ there exist $x \in H$ such that $x \in A$ and $x \in A$

Let S be a non-empty set and $F^*(S)$ be the set of all non-zero fuzzy subsets of S. We denote by 0 the zero fuzzy set. Then $\circ: S \times S \to F^*(S)$ is a fuzzy hyperoperation on S and the couple (S, \circ) is called a fuzzy hypergroupoid.

Let μ, ν be two fuzzy subsets of a fuzzy hypergroupoid (S, \circ) . In [13] for any $a, r \in S$ we have the following statements:

(i)
$$(\mu \odot \nu)(r) = \bigvee_{p,q \in S} (\mu(p) \wedge (p \circ q)(r) \wedge \nu(q)),$$

$$(ii) \ (a \bullet \mu)(r) = \left\{ \begin{array}{l} \bigvee_{t \in S} ((a \circ t)(r) \wedge \mu(t)), \ \mu \neq 0 \\ 0. \qquad \qquad \mu = 0, \end{array} \right. \\ (\mu \bullet a)(r) = \left\{ \begin{array}{l} \bigvee_{t \in S} (\mu(t) \wedge (t \circ a)(r)), \ \mu \neq 0 \\ 0. \qquad \qquad \mu = 0, \end{array} \right.$$

Definition 2.1. [13]

(i) A fuzzy hypergroupoid (S, \circ) is a fuzzy semihypergroup if for any $x, y, z \in S$ we have $(x \circ y) \bullet z = x \bullet (y \circ z)$.

(iii) A fuzzy semihypergroup is a fuzzy hypergroup (FHG) if $x \circ S = \chi_S = S \circ x$. A fuzzy subhypergroup (K, \circ) of an FHG (S, \circ) is a non-empty subset $K \subseteq S$ such that for any $k \in K$, $k \circ K = K \circ k = \chi_K$. Let (S_1, \circ_1) and (S_2, \circ_2) be two FHG. A map $f: S_1 \to S_2$ is called a fuzzy hypergroup homomorphism if, for any $x, y \in S_1$, $f(x \circ_1 y) = f(x) \circ_2 f(y)$.

Definition 2.2. [13] Let ρ be an equivalence relation on a fuzzy semihypergroup (S, \circ) and μ, ν be two fuzzy subsets of (S, \circ) . We say that $\mu \overline{\rho} \nu$ if for all $x, y \in S$ such that $\mu(x) > 0$ and $\nu(y) > 0$, then $x \rho y$.

Definition 2.3. [13] An equivalence relation ρ on a fuzzy semihypergroup (S, \circ) is said to be a fuzzy strongly regular relation if $a\rho b$ and $a'\rho b'$ imply $a \circ a' = \overline{\rho} b \circ b'$.

Theorem 2.4. [13] Let (S, \circ) be a fuzzy semihypergroup and ρ be an equivalence relation on S. For any $\rho_a, \rho_b \in S/\rho$ consider the operation \oplus as follows:

$$\rho_a \oplus \rho_b = \{ \rho_c | (a' \circ b')(c) > 0, \ a\rho a', \ b\rho b' \}.$$

Then ρ is a fuzzy strongly regular relation on (S, \circ) iff $(S/\rho, \oplus)$ is a semigroup.

Definition 2.5. [1, 11] Let (S, \circ) be a fuzzy semihypergroup and \mathbb{S}_n be the symmetric group on n letters $(n \in \mathbb{N})$. We define the relations λ and ϵ_n on S in the following way:

$$a\lambda b \Leftrightarrow \exists x_1, ..., x_n \in S$$
, such that $(x_1 \circ ... \circ x_n)(a) > 0$ and $(x_1 \circ ... \circ x_n)(b) > 0$.

(ii)
$$\epsilon = \bigcup_{n>1} \epsilon_n$$
, where $\epsilon_1 = \{(s,s)|s \in S\}$ and for any $n \geq 2$;

$$a\epsilon_n b \Leftrightarrow \exists x_1, ..., x_n \in S, \exists \sigma \in \mathbb{S}_n \text{ such that } (x_1 \circ ... \circ x_n)(a) > 0 \text{ and } (x_{\sigma_1} \circ ... \circ x_{\sigma_n})(b) > 0.$$

One can see that λ and ϵ are symmetric and reflexive. Let ϵ^* and λ^* be the transitive closure of ϵ and λ , respectively. Then ϵ^* and λ^* are equivalence relations.

Definition 2.6. [13] Let (S, \circ) be a fuzzy semihypergroup. The smallest equivalence relation ρ on S is called the fundamental relation if the quotient structure $(S/\rho, \oplus)$ is a semigroup.

Theorem 2.7. [11] The relation ϵ^* is the abelian fundamental relation on fuzzy semihypergroup (S, \circ) .

3 Characterization of α -solvable groups via a fuzzy strongly regular relation

We introduce a new fuzzy strongly regular relation on an FHG such that the quotient group is an α -solvable group.

Note: Let (S, \circ) be an FHG and $m \in \mathbb{N}$. From now on for simplify we use the following notations:

- (1) For any $x, y \in S$ we use xy instead of $x \circ y$.
- (2) For any fuzzy strongly regular relation ρ on S and any $x \in X$ we use \overline{x} for ρ_x .
- (3) For any z_1, \ldots, z_m of S we denote $z_1 \circ z_2, \cdots \circ z_m$ by $\prod_{i=1}^m z_i$.
- (4) Let Aut(S) denote the set of all one to one and onto fuzzy homomorphisms on an FHG.

Definition 3.1. Let (S, \circ) be an FHG and $\alpha \in Aut(S)$. Suppose $A_0^{\alpha}(S) = S$ and for any $k \geq 0$,

$$A_{k+1}^{\alpha}(S) = \{t \in S | \exists r \in S \text{ such that } (xy)(r) > 0 \text{ and } (t \bullet y^{\alpha}x)(r) > 0 \text{ for some } x, y \in A_k^{\alpha}(S)\}.$$

For integers $n \geq 1$ and m > 1, consider $\xi_{1,n}^{\alpha}$ is the diagonal relation on S. We define the relation $\xi_{m,n}^{\alpha}$ as follows:

 $x\xi_{m,n}^{\alpha}y \Leftrightarrow \exists (z_1,...,z_m) \in S^m, \exists \sigma \in \mathbb{S}_m \text{with } \sigma(i)=i \text{ if } z_i \not\in A_n^{\alpha}(S) \text{ such that }$

$$(\prod_{i=1}^{m} z_i)(x) > 0 \text{ and } (\prod_{i=1}^{m} z_{\sigma(i)})(y) > 0.$$

Consider $\xi_n^{\alpha} = \bigcup_{m \geq 1} \xi_{m,n}^{\alpha}$. Then $\xi_n^{*\alpha}$, the transitive closure of ξ_n^{α} , is an equivalence relation on S, since ξ^{α} is symmetric. For this let $a\xi^{\alpha}b$. Then there exists an integer $m \geq 1$ such that $a\xi^{\alpha}b$. It

since ξ_n^{α} is symmetric. For this let $a\xi_n^{\alpha}b$. Then there exists an integer $m \geq 1$ such that $a\xi_{m,n}^{\alpha}b$. It follows that

$$\exists (z_1, ..., z_m) \in S^m, \exists \delta \in \mathbb{S}_m \text{ with } \delta(i) = i \text{ if } z_i \not\in A_n^{\alpha}(S) \text{ such that } (\prod_{i=1}^m z_i)(a) > 0 \text{ and } (\prod_{i=1}^m z_{\delta(i)})(b) > 0.$$

Put $I = \delta(i)$. Now, for $(z_1, ..., z_m) \in S^m$ and $\delta^{-1} \in \mathbb{S}_m$ with $\delta^{-1}(I) = i$ if $z_I \notin A_n^{\alpha}(S)$, then $(\prod_{I=1}^m z_I)(a) > 0$ and $(\prod_{I=1}^m z_{\delta(I)})(b) > 0$. Therefore, $b\xi_n^{\alpha}a$ and so ξ_n^{α} is symmetric. Also, ξ_n^{α} is reflexive. Since for any $a \in S$ we have $a(a) = (\chi_a)(a) = 1$.

Example 3.2. Let $S = \mathbb{Z}_2$ and α be the identity isomorphism. For any $x, y \in \mathbb{Z}_2$ we define a fuzzy hyper operation \circ on \mathbb{Z}_2 by $x \circ y = \chi_{\{x,y\}}$. Clearly, (\mathbb{Z}_2, \circ) is an FHG and $A_0^{\alpha}(\mathbb{Z}_2) = \mathbb{Z}_2$. Also,

$$A_1^{\alpha}(\mathbb{Z}_2) = \{t \in \mathbb{Z}_2 | \exists r \in \mathbb{Z}_2; (x \circ y)(r) > 0 \text{ and } (t \bullet (y^{\alpha} \circ x))(r) > 0, \text{ for some } x, y \in \mathbb{Z}_2\}.$$

Let r = 0, x = 0 and y = 1. Then $(x \circ y)(r) = \chi_{\{x,y\}}(r) = \chi_{\{0,1\}}(0) > 0$ and

$$(t \bullet (y^{\alpha} \circ x))(r) = \bigvee_{s \in \mathbb{Z}_{2}} (t \circ s)(r) \wedge (y^{\alpha} \circ x)(s)$$

$$= \bigvee_{s \in \mathbb{Z}_{2}} \chi_{\{t,s\}}(0) \wedge \chi_{\{0,1^{\alpha}\}}(s)$$

$$= (\chi_{\{t,0\}}(0) \wedge \chi_{\{1,0\}}(0)) \vee (\chi_{\{t,1\}}(0) \wedge \chi_{\{1,0\}}(1))$$

$$= 1.$$

Therefore, $A_1^{\alpha}(\mathbb{Z}_2) = \mathbb{Z}_2$.

Example 3.3. Let α be the identity isomorphism and $S = \{a, b, c\}$. We define the fuzzy hyperoperation " \circ " on S as follows:

 $(a \circ a)(a) = (b \circ b)(a) = (c \circ c)(a) = 0.5, \ (a \circ b)(b) = (b \circ a)(b) = (b \circ c)(b) = (c \circ b)(b) = 0.1, \ (a \circ c)(c) = (b \circ b)(c) = (c \circ a)(c) = 0.7, \ and \ (a \circ a)(b) = (a \circ a)(c) = (a \circ b)(a) = (a \circ b)(c) = (a \circ c)(a) = (a \circ c)(b) = (b \circ a)(a) = (b \circ a)(c) = (b \circ b)(b) = (b \circ c)(a) = (b \circ c)(c) = (c \circ a)(a) = (c \circ a)(b) = (c \circ b)(a) = (c \circ b)(c) = (c \circ c)(b) = (c \circ c)(c) = 0.$ $Let \ \rho = \{(a, a), (b, b), (c, c), (a, c), (c, a)\}. \ Then \ A_0^{\alpha}(S) = S \ and \ A_1^{\alpha}(S) = \{a\}.$

Theorem 3.4. The relation $\xi_n^{*\alpha}$ is a fuzzy strongly regular relation.

Proof. It is clear that $\xi_{m,n}^{*\alpha}$ is an equivalence relation. First, we show that for any $x,y,z\in S$

$$x\xi_n^{\alpha}y \Rightarrow xz\overline{\overline{\xi_n^{\alpha}}}yz \text{ and } zx\overline{\overline{\xi_n^{\alpha}}}zy$$
 (*).

If $x\xi_n^{\alpha}y$, then there exists an integer m such that $x\xi_{m,n}^{\alpha}y$, and so there exist $(z_1,\ldots,z_m)\in S^m$ and $\sigma\in\mathbb{S}_m$ with $\sigma(i)=i$ if $z_i\not\in A_n^{\alpha}(S)$ such that $(\prod_{i=1}^m z_i)(x)>0$ and $(\prod_{i=1}^m z_{\sigma(i)})(y)>0$.

Let $z \in S$ such that for any r, s we have (xz)(r) > 0 and (yz)(s) > 0. Let p = x and q = y. Then

$$((\prod_{i=1}^{m} z_i) \bullet z)(r) = \bigvee_{p} \{(\prod_{i=1}^{m} z_i)(p) \land (pz)(r)\} > 0$$

and

$$((\prod_{i=1}^{m} z_{\sigma(i)}) \bullet z)(s) = \bigvee_{q} \{(\prod_{i=1}^{m} z_{\sigma(i)})(q) \land (qz)(s)\} > 0.$$

Now, suppose that $z_{m+1} = z$. We define σ' as follows:

$$\sigma'(i) = \left\{ \begin{array}{l} \sigma(i), & \forall i \in \{1, 2, \dots, m\} \\ m+1, & i = m+1. \end{array} \right.$$

It is clear that σ' is one to one and onto. Thus for any $r, s \in S$

$$(\prod_{i=1}^{m+1} z_i)(r) > 0$$
 and $(\prod_{i=1}^{m+1} z_{\sigma'(i)})(s) > 0$.

Hence σ' is a permutation of \mathbb{S}^{m+1} such that $\sigma'(i)=i$ if $z_i\not\in A_n^\alpha(S)$. Therefore, $xz\overline{\xi_n^\alpha}yz$. Now, if $x\xi_n^{*\alpha}y$, then there exists $k\in\mathbb{N}$ and $u_0=x,u_1,\ldots,u_k=y\in S$ such that $u_0=x\xi_n^\alpha u_1\xi_n^\alpha u_2\underline{\xi_n^\alpha}\ldots\xi_n^\alpha u_k=y$. By the above result we have $u_0z=xz\overline{\xi_n^\alpha}u_1z\overline{\xi_n^\alpha}u_2z\overline{\xi_n^\alpha}\ldots\overline{\xi_n^\alpha}u_kz=yz$ and so $xz\overline{\xi_n^\alpha}yz$. By the similar way, we can show that $zx\overline{\xi_n^\alpha}zy$. Therefore, $\xi_n^{*\alpha}$ is a fuzzy strongly regular relation on S.

Proposition 3.5. For any integer n we have $\xi_{n+1}^{*\alpha} \subseteq \xi_n^{*\alpha}$.

Proof. Let $x\xi_{n+1}^{\alpha}y$. Then there exist $m \in \mathbb{N}$, $(z_1,...,z_m) \in S^m$ and $\delta \in \mathbb{S}_m$ with $\delta(i) = i$ if $z_i \notin A_{n+1}^{\alpha}(S)$ such that $(\prod_{i=1}^m z_i)(x) > 0$ and $(\prod_{i=1}^m z_{\delta(i)})(y) > 0$. Now, for $(z_1,...,z_m) \in S^m$ and $\delta \in \mathbb{S}_m$

 \mathbb{S}_m with $\delta(i)=i$ if $z_i \not\in A_n^{\alpha}(S)$ we have $z_i \not\in A_{n+1}^{\alpha}(S)$ (since $A_{n+1}^{\alpha}(S)\subseteq A_n^{\alpha}(S)$) and so $(\prod_{i=1}^m z_i)(x)>$

0 and
$$(\prod_{i=1}^m z_{\delta(i)})(y) > 0$$
. Therefore, $x\xi_n^{\alpha}y$.

Proposition 3.6. For any integer n we have $\lambda^* \subseteq \xi_n^{*\alpha} \subseteq \epsilon^*$. In particular, if S is a commutative FHG, then $\epsilon^* = \xi_n^{*\alpha} = \lambda^*$.

Proof. It is clear that $\lambda^* \subseteq \xi_n^{*\alpha} \subseteq \epsilon^*$. It is enough to show that if S is commutative, then $\lambda^* = \xi_n^{*\alpha} = \epsilon^*$. For this, let $a\xi_n^{*\alpha}b$. Then there exists an integer m, $(x_1, x_2, \dots, x_m) \in S^m$ and $\varrho \in \mathbb{S}^m$ with $\varrho(i) = i$ if $x_i \notin A_n^{\alpha}(S)$ such that $(x_1 \circ \dots \circ x_m)(a) > 0$ and $(x_{\sigma_1} \circ \dots \circ x_{\sigma_m})(b) > 0$. For any i since S is commutative, we conclude that each element $x_{\varrho(i)}$ can commute with others and so $\lambda^* = \xi_n^{*\alpha} = \epsilon^*$.

Example 3.7. Let S be an FHG as Example 3.3. Then it is routine to verify that ρ is a fuzzy strongly regular relation [1].

Now, we are ready to state one of our main results of this section.

Theorem 3.8. $S/\xi_n^{*\alpha}$ is an α -solvable group of length at most n+1.

Proof. Let φ be a fuzzy strongly regular relation on S. Then we show that for any integer k

$$D_k^{\alpha}(S/\varphi) = \langle \overline{t} | t \in A_k^{\alpha}(S) \rangle.$$

We proceed by induction on k. Put $G = S/\varphi$. Since $G = \langle \overline{t} | t \in S \rangle$ the case k = 0 is clear. Now, suppose that $\overline{a} \in \langle \overline{t} | t \in A_{k+1}^{\alpha}(S) \rangle$, then there exists $t \in A_{k+1}^{\alpha}(S)$ such that $\overline{a} = \overline{t}$. By Definition 3.1, there exist $r_1 \in S$ and $x, y \in A_k^{\alpha}(S)$ such that $(xy)(r_1) > 0$ and $(t \bullet y^{\alpha}x)(r_1) > 0$. It follows from Theorem 2.4 that $\overline{x} \oplus \overline{y} = \overline{r_1}$ and $\overline{t} \oplus \overline{y^{\alpha}} \oplus \overline{x} = \overline{r_1} = \overline{x} \oplus \overline{y}$. So $\overline{t} = [\overline{x}, \overline{y}]_{\overline{\alpha}}$. The hypotheses of induction implies that $\overline{a} = \overline{t} \in D_{k+1}^{\alpha}(G)$.

Conversely, let $\overline{a} \in D_{k+1}^{\alpha}(G)$. Then there exist $\overline{x}, \overline{y} \in D_k^{\alpha}(G)$ such that $\overline{a} = [\overline{x}, \overline{y}]_{\overline{\alpha}}$. So by hypotheses of induction we have $\overline{x} = \overline{u}$ and $\overline{y} = \overline{v}$, where $u, v \in A_k^{\alpha}(S)$. As uv is a non-zero fuzzy subset of S so there exists $c \in S$ such that (uv)(c) > 0. By Definition 2.1, we have $1 = \chi_S(c) = (Su)(c) = \bigvee_{r \in S} (ru)(c)$ and so there exists $r \in S$ such that (ru)(c) > 0. Moreover, $1 = \chi_S(r) = (Sv^{\alpha})(r) = \bigvee_{t \in S} (tv^{\alpha})(r)$. Hence, by Definition 2.1 we have:

$$(t \bullet v^{\alpha}u)(c) = (tv^{\alpha} \bullet u)(c) = \bigvee_{p} ((tv^{\alpha})(p) \wedge (pu)(c)) \geq (tv^{\alpha})(r) \wedge (ru)(c) > 0.$$

Thus (uv)(c) > 0 and $(t \bullet v^{\alpha}u)(c) > 0$. So $t \in A_{k+1}^{\alpha}(S)$. It follows from Theorem 2.4, that $\overline{u} \oplus \overline{v} = \overline{c} = \overline{t} \oplus \overline{v^{\alpha}} \oplus \overline{u}$, and so $\overline{t} = [\overline{u}, \overline{v}]_{\overline{\alpha}} = [\overline{x}, \overline{y}]_{\overline{\alpha}} = \overline{a}$. Therefore, $\overline{a} = \overline{t} \in \langle \overline{t}; t \in A_{k+1}^{\alpha}(S) \rangle$ i.e. $D_{k+1}^{\alpha}(S/\varphi) = \langle \overline{t} | t \in A_{k+1}^{\alpha}(S) \rangle$. Consequently, $D_n^{\alpha}(S/\xi_n^{*\alpha})$ is an abelian group and $D_{n+1}^{\alpha}(S/\xi_n^{*\alpha}) = \{e\}$.

In the following, we introduce the smallest fuzzy strongly regular relation $\xi^{*\alpha}$ on a finite FHG S such that $S/\xi^{*\alpha}$ is an α -solvable group.

Theorem 3.9. The fuzzy relation $\xi^{*\alpha} = \bigcap_{n \geq 1} \xi_n^{*\alpha}$ is the smallest fuzzy strongly regular relation on a finite FHG S such that $S/\xi^{*\alpha}$ is an α -solvable. In particular, $\xi^{*\alpha}$ is an α -solvable fundamental relation.

Proof. First, we show that $\xi^{*\alpha}$ is a fuzzy strongly regular relation on S such that $S/\xi^{*\alpha}$ is α -solvable. By $\xi^{*\alpha} = \bigcap_{n>1} \xi_n^{*\alpha}$ and Theorem 3.4, it is easy to see that $\xi^{*\alpha}$ is a fuzzy strongly regular

relation on S. Since S is finite, Proposition 3.5 implies that there exists an integer k such that $\xi_{k+1}^{*\alpha} = \xi_k^{*\alpha}$. Thus, for some $m \ \xi^{*\alpha} = \xi_m^{*\alpha}$ and so by Theorem 3.8, $S/\xi^{*\alpha}$ is α -solvable.

Now, we prove $\xi^{*\alpha}$ is the smallest relation with this property. Suppose ρ is a fuzzy strongly regular relation on S such that $K = S/\rho$ is α -solvable of class c. We show that $\xi^{*\alpha} \subseteq \rho$. For this, let $x, y \in S$ and $x\xi^{\alpha}y$, where $\xi^{\alpha} = \bigcap \xi_n^{\alpha}$. Then there exists integers n and m such that $x\xi_{m,n}^{\alpha}y$ and

so there exist $(z_1, \ldots, z_m) \in S^m$ and $\delta \in \mathbb{S}_m$ with $\delta(i) = i$ if $z_i \notin A_n^{\alpha}(S)$ such that $(\prod_{i=1}^m z_i)(x) > 0$

and $(\prod_{i=1} z_{\delta(i)})(y) > 0$. Thus by Theorem 2.4, we get

$$\overline{x} = \prod_{i=1}^{m} \overline{z_i} \text{ and } \overline{y} = \prod_{i=1}^{m} \overline{z_{\delta(i)}}.$$

By the proof of Theorem 3.8, we have

$$D_c(S/\rho) = \langle \overline{t} | t \in A_c^{\alpha}(S) \rangle = \{ \overline{e} \}.$$

And so for any $z_i \in A_c^{\alpha}(S)$ we get $\overline{z_i} = \overline{e}$. Hence, $\overline{x} = \overline{y}$. Therefore, $x \rho y$ as required. Now, $\xi^{*\alpha} \subseteq \rho$, because, let $z, t \in S$ and $z\xi^{*\alpha}t$. Then for some integer $n, z\xi_n^{*\alpha}t$ and so there exist $z_0, z_1, \ldots, z_k \in S$ $(k \in \mathbb{N})$ such that $(z = z_0)\xi_n^{*\alpha}z_1\xi_n^{*\alpha}\dots\xi_n^{*\alpha}(z_k = t)$. So we have $(z = z_0)\rho z_1\rho\dots\rho(z_k = t)$. Hence, $\xi^{*\alpha} \subseteq \rho$. Therefore, $\xi^{*\alpha}$ is the smallest relation such that $S/\xi^{*\alpha}$ is an α -solvable group. \square

Example 3.10. Let S be an FHG as Example 3.2. Then, by Proposition 3.6, we have $\epsilon^* = \xi_n^{*\alpha}$ and so $S/\xi_n^{*\alpha} = S/\epsilon * \cong S$. Therefore, it follows from Theorem 3.8 that S is an α -solvable group.

Example 3.11. Let α be the identity isomorphism and $S = \{a, b, c\}$. Consider fuzzy hyperoperation " \circ " on S as follows:

 $(a \circ a)(a) = (b \circ b)(a) = (c \circ c)(a) = 0.5, (a \circ b)(b) = (b \circ a)(b) = (b \circ c)(b) = (c \circ b)(b) = (c \circ b)(a)$ $0.1, (a \circ c)(c) = (b \circ b)(c) = (c \circ a)(c) = 0.7, \text{ and } (a \circ a)(b) = (a \circ a)(c) = (a \circ b)(a) = (a \circ b)(c) = (a \circ b)(c)$ $(a \circ c)(a) = (a \circ c)(b) = (b \circ a)(a) = (b \circ a)(c) = (b \circ b)(b) = (b \circ c)(a) = (b \circ c)(c) = (c \circ a)(a) = (b \circ c)(a) = (b$ $(c \circ a)(b) = (c \circ b)(a) = (c \circ b)(c) = (c \circ c)(b) = (c \circ c)(c) = 0.$

Let $\rho_1 = \{(a, a), (b, b), (c, c)\}$. It is clear that ρ_1 is the smallest fuzzy strongly regular relation.

ξ^{α} -part of an FHG

In this section, we use the concept of an ξ^{α} -part of an FHG to make a transitive fuzzy relation ξ^{α} on an FHG.

Definition 4.1. Let X be a non-empty subset of S. Then X is called an ξ^{α} -part of S if for any

$$m \in \mathbb{N}, (z_1, ..., z_m) \in S^m \text{ and } \sigma \in \mathbb{S}_m \text{ with } \sigma(i) = i \text{ if } z_i \notin \bigcup_{n \geq 1} A_n^{\alpha}(S), \text{ then}$$

$$\text{there exists } x \in X \text{ such that } (\prod_{i=1}^m z_i)(x) > 0 \text{ implies for all } y \in S \setminus X, (\prod_{i=1}^m z_{\sigma(i)})(y) = 0.$$

Theorem 4.2. Let X be a non-empty subset of S. Then for any $x, y \in S$ the following conditions are equivalent:

- (i) X is an ξ^{α} -part of S,
- (ii) If $x \in X$ and $x\xi^{\alpha}y$, then $y \in X$,
- (iii) If $x \in X$ and $x\xi^{*\alpha}y$, then $y \in X$.

Proof. (i) \Rightarrow (ii) For $x, y \in S$ if $x \in X$ and $x\xi^{\alpha}y$, then there exist $n, m \in \mathbb{N}$ such that $x\xi_{m,n}^{\alpha}y$

and so there exist
$$(z_1, ..., z_m) \in S^m$$
 and $\sigma \in \mathbb{S}_m$ with $\sigma(i) = i$ if $z_i \notin \bigcup_{n \geq 1} A_n^{\alpha}(S)$ such that $(\prod_{i=1}^m z_i)(x) > 0$ and $(\prod_{i=1}^m z_{\sigma(i)})(y) > 0$. As X is an ξ^{α} -part of S and $(\prod_{i=1}^m z_i)(x) > 0$ if $y \notin X$ we have

 $(\prod_{i=1}^{m} z_{\sigma(i)})(y) = 0$, a contradiction. Therefore, $y \in X$.

 $(ii) \Rightarrow (iii)$ Let $x, y \in S$, $x \in X$, and $x\xi^{*\alpha}y$. Then there is an integer m and $(z_0, ..., z_m) \in S^m$ such that $x = z_0 \xi^{\alpha} z_1 \xi^{\alpha} \dots \xi^{\alpha} z_m = y$. Applying (ii) m times, we have $y \in X$.

$$(iii) \Rightarrow (i)$$
 For $(z_1,...,z_m) \in \mathbb{S}^m$ and $\sigma \in S_m$ with $\sigma(i) = i$ if $z_i \notin \bigcup_{n \ge 1} A_n^{\alpha}(S)$, let $x \in X$ and

$$(\prod_{i=1}^m z_i)(x) > 0$$
. If $y \notin X$, then $(\prod_{i=1}^m z_{\sigma(i)})(y) > 0$. It follows that $x \xi_n y$ and so $x \xi y$. Hence, (iii) implies that $y \in X$, a contradiction and so $(\prod_{i=1}^n z_{\sigma(i)})(y) = 0$, i.e X is an ξ^{α} -part of S . \square

implies that
$$y \in X$$
, a contradiction and so $(\prod_{i=1} z_{\sigma(i)})(y) = 0$, i.e X is an ξ^{α} -part of S. \square

Example 4.3. Let $X = \{a, c\}$ be as Example 3.7. Then by Theorem 4.2 and Proposition 3.6, Xis an ξ^{α} -part of S.

Theorem 4.4. For any $a \in S$, $\xi^{\alpha}(a)$ is an ξ^{α} -part of S if and only if ξ^{α} is transitive.

Proof. (\Leftarrow) Let $x, y \in S$, $z \in \xi^{\alpha}(x)$ and $z\xi^{\alpha}y$. Since ξ^{α} is transitive, we have $y \in \xi^{\alpha}(x)$. So, by Theorem 4.2, $\xi^{\alpha}(x)$ is an ξ^{α} -part of S.

 (\Rightarrow) Suppose that $x\xi^{*\alpha}y$. Then there exists an integer k and $(z_1,\ldots,z_k)\in S^k$ such that

$$x = z_0 \xi^{\alpha} z_1 \xi^{\alpha} \dots \xi^{\alpha} z_k = y$$

thus, $z_i \in \xi^{\alpha}(z_{i-1})$. Since $\xi^{\alpha}(z_i)$ is an ξ^{α} -part $(0 \le i \le k)$ it follows that $y \in \xi^{\alpha}(x)$ by Theorem 4.2, i.e $x\xi^{\alpha}y$ and so $\xi^{*\alpha}=\xi^{\alpha}$.

Definition 4.5. Let A be a non-empty subset of S. We define K(A) and W(A) as follows:

- 1) $K(A) = \bigcap \{B : A \subseteq B \text{ and } B \text{ is an } \xi^{\alpha} part \text{ of } S\}.$ We use K(a) for $K(\{a\})$,
- 2) $W(A) = \bigcup_{n\geq 1} W_n(A)$, where $W_1(A) = A$ and for $n \geq 1$,

 $W_{n+1}(A) = \{x \in S | \exists m \in \mathbb{N} \text{ and } \exists (z_1, \dots, z_m) \in S^m \text{ such that for some } a \in W_n(A) \text{ we have } (\prod_{i=1}^m z_i)(x) > 0 \text{ and } \exists \sigma \in \mathbb{S}_m \text{ with } \sigma(i) = i \text{ if } z_i \notin \bigcup_{s \ge 1} A_s^{\alpha}(S) \text{ such that } (\prod_{i=1}^m z_{\sigma(i)})(a) > 0\}.$

Example 4.6. Let $A = \{a, c\}$ be as Example 3.7. Since X is an ξ^{α} -part of S we have K(A) = A.

Theorem 4.7. The following statements hold:

- (1) W(A) = K(A),
- $(2) K(A) = \bigcup K(a),$
- (2) $W_n(X) = \bigcup_{a \in A} W_n(x),$ (3) $W_n(W_2(z)) = W_{n+1}(z), \text{ for } n \ge 2 \text{ and } z \in S.$

Proof. (1) We show that W(A) is an ξ^{α} -part. Let $a \in W(A)$, $(\prod_{i=1}^{m} z_i)(a) > 0$ and $\sigma \in \mathbb{S}_m$ with

 $\sigma(i)=i, \text{ if } z_i \notin \bigcup_{s\geq 1} A_s^{\alpha}(S).$ Then there exists an integer n such that $a\in W_n(A).$ If $t\notin W(A)$ and

 $(\prod_{i=1} z_{\sigma(i)})(t) > 0$, then $t \in W_{n+1}(A)$ and so $t \in W(A)$, a contradiction. Therefore, $(\prod_{i=1}^m z_{\sigma(i)})(t) = 0$ and W(A) is an ξ^{α} -part.

Now, it is enough to prove that if B is an ξ^{α} -part and $A \subseteq B$, then for any $n, W_n(A) \subseteq B$ i.e W(A) is the smallest ξ^{α} -part of S which contains A. We use induction on n. Since $W_1(A) = A \subseteq B$, the case n=1 is clear. Let $W_n(A)\subseteq B$ and $z\in W_{n+1}(A)$. Then there exists an integer m and $(z_1,\ldots,z_m)\in S^m$ and $\sigma\in\mathbb{S}_m$ with $\sigma(i)=i$ if $z_i\not\in\bigcup_{s\geq 1}A_s^\alpha(S)$ and $t\in W_n(A)$ such that

 $(\prod_{i=1}^m z_{\sigma(i)})(t) > 0$ and $(\prod_{i=1}^m z_i)(z) > 0$. Since $W_n(A) \subseteq B$ we have $t \in B$. Moreover, if $z \notin B$ as B is ξ^{α} -part, then $(\prod_{i=1}^m z_i)(z) = 0$, a contradiction, and so $z \in B$ and the result holds.

(2) We know that for any $a \in A$, $K(a) \subseteq K(A)$. We use induction on n to prove that Where C(a) we know that for any $a \in A$, $K(a) \subseteq K(A)$. We use induction of A to C(a) and C

some $a \in W_n(A)$, $(\prod_{i=1}^m z_{\sigma(i)})(a) > 0$. By the hypotheses of induction we have $W_n(A) = \bigcup_{b \in A} W_n(b)$ and so $a \in \bigcup_{b \in A} W_n(b)$. Therefore, for some $b \in A$, $a \in W_n(b)$. Hence, $z \in W_{n+1}(b)$ i.e $W_{n+1}(A) \subseteq \bigcup_{b \in A} W_n(b)$.

 $\bigcup_{b \in A} W_{n+1}(b). \text{ Since for any } a \in A, K(a) \subseteq K(A) \text{ we obtain } K(A) = \bigcup_{n} W_n(A) \subseteq \bigcup_{n} \bigcup_{a} W_n(a) = \bigcup_{n} W_n(a)$

 $\bigcup_{A} K(a) \subseteq K(A) \text{ Therefore, } K(A) = \bigcup_{a \in A} K(a) .$

(3) We proceed by induction on n. For n=2 we have

 $W_2(W_2(x)) = \{z | \exists q \in \mathbb{N}, \exists (a_1, \dots, a_q) \in S^q \text{ and } \sigma \in \mathbb{S}_q \text{ with } \sigma(i) = i \text{ if } z_i \not\in \bigcup_{s \ge 1} A_s^{\alpha}(S) \text{ such that } S_q(x) = i \text{ of } z_i \in I_q(S) \text{ of } z_i \in I_q(S) \text{ such that } S_q(x) = i \text{ of } z_i \in I_q(S) \text{ such that }$

$$(\prod_{i=1}^q a_i)(z) > 0 \text{ and for some } y \in W_2(x), (\prod_{i=1}^q a_{\sigma(i)})(y) > 0\} = W_3(x).$$

Suppose $W_n(W_2(x)) = W_{n+1}(x)$. Then

$$\begin{split} W_{n+1}(W_2(x)) &= \{z \in S | \exists q \in \mathbb{N}, (a_1, \dots, a_q) \in S^q \text{ and } \sigma \in \mathbb{S}_q \text{ with } \sigma(i) = i \text{ if } z_i \not\in \bigcup_{s \geq 1} A_s^\alpha(S), \\ &\quad t \in W_n(W_2(x)) \text{ such that } (\prod_{i=1}^q a_i)(z) > 0 \text{ and } \prod_{i=1}^q a_{\sigma(i)})(t) > 0 \} \\ &= W_{n+2}(x). \end{split}$$

This completes the proof.

Theorem 4.8. Let $x, y \in S$. Then the following relation is an equivalence relation on S:

$$xWy$$
 if and only if $x \in W(\{y\})$.

Proof. The relation W is reflexive, since Theorem 4.7 and Definition 4.5, imply that $W\{x\} = K\{x\}$ and $x \in W\{x\}$ i.e xWx. Also, W is transitive, since for $x, y, z \in S$ let xWy and yWz. Therefore, Theorem 4.7, implies $x \in K(y)$ and $y \in K(z)$. For any P, ξ^{α} -part of S which contains z, we have $K(z) \subseteq P$ and so $y \in P$. Then $K(y) \subseteq P$ and so $x \in P$. Thus for any P we have $x \in P$ and K(z) is an ξ^{α} -part of S which contains z, so $x \in K(z)$. Therefore, by Theorem 4.7, xWz and so W is transitive. W is symmetric. For this first by induction on n we prove that $x \in W_n(y)$ if and only if $y \in W_n(x)$. For n = 2 it is clear. Suppose $x \in W_{n+1}(y)$, then there exists an integer $q \geq 1, (a_1, \ldots, a_q) \in S^q$ and $\sigma \in \mathbb{S}_q$ with $\sigma(i) = i$ if $a_i \notin \bigcup_{s \geq 1} A_s^{\alpha}(S)$ and $t \in S^q$

 $W_n(y)$ such that $(\prod_{i=1}^q a_i)(x) > 0$ and $(\prod_{i=1}^q a_{\sigma(i)})(t) > 0$. It follows that $t \in W_2(x)$. By hypotheses of induction we have $y \in W_n(t)$. Therefore, by Theorem 4.7(3), we have $y \in W_n(W_2(x)) = W_{n+1}(x)$.

Example 4.9. Let $\rho = \{(a,a), (b,b), (c,c), (a,c), (c,a)\}$ and $\pi : S \to S/\rho$ defined by $\pi(x) = \overline{x}$ for all $x \in S$ be the canonical homomorphism. We know that ρ is a fuzzy strongly regular relation so by Theorem 2.6, S/ρ is a group. Moreover, $S/\rho = \{\overline{a}, \overline{b}\}$ and $\overline{a} = \{a,c\}$ is the identity element of S/ρ . Also,

$$\omega_S = Ker(\pi) = \{x | \overline{x} = \overline{a}\} = \{a, c\}.$$

By Example 4.3, $\{a,c\}$ is a ρ -part of S i.e ω_S is a ρ -part of S.

Let M be a non-empty subset of S. We Know that $(M\omega_S)(r) = \bigvee_{x \in \omega_S, m \in M} (m \circ x)(r)$.

Lemma 4.10. Assume that M is a non-empty subset of S. Then we have

- (i) $\pi^{-1}(\pi(M)) = \{x \in S : (\omega_S M)(x) > 0\} = \{x \in S : (M\omega_S)(x) > 0\};$
- (ii) If M is an ξ^{α} -part of S, then $\pi^{-1}(\pi(M)) = M$.

Proof. (i) Let $x \in S$, $t \in \omega_S$ and $y \in M$ such that (ty)(x) > 0. Then by Theorem 2.4, $\pi(x) = \pi(t) \oplus \pi(y) = 1_{S/\xi^{*\alpha}} \oplus \pi(y) = \pi(y)$ and so $x \in \pi^{-1}(\pi(y)) \subset \pi^{-1}(\pi(M))$.

Conversely, for any $x \in \pi^{-1}(\pi(M))$, there exists $b \in M$ such that $\pi(x) = \pi(b)$. For $a \in S$ we have $aS = \chi_S$ and so (ab)(x) > 0. Since by Theorem 2.4, $\pi(b) = \pi(x) = \pi(a) \oplus \pi(b)$ we have $\pi(a) = 1_{S/\xi^{*\alpha}}$. So $a \in \pi^{-1}(1_{S/\xi^{*\alpha}}) = \omega_S$. Therefore, $(\omega_S M)(x) > 0$.

By the similar way, we can prove that $\pi^{-1}(\pi(M)) = \{x \in S : (M\omega_S)(x) > 0\}$. (ii) It is clear that $M \subseteq \pi^{-1}(\pi(M))$. If $x \in \pi^{-1}(\pi(M))$, then there exists $b \in M$ such that $\pi(x) = \pi(b)$ i.e $\xi^{*\alpha}(x) = \xi^{*\alpha}(b)$. Therefore, $x \in M$ by Theorem 4.2(iii) and M is ξ^{α} -part.

Theorem 4.11. For all $a, b \in S$, aWb if and only if $a\xi^{*\alpha}b$.

Proof. (\Leftarrow) Let $a\xi^{*\alpha}b$. Then there exist integer n,m such that $a\xi_{m,n}^{\alpha}b$. So for any $(z_1,...,z_m)\in S^m$ and $\sigma\in\mathbb{S}_m$ with $\sigma(i)=i$ if $z_i\not\in\bigcup_{n\geq 1}A_n^{\alpha}(S)$ we have $(\prod_{i=1}^q a_i)(a)>0$ and $(\prod_{i=1}^q a_{\sigma(i)})(b)>0$ and so $a\in W_2(b)$. Thus, by Definition 4.5, aWb and $\xi^{*\alpha}\subset W$. (\Rightarrow) If xWy, then there exists $n\in\mathbb{N}$ such that $x\in W_n(y)$. So for any integer $m,(z_1,...,z_m)\in S^m$ and $\sigma\in\mathbb{S}_m$ with $\sigma(i)=i$ if $z_i\not\in\bigcup_{n\geq 1}A_n^{\alpha}(S)$ we have $(\prod_{i=1}^q a_i)(x)>0$ and for some $x_1\in W_{n-1}(y)$ we have $(\prod_{i=1}^q a_{\sigma(i)})(x_1)>0$. Thus, $x\zeta_n^{\alpha}x_1$. Continuing this method there exist $\exists x_2,\ldots,x_{n-1}\in S$ such that $x_i\in W_{n-i}(y)$ and $x_{i-1}\xi_n^{\alpha}x_i$. Then $(x=x_0)\xi_n^{\alpha}x_1\xi_n^{\alpha}\ldots\xi_n^{\alpha}(x_{n-1}=y)$. Therefore, $W\subseteq \zeta^{*\alpha}$.

Theorem 4.12. ω_S is a fuzzy subhypergroup of S which is also an ξ^{α} -part of S.

Proof. It is clear that $\omega_S \subseteq S$ and so for any $a, b, c \in \omega_S$, $(ab) \bullet c = a \bullet (bc)$. Let $x, y \in \omega_S$. Then $Sy = \chi_S$ implies that there exists $u \in S$ such that (uy)(x) > 0. By Theorem 2.4, $\overline{u} \oplus \overline{y} = \overline{x}$ and so $\overline{u} = \overline{1}$. i.e $u \in \omega_S$. Therefore, $\omega_S y = \chi_{\omega_S}$ and ω_S is a fuzzy subhypergroup of S. Now we prove that

$$K(y) = \pi^{-1}(\pi(\{y\})) = \{x \in S : (\omega_S y)(x) > 0\} = \omega_S.$$

Let $y, z \in S$. Then

$$z \in \pi^{-1}(\pi(\{y\})) \iff \pi(z) = \pi(y)$$

$$\iff \xi^{*\alpha}(z) = \xi^{*\alpha}(y)$$

$$\iff z\xi^{*\alpha}y$$

$$\iff z \in \xi^{*\alpha}(y) = W(\{y\}) = K(y).$$

Moreover, $y \in \omega_S$, we have $\{x \in S : (\omega_S y)(x) > 0\} = \{x \in S : (\chi_{\omega_S})(x) > 0\} = \omega_S$. Therefore, $K(y) = \omega_S$ and so ω_S is an ξ^{α} -part.

5 Conclusions

In this paper, we defined a new strongly regular relation on an FHG to get an α -solvable group. Also, we introduced the concept of ξ^{α} -part of a fuzzy hypergroup. Basically, we studied the relation between their fundamental relation and ξ^{α} -parts of a given FHG. In addition, we can extend this work on α -Engel groups (α -nilpotant groups).

References

- [1] R. Ameri, T. Nozari, Complete parts and fundamental relation on fuzzy hypersemigroups, Journal of Multiple-Valued Logic and Soft Computing, 19 (2011), 451–460.
- [2] R. Barzegar, A. Erfanian, Nilpotency and solubility of groups relative to an automorphism, Caspian Journal of Mathematical Sciences, 4(2) (2015), 271–283.
- [3] R.A. Borzooei, E. Mohammadzadeh, V. Fotea, On Engel fuzzy subpolygroups, New Mathematics and Natural Computation, 13(2) (2017), 165–206.
- [4] P. Corsini, Prolegomena of hypergroup theory, Aviani Editore, Tricesimo, 1993.
- [5] P. Corsini, I. Tofan, On fuzzy hypergroups, Pure Mathematics and Applications, 8 (1997), 29–37.
- [6] D, Freni, A new charactrization of the drived hypergroup via strungly regular equivalences, Communications in Algebra, 30(8) (2002), 3977–3989.
- [7] V. Leoreanu-Fotea, B. Davvaz, Fuzzy hyperrings, Fuzzy Sets and Systems 160(2009), 2366–2378.
- [8] E. Mohammadzadeh, R.A. Borzooei, Y.B. Jun, Results on Engel fuzzy subgroup, Algebraic Structures and their Applications, 4(2) (2017), 1–14.
- [9] E. Mohammadzadeh, R.A. Borzooei, *Nilpotent fuzzy subgroups*, Mathematics, 6(27) (2018), 1–12.
- [10] J.N. Mordeson, M.S. Malik, *Fuzzy commutative algebra*, Journal of Fuzzy Mathematics, 3 (1995), 1–15.
- [11] T. Nozari, Commutative fundamental relation in fuzzy hypersemigroups, Italian Journal of Pure and Applied Mathematics, 36 (2016), 455–464.
- [12] A. Rosenfeld, Fuzzy groups, Journal of Mathematical Analysis and Applications, 35 (1971), 512–517.
- [13] M.K. Sen, R. Ameri, G. Chowdhury, Fuzzy hypersemigroups, Soft Computing, 12 (2008), 891–900.
- [14] L.A. Zadeh, Fuzzy sets, Information Control, 8 (1965), 338–353.