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Abstract

In this paper, we introduce nilpotent and solvable pair
of polygroups. By a pair of polygroups (P,N), we mean
a polygroup P with a normal sub-polygroup N of P . In
addition, we obtain a necessary and sufficient condition
between nilpotency (solvability) of pair of polygroups and
pair of groups. In particular, we extend the theory of
groups to a pair of polygroups. Finally, we study the
relationship between nilpotent and solvable pair of poly-
groups.
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A Title

1 Introduction

Pair of groups has some applications in group theory, for instance, Ellis [8, 9] introduced the notion
of Schur multiplier and capability of pair of groups and obtained some results. Also, Hassanzadeh
[12] introduced the concept of nilpotency for pair of groups. By a pair of groups (G,N) we mean
a group G with a normal subgroup N . Clearly, the nilpotency of a group G implies the nilpotency
of (G,N). Also, if (G,N) is nilpotent, then so is N . A pair of groups is nilpotent if and only if
the lower (upper) central series terminates at finite steps.

The theory of algebraic hyperstructures is a well-established branch in algebraic theory. Appli-
cation of hyperstructures have been studied in many branches of mathematics such as geometry,
automata, probabilities, and so on [3, 4]. Fundamental relation is an important concept in hy-
pergroups. It is a way to connect hypergroups and groups. Koskas [15] defined the fundamental
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relation β∗ on hypergroups mainly, it has been studied by Corsini [5, 6] and Fereni [11]. The
fundamental relation β∗ is the smallest equivalence relation on a hypergroup H such that the
quotient H/β∗ is a group. In 1934, Marty [16] introduced the concept of polygroups as a special
hypergroup. Polygroup theory extends some well-known group results and introduce new topics
in polygroups. For example, Nilpotent and solvable polygroups are vital notations of group theory
(see [7]). Polygroups have been discussed by Corsini ([5, 6]), Ameri ([1, 2]), Comer [3], Davvaz [7],
Jafarpour [14], and so on.

Now, in this paper, we study on polygroup analogue of nilpotent pair of groups. In addition,
we introduce the notion of solvable pair of groups and ataine some properties of it. Then for a
polygroup P and a normal sub-polygroup N we introduce the concept of nilpotent and solvable pair
of polygroups. Also, we obtain a necessary and sufficient condition between nilpotent (solvable)
pair of polygroups and nilpotent (solvable) pair of groups. A well-known property of nilpotent
groups is that the intersection of a normal subgroup of a nilpotent group G by the center of G is
non-trivial. Now, we prove the same property on pair of polygroups. Finally, we investigate the
relation between nilpotent and solvable pair of polygroups.

2 Preliminary

We begin our discussion with some fundamental definitions and results.
A hyperoperation ◦ is a mapping from H ×H into the family of non-empty subsets of H. A

hypergroupoid (H, ◦) is a non-empty set H with a hyperoperation ◦. If A and B are non-empty

subsets of H, then A ◦ B =
∪

a∈A,b∈B
a ◦ b. Also, we use x ◦ A instead of {x} ◦ A and A ◦ x for

A ◦ {x}. Generally, the singleton a is identified with its member a. The structure (H, ◦) is called
a semihypergroup if a ◦ (b ◦ c) = (a ◦ b) ◦ c for any a, b, c ∈ H. A semihypergroup (H, ◦) is called a
hypergroup if for any x ∈ H, x ◦H = H ◦ x = H. The condition that for any a, b ∈ H there exist
x and y such that a ∈ b ◦ x and a ∈ y ◦ b, is called the reproduction axiom.

Definition 2.1. [7] An algebraic structure (P, ·, e,−1 ), where e ∈ P and −1 is an unitary operation
on P , is called polygroup if for any x, y, z ∈ P the following conditions hold:
(i) (x · y) · z = x · (y · z),
(ii) e · x = x · e = x,
(iii) x ∈ y · z ⇔ y ∈ x · z−1 ⇔ z ∈ y−1 · x.

Let (P1, ·, e1,−1 ) and (P2, ∗, e2,−1 ) be two polygroups. Then (P1 × P2, ◦), where ◦ is defined
as follows, is a polygroup (see [7]).

(x1, y1) ◦ (x2, y2) = {(x, y) | x ∈ x1 · x2, and y ∈ y1 ∗ y2}.

Note. From now on for a polygroup (P, ·, e,−1 ) and x, y ∈ P we use xy instead of x · y.

Definition 2.2. [7] A non-empty subset K of a polygroup P is a sub-polygroup of P if for any
a, b ∈ K we have ab ⊆ K and a−1 ∈ K. Also, a sub-polygroup N of P is normal if for any a ∈ P ,
a−1Na ⊆ N .

Also, for a sub-polygroup K of P and x ∈ P , denote the left (right) coset of K by xK (Kx)
and suppose P/K is the set of all left (right) cosets of K in P . Note that for a normal sub-
polygroup N of P , we have Nx = xN and for all x, y ∈ P we have Nxy = Nz for all z ∈ xy. Also,
(P/N,⊙, N,−1 ) is a polygroup, where

(Nx)⊙ (Ny) = {Nz | z ∈ xy} and (Nx)−1 = Nx−1
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A polygroup is called commutative if for any x, y ∈ P , xy = yx. Let (H, ◦) and (H, ⋆) be
two hypergroups. A map f : (H, ◦) → (H, ⋆) is called a homomorphism if for any a, b ∈ H,
f(a ◦ b) ⊆ f(a) ⋆ f(b). Also, f is a good homomorphism if for any a, b ∈ H, f(a ◦ b) = f(a) ⋆ f(b).
Let (H, ◦) be a hypergroup. The relation ρ ⊆ H ×H is an equivalence relation and A,B are two
non-empty subsets of H. Then

AρB ⇔ aρb, ∀a ∈ A,∀b ∈ B.

The relation ρ is called a strongly regular on the left (on the right) if for any x, y, a ∈ H we have

xρy ⇔ a ◦ xρa ◦ y (x ◦ aρy ◦ a).

In addition, a strongly regular relation is strongly regular on the right and on the left.

Theorem 2.3. [5] If (H, ·) is a hypergroup and ρ is a strongly regular relation on H, then (Hρ ,⊗)
is a group with the following operation:

ρ(x)⊗ ρ(y) = ρ(z), for all z ∈ xy.

In [15], Koskas defined the relation β =
∪
n≥1

βn, where β1 = {(x, x);x ∈ H} is the diagonal

relation on H and

aβnb ⇔ ∃(x1, ..., xn) ∈ Hn, {a, b} ⊆
n∏

i=1

xi.

The transitive closure of β∗, is a strongly regular relation. Freni proved that if H is a hypergroup,
then β = β∗ (see [10]).
The kernel of the canonical map π : P −→ P

β∗ , denote by ωP or ω, is called the core of P . It is

easy to prove that ωP = β∗(e) and β∗(x)−1 = β∗(x−1) for all x ∈ P (see [7]).

Theorem 2.4. [7] Assume P1 and P2 are two polygroups. Then ωP1×P2 = ωP1 × ωP2.

Theorem 2.5. [7] Let A be a non-empty subset of P . Then the intersection of all sub-polygroups
of P containing A, denoted by ⟨A⟩ is equal to

∪
{xϵ11 . . . xϵkk |xi ∈ A, k ∈ N, ϵi ∈ {1,−1}}.

Definition 2.6. [7] The lower central series of P is the sequence · · · ⊆ γ1(P ) ⊆ γ0(P ) = P , where
γ0(P ) = P and for k > 0,

γk+1(P ) = ⟨{h ∈ P | xy ∩ hyx ̸= ∅ such that x ∈ γk(P ) and y ∈ P}⟩.

Also, P is called a nilpotent polygroup if for some n ∈ N, γn(P ) ⊆ ω. The smallest such n is called
a class of P .

In [2] it is proved that for any x, y ∈ P we have

{h ∈ P | xy ∩ hyx ̸= ∅} = {h ∈ P | h ∈ [x, y]},

where [x, y] is the commutator of two elements x, y and is defined by [x, y] = {t | t ∈ xyx−1y−1}.
Now, we recall the notion of the commutator of subgroups. Let H and K be two subgroups

of a group G. Then the commutator of H and K, denoted by [H,K] is a group generated by
{[h, k]|h ∈ H, k ∈ K}, where [h, k] = hkh−1k−1.

Definition 2.7. [12] Let (G,N) be a pair of groups. Put γ1(G,N) = N and for i > 1 γi+1(G,N) =
[γi(G,N), G]. Then

N = γ1(G,N) ≥ γ2(G,N) ≥ . . .

is called the lower central series of (G,N). Also, a pair (G,N) is called nilpotent if γn(G,N) = {e},
where e is the identity element of G.
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3 Nilpotent pair of polygroups

In this section, by the notion of lower central series for a pair of polygroups the concept of nilpotent
pair of polygroups is introduced. Also, some basic results are given (see Theorems ??, ?? and ??).

Definition 3.1. Let N be a normal sub-polygroup of P . Then (P,N) is called a pair of polygroups.
Also, if H and M are sub-polygroups of P and N , respectively, then (H,M) is called a sub-pair of
(P,N).

Let N1 and N2 be two sub-polygroups of P1 and P2, respectively. By a homomorphism from
(P1, N1) to (P2, N2) we mean a homomorphism from P1 to P2 which sends N1 to N2.

Note. From now on, let (P,N) be a pair of polygroups, k, n ∈ N and for any x ∈ P put
x = β∗(x).

Definition 3.2. Assume l1(P,N) = N and for any k > 1,

lk(P,N) = ⟨{h ∈ P |h ∈ [x, y] such that x ∈ lk−1(P,N) and y ∈ P}⟩.

Then (P,N) is called a nilpotent pair of polygroups (NP) if for some k we have lk(P,N) ⊆ ωN .
The smallest such k is called the nilpotency class of (P,N).

It is clear that if P is a nilpotent polygroup, then (P,N) is nilpotent.

Example 3.3. (i) Let P1 = {e, a, b, c}. We define · on P1 as follows:

. e a b c

e e a b c

a a a P1 c

b b {e, a, b} b b, c

c c {a, c} c P1

Then (P1, ·) is a polygroup (see [7]). Consider sub-polygroup N1 = {e, a} of P1. It is easy to
see that l1(P1, N1) = ωN1 = {e, a} = N1 and so a pair (P1, N1) is an NP.

(ii) Let P2 = N2 = {0, 1} be the cyclic group of order two. Then l1(P2, N2) = N2 and
l2(P2, N2) = ωN2 = {0} and so pair (P2, N2) is an NP.

Theorem 3.4. Let (P,N) be a pair of polygroups and H be a normal sub-polygroup of P . If (P,N)
is an NP, then (P/H,N/H) is an NP.

Proof. First, we prove that for any n ≥ 0, ln(P/H,N/H) = ln(P,N)H/H. We proceed by
induction on n and show that

ln(
P

H
,
N

H
) ⊆ ln(P,N)H

H
and ln(

(P,N)H

H
) ⊆ ln(

P

H
,
N

H
).

For n = 1, the inclusions are obvious. Now, suppose that ln(
P
H , NH ) ⊆ ln(P,N)H

H holds and yH ∈
ln+1(

P
H , NH ). Therefore, by Definition ??, yH ∈ [aH, bH], where aH ∈ ln(

P
H , NH ) and bH ∈ P

H .

Then by hypotheses of induction, aH = a′H for some a
′ ∈ ln(P,N). Therefore, yH ∈ [aH, bH] =

[a′H, bH] and so by Definition ??, yH = y′H such that y′ ∈ [a′, b] ⊆ ln+1(P,N). Hence, yH ∈
ln+1(P,N)H

H .

Conversely, if yH ∈ ln+1(P,N)H
H , then there exists t ∈ ln+1(P,N) such that yH = tH. Therefore,

for some a ∈ ln(P,N), b ∈ P we have t ∈ [a, b] . Thus, yH = tH ∈ [aH, bH], where aH ∈ ln(
P
H , NH )

and so yH ∈ ln+1(
P
H , NH ). Hence, the proof is complete.
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In what follows we see that the converse of Theorem ?? is not true in general.

Example 3.5. Let P = S3 be the symetric group and N = H = A3 be the alternative group
of degree 3. Then (P/H,N/H) is an NP but (S3, A3) is not nilpotent because by Definition ??,
γ1(S3, A3) = A3 and so γ2(S3, A3) = [A3, S3] ⊆ A3. If [A3, S3] = {e}, then S3 is an abelian group,
a contradiction. Thus, [A3, S3] ̸= {e}. And so γ2(S3, A3) ̸= {e}. By a simillar method for any
n ∈ N, γn(S3, A3) ̸= {e} . Hence, (S3, A3) is not nilpotent.

Corollary 3.6. If (P,N) is an NP and I ⊆ N is a subnormal polygroup of P . Then (P/I,N/I)
is an NP.

Theorem 3.7. Assume (P1, N1) and (P2, N2) are two pairs of polygroups. Then, for all k ≥ 0 we
have:

lk(P1 × P2, N1 ×N2) = lk(P1, N1)× lk(P2, N2).

Proof. By induction on k we prove that lk(P1 × P2, N1 ×N2) = lk(P1, N1)× lk(P2, N2). The first
step of induction holds. Now suppose that (a, b) ∈ lk(P1 × P2, N1 ×N2), and the result holds for
k − 1. By Definition ??, for some (x1, y1) ∈ lk−1(P1 × P2, N1 × N2) and (z1, z2) ∈ P1 × P2 we
have (a, b) ∈ [(x1, y1), (z1, z2)]. Since [(x1, y1), (z1, z2)] = ([x1, z1], [y1, z2]) we get a ∈ [x1, z1] and
b ∈ [y1, z2]. By the hypotheses of induction, we conclude a ∈ lk−1(P1, N1) and b ∈ lk−1(P2, N2).
Hence, (a, b) ∈ lk(P1, N1)× lk(P2, N2). A similar calculation gives the converse.

Theorem 3.8. Consider (P1, N1) and (P2, N2) are two pairs of polygroups. Then (P1×P2, N1×N2)
is an NP if and only if (P1, N1) and (P2, N2) are NP.

Proof. (⇐) Since (P1, N1) and (P2, N2) are NP, then there exist k1, k2 ∈ N such that lk1(P1, N1) ⊆
ωN1 and lk2(P2, N2) ⊆ ωN2 . Put k = lcm{k1, k2}. Thus, by Theorems ?? and ??, we get

lk(P1 × P2, N1 ×N2) = lk(P1, N1)× lk(P2, N2) ⊆ lk1(P1, N1)× lk2(P2, N2) ⊆ ωN1 × ωN2 .

Therefore, (P1 × P2, N1 ×N2) is an NP.
(⇒) Since (P1×P2, N1×N2) is an NP, we conclude that there exists k ∈ N such that lk(P1×P2, N1×
N2) ⊆ ωN1×N2 . Then by Theorems ?? and ??, we have lk(P1, N1) ⊆ ωN1 and lk(P2, N2) ⊆ ωN2 .
Hence, (P1, N1) and (P2, N2) are NP.

Example 3.9. Let (P1, N1) and (P2, N2) pairs as Example ??. Then we define · on P1 × P2
∼= P

as follows:

. e a b c d f g h

e e a b c d f g h

a a e c b f d h g

b b c b c {e, b, d, g} {a, c, f, h} g h

c c b c b {a, c, f, h} {e, b, d, g} h g

d d f {e, b, d} a, c, f d f {d, g} {f, h}
f f d {a, c, f} {e, b, d} f d {f, h} {d, g}
g g h {b, g} {c, h} g h {e, b, d, g} {a, c, f, h}
h h g {c, h} {b, g} h g {a, c, f, h} {e, b, d, g}

Now, (P, ·) is a polygroup [7]. Also, Theorem ?? implies (P1 × P2, N1 ×N2) is an NP.
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Theorem 3.10. Consider (P1, N1) and (P2, N2) are two pairs of polygroups and ϕ : (P1, N1) −→
(P2, N2) is a good homomorphism. If ϕ is one to one and (K1,K1∩N1) is a nilpotent sub-polygroup
of (P1, N1), then ϕ(K1,K1 ∩N1) is a nilpotent sub-polygroup of (P2, N2).

Proof. By induction on n we show that ln(ϕ(K1,K1 ∩N1)) = ϕ(ln(K1,K1 ∩N1)). For n = 1, it is
clear. Now, assume ln(ϕ(K1,K1 ∩N1)) = ϕ(ln(K1,K1 ∩N1)) holds and z ∈ ln+1(ϕ(K1,K1 ∩N1)).
Then there exist x ∈ ln(ϕ(K1,K1 ∩ N1)) and y ∈ ϕ(K1) such that z ∈ [x, y]. By hypotheses of
induction x ∈ ϕ(ln(K1,K1 ∩ N1)) and so for some a ∈ ln(K1,K1 ∩ N1) we have x = ϕ(a). Also,
y ∈ ϕ(K1) implies that y = ϕ(b) for some b ∈ K1. Therefore, z ∈ [ϕ(a), ϕ(b)] = ϕ[a, b] and so
z ∈ ϕ(ln+1(K1,K1 ∩N1)). Therefore,

ln+1(ϕ(K1,K1 ∩N1)) ⊆ ϕ(ln+1(K1,K1 ∩N1)).

Conversely, let z ∈ ϕ(ln+1(K1,K1 ∩ N1)). Then for some c ∈ ln+1(K1,K1 ∩ N1) we have
z = ϕ(c). Since c ∈ ln+1(K1,K1∩N1) we conclude that there exist a ∈ ln(K1,K1∩N1) and b ∈ K1

such that c ∈ [a, b]. Then z = ϕ(c) ∈ ϕ[a, b] = [ϕ(a), ϕ(b)] and so by hypotheses of induction and
a ∈ ln(K1,K1 ∩ N1) we have ϕ(a) ∈ ln(ϕ(K1,K1 ∩ N1)). Therefore z ∈ ln+1(ϕ(K1,K1 ∩ N1)).
Consequently, ln(ϕ(K1,K1 ∩N1)) = ϕ(ln(K1,K1 ∩N1)) .

In what follows, consider β∗
1 is the restriction of β∗ on N . Then by Definitions ??, ?? and

Theorem ??, we get a relationship between pair of groups and polygroups.

Theorem 3.11. Let (G,H) = (P/β∗, N/β∗
1). Then for any k ≥ 1 we have:

γk(G,H) = ⟨{x|x ∈ lk(P,N)}⟩ (I).

Proof. We prove by induction on k. Since γ1(G,H) = H = ⟨{x|x ∈ N}⟩, the case k = 1 is clear.
Now, suppose that (I) holds and a ∈ ⟨{x|x ∈ lk+1(P,N)}⟩. Then, a ∈ lk+1(P,N) and so for some
x ∈ lk(P,N) and y ∈ P we have a ∈ [x, y]. Hypotheses of induction imply that x ∈ γk(G,H).
Then by Theorem ??, a = [x, y] ∈ γk+1(G,H). Thus, ⟨{β∗(x)|x ∈ lk(P,N)}⟩ ⊆ γk(G,H).

Conversely, let a ∈ γk+1(G,H) = [γk(G,H), G]. Then a = [x, y] for some x ∈ γk(G,H), y ∈ G
and so a = x⊗y⊗x−1⊗y−1 i.e x⊗y = a⊗y⊗x. By hypotheses of induction x ∈ lk(P,N). Thus,
by Theorem ??, there exist c ∈ xy and d ∈ ayx such that c = d. Let t ∈ yx. By reproduction
axioms of polygroups for c ∈ xy and t ∈ yx there exists u ∈ P such that c ∈ ut. Then c ∈ ut ⊆ uyx.
Definition ??(ii), implies that

u ∈ c(yx)−1 = cx−1y−1 ⊆ xyx−1y−1 = [x, y].

Then u ∈ [x, y] = lk+1(P,N). Therefore, by Theorem ??,

u = [x, y] ⇔ u = x⊗ y ⊗ x−1 ⊗ y−1

⇔ u⊗ y ⊗ x = x⊗ y = c = d = a⊗ y ⊗ x.

Therefore, a = u ∈ ⟨{t|t ∈ lk+1(P,N)}⟩.

Example 3.12. Consider P1 and N1 are as Example ??(i). Then G = P1/β
∗ = {e = a = b = c}

and H = N1/β
∗
1 = {e = a}. In addition, γ1(G,H) = {e} and l1(P1, N1) = ωN1 = {e, a}.

Therefore, ⟨{x|x ∈ l1(P1, N1)}⟩ = {e}. Thus, γ1(G,H) = ⟨{x|x ∈ l1(P,N)}⟩

Now, we are ready to state one of the main results of this section. In fact, we get a connection
between NP and nilpotent pair of groups.
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Theorem 3.13. The pair (P,N) is an NP if and only if ( P
β∗ ,

N
β∗
1
) is a nilpotent pair of groups.

Proof. (⇐) Since (P,N) is an NP, for some k ∈ N we have lk(P,N) ⊆ ωN . By Theorem 3.10, we
have

γk(
P

β∗ ,
N

β∗
1

) = ⟨{t; t ∈ lk(P,N) ⊆ ωN}⟩ = {t; t ∈ ωN} = {e}.

It follows that ( P
β∗ ,

N
β∗
1
) is a nilpotent pair of groups.

(⇒) Let ( P
β∗ ,

N
β∗
1
) be a nilpotent pair of groups. Then for some k, γk(

P
β∗ ,

N
β∗
1
) = {e}. We show

that lk(P,N) ⊆ ωN . Let t ∈ lk(P,N). By Theorem ??, we get t ∈ γk(
P
β∗ ,

N
β∗
1
) = {e}. Hence,

lk(P,N) ⊆ ωN . Therefore, (P,N) is an NP.

Definition 3.14. Assume Z0(P,N) = ωN and for i ∈ N,

Zi(P,N) = ⟨{n ∈ N |nyZi−1(P,N) = ynZn−1(P,N) for any y ∈ P}⟩.

Then series Z0(P,N) ⊆ Z1(P,N) ⊆ . . . is called the upper central series of (P,N).

Example 3.15. Let P = {e, a, b, c, d, f, g} and N = {e, a, b}. Define · on P as follows:

. e a b c d f g

e e a b c d f g

a a e b c d f g

b b b {e, a} g f d c

c c c f {e, a} g b d

d d d g f {e, a} c b

f f f c d b g {e, a}
g g g d b c {e, a} f

Now, (P, ·) is a polygroup [7]. Also, Z0(P,N) = ωN = {e, a} and Z1(P,N) = ⟨{n ∈ N |nyZ0(P,N) =
ynZ0(P,N) for any y ∈ P}⟩ = {e, a}.

Theorem 3.16. Let for any x ∈ P , xx−1 ⊆ Zi(P,N). Then Zi(P,N) is a normal sub-polygroup
of N and [Zi+1(P,N), P ] ⊆ Zi(P,N).

Proof. First, we prove Zi(P,N) is a normal sub-polygroup of N . For this let z ∈ Zi and n ∈
N . Then by Definition ??, we have zn−1Zi−1(P,N) = n−1zZi−1(P,N). Therefore, by nn−1 ⊆
Zi(P,N) we get

nzn−1Zi−1(P,N) = nn−1zZi−1(P,N) ⊆ nn−1zZi(P,N) = Zi(P,N).

So, nzn−1 = nzn−1e ∈ nzn−1Zi−1(P,N) ⊆ Zi(P,N). Hence, nzn−1 ⊆ Zi(P,N) and Zi(P,N) is
normal.

Now, we show [Zi+1(P,N), P ] ⊆ Zi(P,N). Let x ∈ Zi+1(P,N) and y ∈ P . Since Zi(P,N) is a
normal sub-polygroup, by Definition ??, and xx−1 ⊆ Zi(P,N) we conclude that

x−1y−1Zi(P,N) = y−1x−1Zi(P,N) ⇔ xyx−1y−1Zi(P,N) = xyy−1x−1Zi(P,N)

⇔ [x, y]Zi(P,N) = Zi(P,N)

⇔ [x, y] ⊆ Zi(P,N).
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Example 3.17. Assume P and N are as Example ??. Then for any x ∈ P we have xx−1 ⊆
Z1(P,N) and Z1(P,N) = {e, a} is a normal sub-polygroup of N .

Theorem 3.18. Let for any x ∈ P and i ∈ N, xx−1 ⊆ Zi(P,N). Then (P,N) is an NP if and
only if Zr−1(P,N) = N , for some r > 0.

Proof. (⇐) It is enough to show that there exists i ∈ N such that li(P,N) ⊆ ωN . We argue
by induction on i that for any i ∈ N, li(P,N) ⊆ Zr−i(P,N). For i = 1, we have l1(P,N) =
N = Zr−1(P,N) = N . Now, assume li(P,N) ⊆ Zr−i(P,N) and a ∈ li+1(P,N). Then for
some x ∈ li(P,N) and y ∈ P we have a ∈ [x, y]. By hypotheses of induction and Theorem ??,
a ∈ Zr−i−1(P,N). Then li(P,N) ⊆ Zr−i(P,N). If i = r, then lr(P,N) ⊆ Z0(P,N) = ωN and so
(P,N) is an NP.
(⇒) By induction we show that lr−i(P,N) ⊆ Zi(P,N), for any 0 ≤ i ≤ n. For i = 0, we
have lr(P,N) ⊆ Z0(P,N) = ωN . Let lr−i(P,N) ⊆ Zi(P,N) and a ∈ lr−i−1(P,N) and b ∈ P .
Then by Definition ??, [a, b] ⊆ lr−i(P,N). The hypothesis of induction implies [a, b] ⊆ Zi(P,N).
Therefore, abZi(P,N) = baZi(P,N) and so by Definition ??, a ∈ Zi+1(P,N) i.e for every i ∈ N,
lr−i(P,N) ⊆ Zi(P,N). If i = r − 1, then Zr−1(P,N) = N .

Example 3.19. Let P1 and N1 be as for Example ??. Then pair (P1, N1) is an NP and Z0(P1, N1) =
ωN1 = N1.

Now, we generalize a well-known property of nilpotent groups in pair of polygroups.

Theorem 3.20. Assume for any x ∈ P , xx−1 ⊆ Zi(P,N) and M is a non-trivial normal sub-
polygroup of P such that M ∩N ̸= ωN . Then (P,N) is an NP implies that M ∩ Z(P,N) ̸= ωN .

Proof. By Theorem ??, there exists a positive integer c such that N = Zc(P,N). It follows
M ∩Zc(P,N) ̸= ωN . Let i, be a less integer such that M ∩Zi(P,N) ̸= ωN . Now, by Theorem ??,
we have

[M ∩ Zi(P,N), P ] < M ∩ Zi−1(P,N) = ωN .

By Definition ??, M ∩ Zi(P,N) < M ∩ Z1(P,N). Hence,

M ∩ Zi(P,N) < M ∩ Z1(P,N) < M ∩ Zi(P,N).

Therefore, M ∩ Z1(P,N) = M ∩ Zi(P,N) ̸= ωN .

Theorem 3.21. [7] Let (G, .) be a group. Then (PG, ◦, e,−1 ) is a polygroup, where PG = G∪{a},
a ̸∈ G and ◦ is defined as follows:
(1) a ◦ a = e ,
(2) e ◦ x = x ◦ e = x, ∀x ∈ G,
(3) a ◦ x = x ◦ a = x, ∀x ∈ G− {e, a},
(4) x ◦ y = x.y, ∀(x, y) ∈ G2; y ̸= x−1,
(5) x ◦ x−1 = x−1 ◦ x = {e, a}, ∀x ∈ G− {e, a}.
In addition, PG is a nilpotent polygroup if and only if G is a nilpotent group.

Example 3.22. Assume G is the quaternion group Q8 = {1,−1, i,−i, j,−j, k,−k}. Since G is
nilpotent by Theorem ??, we conclude that (PG, ◦, e,−1 ) is a nilpotent polygroup and so (PG, N)
is nilpotent too. Put M = {1,−1, j,−j, a} and N = {1,−1, i,−i, a}. Clearly, ωN = {1, a},
M ∩ N ̸= ωN and x ◦ x−1 = {1, a} ⊆ Z(PG, N) = {1,−1, a}, for any x ∈ PG. In addition,
−1 ∈ M ∩ Z(PG, N) and −1 ̸∈ ωN imply that M ∩ Z(P,N) ̸= ωN .

Corollary 3.23. If (P,N) is an NP and N ̸= ωN , then Z(P,N) ̸= ωN .
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4 Solvable pair of polygroups

The goal of this section is to define the notion of solvable pair of polygroups. Also, we present
some results on this topic. Basically, we get a relationship between solvable pair of polygroups
and solvable pair of groups. Finally, we prove that every nilpotent pair of polygroups is solvable.
First we define a solvable pair of groups. For a pair of groups (G,N), let (G,N)(0) = N, (G,N)(1) =
[N,G] and for k > 1, (G,N)(k+1) = [(G,N)(k), (G,N)(k)]. The following normal series is called
derived series of (G,N) (see [12]),

N ≥ (G,N)(1) ≥ (G,N)(2) ≥ . . .

Definition 4.1. The pair of groups (G,N) is called solvable if for some k ∈ N we have (G,N)(k) =
{e}.

Note that for an abelian group G and a normal subgroup N of G the pair (G,N) is solvable.
Since (G,N)(1) = [N,G] = {e}.

Here we define a solvable pair of polygroups. In addition, we study the connection between
solvable pair of polygroups and solvable pair of groups.

Definition 4.2. Assume i1(P,N) = N and for k > 1,

ik(P,N) = ⟨{h ∈ P |h ∈ [x, y] such that x, y ∈ ik−1(P,N)}⟩.

Then (P,N) is called solvable pair of polygroups (SP) if ik(P,N) ⊆ ωN .

By the same manipulation of the previous section we can obtain the following results, so the
proofs are omitted.

Theorem 4.3. Let (P,N) be a pair of polygroups, H be a normal sub-polygroup of P and H be a
sub-polygroup of N . Then for any n ≥ 0, in(P/H,N/H) = in(P,N)H/H.

Example 4.4. Assume P is as Example ??, N = {e, a, b} and H = {e, a}. Then P/H =
{eH = aH, bH, cH, dH, fH, gH}, NH = {eH = aH, bH}. In addition i1(P,N) = N = {e, a, b},
i2(P,N) = {e, a} and i1(P/H,N/H) = N/H = {eH = aH, bH}, i2(P/H,N/H) = {eH}. There-
fore, i2(P/H,N/H) = {H} = i2(P,N)H/H.

Corollary 4.5. If (P,N) is an SP and H ⊆ N , then (P/H,N/H) is an SP.

Theorem 4.6. Let (P1, N1), and (P2, N2) be two pairs of polygroups. Then, for any k ≥ 0 we
have:

ik(P1 × P2, N1 ×N2) = ik(P1, N1)× ik(P2, N2).

Corollary 4.7. Let (P1, N1) and (P2, N2) be two pairs of polygroups. Then (P1 × P2, N1 ×N2) is
an SP if and only if (P1, N1) and (P2, N2) are SP.

Example 4.8. Let (P1, N1), (P2, N2) and (P,N) be as Example ??, Clearly, i1(P1, N1) = ωN1 and
i2(P2, N2) = ωN2. By Corollary ??, (P,N) is an SP.

Theorem 4.9. Let (P1, N1) and (P2, N2) be two pairs of polygroups and ϕ : (P1, N1) → (P2, N2)
be a good homomorphism. If ϕ is one to one and (K1,K1 ∩ N1) is a solvable sub-polygroup of
(P1, N1), then ϕ(K1,K1 ∩N1) is a solvable sub-polygroup of (P2, N2).
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Theorem 4.10. Consider (G,H) = (P/β∗, N/β∗). Then for any k ≥ 1 we have:

(G,H)(k) = ⟨{x|x ∈ ik(P,N)}⟩.

Proof. We prove by induction on k. For k = 1, we have (G,H)(1) = H = ⟨{x|x ∈ N}⟩. Now,
suppose that a ∈ ⟨{x|x ∈ ik+1(P,N)}⟩. Then, a ∈ ik+1(P,N) and so by Definition ??, there exist
x, y ∈ ik(P,N) such that a ∈ [x, y]. By hypotheses of induction we have x, y ∈ (G,H)(k). It follows
that a = [x, y] ∈ (G,H)(k+1). Therefore, (G,H)(k) ⊆ ⟨{x|x ∈ ik(P,N)}⟩.

Conversely, let a ∈ (G,H)(k+1) = [(G,H)k, (G,H)k]. Therefore, for some x, y ∈ (G,H)(k),
a = [x, y]. Using hypotheses of induction we have x, y ∈ ik(P,N). Since x ⊗ y = a ⊗ y ⊗ x, by
Theorem ??, we conclude that there exist c ∈ xy and d ∈ ayx such that c = d. By the same proof
of Theorem ??, there exists u ∈ P such that u ∈ [x, y] ⊆ ik+1(P,N). Hence,

u⊗ y ⊗ x = x⊗ y = c = d = a⊗ y ⊗ x.

So we have a = u ∈ ⟨{t; t ∈ ik+1(P,N)}⟩. Therefore, (G,H)(k) ⊇ ⟨{β∗(x)|x ∈ ik(P,N)}⟩.

Theorem 4.11. Pair (P,N) is an SP if and only if ( P
β∗ ,

N
β∗
1
) is a solvable pair of groups.

Proof. (⇒) Since (P,N) is a solvable pair of groups ik(P,N) ⊆ ωN , by Theorem ??,

(
P

β∗ ,
N

β∗
1

)(k) = ⟨{t; t ∈ ik(P,N) ⊆ ωN}⟩.

So ( P
β∗ ,

N
β∗
1
) is a solvable pair of groups.

(⇐) Consider ( P
β∗ ,

N
β∗
1
) is solvable. Then there exists k such ( P

β∗ ,
N
β∗
1
)(k) = e. Let t ∈ ik(P,N). By

Theorem ??, t ∈ ( P
β∗ ,

N
β∗
1
)(k). Therefore, ik(P,N) ⊆ ωN . This completes the proof.

Now, we study the connection between nilpotent and solvable pair of polygroups.

Theorem 4.12. Every nilpotent pair of polygroups is solvable.

Proof. Let (P,N) be an NP. It is easy to see that for any k ∈ N, ik(P,N) ⊆ lk(P,N). Now, since
(P,N) is an NP we get that for some n, ln(P,N) ⊆ ωN and so in(P,N) ⊆ ωN . Therefore, (P,N)
is an SP.

Example 4.13. Assume P1 and N1 are as in Example ??. Pair (P1, N1) is an NP and by Theorem
??, we have (P1, N1) is an SP. In addition, (P1

β∗ ,
N1
β∗
1
) = P1

β∗ = {e} and so (P1
β∗ ,

N1
β∗
1
) is a solvable pair

of groups.

A polygroup is called proper if it is not a group.
In what follows we show that the converse of Theorem ??, is not true in general.

Example 4.14. Let S3 be the symmetric group and A3 be the alternative group of degree 3. Then by
definition of derived series of pair (G,N) we have (S3, A3)

(0) = A3 and so (S3, A3)
(1) = [A3, A3] =

{e}. It follows that (S3, A3) is solvable. But by Example ??, (S3, A3) is not nilpotent.

Theorem 4.15. Every proper pair of polygroups of order less than 61 is solvable.

Proof. Let (P,N) be a proper pair of polygroups of order less than 61. Then, (P/β∗, N/β∗) is a
pair of groups of order less than 60 that is solvable (see [13]). Therefore, Theorem ??, follows that
(P,N) is an SP.
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5 Conclusion

In this paper, for a polygroup P and a normal sub-polygroup N of P the notions of nilpotent
and solvable pairs of polygroups (P,N) were defined. Moreover, the notion of nilpotent pair of
polygroups (P,N) as a generalization of nilpotent polygroup was introduced. Some examples
have been used to clarify the concept of nilpotent (solvable) pair of polygroup. In addition, a
connection between nilpotent (solvable) pair of groups and nilpotent (solvable) pairs of polygroup
was obtained. Especially, the relationship between nilpotent and solvable pair of polygroups were
investigated. This work can be used on Engel pair of polygroups, too.
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