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Abstract Article Information
In this paper, we introduce and study, (“(P), the a- Corresponding Author:
center of a polygroup (P,-) with respect to an automor- E. Mohammadzadeh;
phism «. Then we associate to P a graph I'%, whose Received: December 2019;
vertices are elements of P\ (“(P) and x connected to y Accepted: February 2020;
by anedgeincase z-y-w #y- % wory-x-w # x-y*-w, Papertype: Original.
where w is the heart of P. We obtain some basic prop-
erties of this graph. In particular, we prove that if Keywords:
¢Y(P) # P, then dim(I'y) = 2. Moreover, we define a Polygroup, fundamental rela-
weak a-commutative polygroup to state that if I'¢; = F% tion, fundamental group, a-
and H is a weak a-commutative, then K is a weak (- graph.
commutative. Also, we show that if H and K are two
polygroups such that I'}; = Ff(, then for some automor- 1.)
phisms n and A, F?{X 4= I‘}\(X > where A and B are two ool or
weak commutative polygroups. updates

1 Introduction

Graph theory have been applied in areas such as computer science, image capturing, networking,
etc. Some extensive papers are on assigning a graph to a ring, group, polygroup and etc. This
help you to study some properties of theses structures by the associated graph (see [1],[4],[5]).
Furtheremore, in [I], we see that a finite group with some conditions on its graph is a solvabel
group.

Marty [13], defined hypergroups and analize their properties. You can find the applications of
hyperstructures in many areas, such as geometry, automata, probabilities, and so on. One of the
most important subclasses of hypergroups are Polygroups, introduced by Bonansinga and Corsini
[6], that appear in many contents such as nilpotent polygroups, fundamental relation of polygroups.
Polygroups discussed by many scholars (see [2, [7, 8, 9] 10, [12]). One of the intersting problems
in hypergroup theory is the relation between hypergroups (polygroups) and hypergraphs. Corsini
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studied the relations between hypergroups and hypergraphs and Farshi et. all in [11] studied the
hypergraphs and hypergroups based on special elements.

Now, in this paper first we define (*(P), the notions of a-center of a polygroup with respect to an
automorphism . Then we define an a-graph I'}, as a generalization of classical group, with the
vertex set P\ (“(P) and adjoint two vertices z and y if z-y-w # y- 2% wor y-x-w # x-y*-w, where
w is the heart of P. We introduce the notion of weak a-commutative polygroups. Basically, we
obtain an isomorphism between I'%’, and F%XXZ p in which 'Y, = I‘%, i is the identity automorphism
and A, B are two weak commutative polygroups with the same order.

2 Preliminaries

We recall some basic definitions which are proposed by the pioneers of this subject.
Let G be a group and a € Aut(G). For two elements z,y € G, we say x and y commute under the
automorphism o whenever yz = xy®.

Hyperstructure theory was first identified by Marty [13] in 1934 when he defined hypergroups
and started to analyze their properties. A hyperstructure (or hypergroupoid) is a non-empty set H
with a hyperoperation o defined on H, that is, a mapping of H x H into the family of non-empty
subsets of H. If (z,y) € H x H, then its image under o is denoted by z oy. If A, B are two
non-empty subsets of H, then Ao B is given by Ao B = |J{z oy|lx € A,y € B}. Weuse zo A
instead of {z} o A and Aoz for Ao {z}. Generally, the singleton « is identified with its member
a. The structure (H, o) is called a semihypergroup if ao (boc) = (aob) oc for any a,b,c € H, and
a semihypergroup (H, o) is a hypergroup if

roH=Hox=H, forany x € H,

which is called the reproduction azxiom.

”

Definition 2.1. [10] A polygroup is an algebraic structure (P,-,e,~1), where”-” is a hyperoperation
on P, "1 is an unary operation on P and e € P such that the following axioms hold for any
xz,y,z € P,

(1) (@-y) - z=a-(y-2);

(i) e-x=x-e=uw;

(iii) v €y -z impliesy €x -2~ and z €y~ - .

1

It is easy to see that for any x € P,e € (z-2 )N (z7! - 2) and (x-y)~' =y~ 27! where

Al ={a""|ac Al

A non-empty subset K of a polygroup P is called a subpolygroup of P if a,b € K implies
a-bC K and a € K implies a~! € K. A subpolygroup N of a polygroup P is called normal if
a~' N -a C N, for any a € P. Also, for a subpolygroup K of P and x € P, denote the left
(right) coset of K by =+ K (K - x) and suppose P/K is the set of all left (right) cosets of K in P.
Note that for a normal subpolygroup N of P, we have N - = x - N and for all x,y € P we have
N-z-y=N-zforall z€x-y. Also, (P/N,®, N, 1) is a polygroup, where

(N-2)O(N-y)={N-z|z€xz-y} and (N-z)" ' =N-27%

A polygroup in which z -y =y -z for all z,y € P is called commutative polygroup.
Let P be a polygroup and p C P x P be an equivalence relation on P. For non-empty subsets A
and B of P, we define ApB <= (Va € A and Vb € B we get apb). Then the relation p is called a
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strongly reqular on the left (on the right) if xpy = a - xpa - y(z - apy - a), for any z,y,a € P. In
addition, p is called strongly regular if it is strongly regular on the right and on the left (see [10]).

Let P be a polygroup and 8* be the smallest equvalence relation on P such that the quotient
P/j5*, the set of all equvalence classes, is a group. In this case, §* is called the fundamental
equivalence relation on P and P/S* is called the fundamental group. The product ® in P/5* is as
follows:

B*(z) @ B*(y) = B*(2) for all z € x-y.

Let Up be the set of finite products of elements of P and ©w C Up. We define the relation 8 as
follows:
xPy if and only if {z,y} Cu (I).

We have 8* = 8 for hypergroups. Since polygroups are certain subclasses of hypergroups, we have
B* = . The kernal of the canonical map ¢ : P — P/f* is called the core (or heart) of P and
is denoted by wp (or w). Here, we also denote by wp the unit of P/8*. It is easy to prove that
wp = B*(e) and B*(z)"! = B*(x~1) for all z € P(see [10]).

Let (H,-,e1,”') and (Hl,*, 2,7 1) be two polygroups. A function f : H — H' is called a
homomorphism if f(a-b) C f(a) f(b), for any a,b € H. We say that f is a good homomorphism
if f(a-b) = f(a)x f(b) for any a,b € H.

Definition 2.2. [10] Let P be a polygroup and A be a non-empty subset of H. By < A > we mean
the intersection of all subpolygroups of P containing A.

It is easy to verify that
<A>=U{al ..ot e Ak eNyg € {1, -1}}.

Also, < A, B > is used for < AU B >.

Let G be a group and Z(G) be the center of it. A graph I', whose vertices are elements of
G\ Z(G) and x connected to y by an edge in case xy # yz, was first considered by Paul Erdos.
The set of vertices of I'; is denoted by V(G). A path p is a sequence vgejv1...e,v, whose terms are
alternately distinct vertices and distinct edges, such that the ends of e; are v;_1 and v; for any 4,
1 <4 < k. In this case, p is called a path between vy and v; and the number £ is called the length
of p. If vg and vy, are adjacent in ' by an edge ey1, then pU{eg11} is called a cycle. The length of
a cycle define the number of its edges. The length of the shortest cycle in a graph I' is called girth
of I and denoted by girth(T'). If v and w are vertices of I', then d(v,w) denotes the length of the
shortest path between v and w. The largest distance between all pairs of the vertices of I is called
the diameter of T', and is denoted by diam(I'). A graph is connected if there is a path between
each pair of the vertices of I'. A subset S of the vertices of a connected graph I is called a cut set
if I'\ S is not a connected graph. For a graph I" and a subset S of the vertex set V(I'), denoted by
Nr[S] the set of vertices in I" which are in S or adjacent to a vertex in S. If Np[S] = V(T'), then
S is said to be a dominating set.

Notation. Let (P,-,e,”!), (P/B*,®,e,1) be a polygroup and fundamental group, respec-
tively from now on. Consider n € N, Aut(P) is the set of all automorphism of P and a € Aut(P).
Also, for any x € P, set T = §*(x).

3 a-Center of polygroups

In this section, first we define and study the a-center of a polygroup P, denoted by (*(P). Then,
we redefine the cener of a polygroup, denoted by ((P). Finally, we obtain a relation between (“(P)
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and ((P). This help us to see that ¢*(P) = ¢ (P).
Note. For any = € P we use z% and zy instead of a(x) and z - y, respectively.

Definition 3.1. The set (“(P) is called a-center of P defined as follows:
(*(P) ={x € Playw = yaz“w for anyy € P}.

Example 3.2. Let P = {e,a,b}. We define the operation - and automorphism « on P as follows:

elalb
b, r=a
elelalb (z) = v
alal|b|e K= e’ x:
blblela ’

Clearly, w = {e} and so for any y € P we have eyw = ye*w. Then e € (*(P). Since
abw # ba®w and baw # ab®w we conclude a,b & (*(P). Therefore (*(P) = {e}.

Theorem 3.3. For any x,y € P, T®Y =7z if and only if zyw = yrw.

Proof. (=) Let &y = y®@x®. Then for any t € zy and t' € yz® we have f =t andso t—1 @t =¢
. Then for any r € 't we have 7 = € and so t 't C w, i.e (t"'')w = w. Then, t w = tw and so
TYyw = yr*w

(<) Assume zyw = yz®w. Then for any ¢t € xy there exists ¢ € yz® such that , t w = tw. Then
' =tands0 TRy =7 @ x%. O

We recall that for a group G, Z%(G) = {y € G;[z,y]a = e}, where [z,y]o = 7ty Lay® (see
3)).
/

Theorem 3.4. (“(P) is a normal subpolygroup of P.

Proof. First we show that for any x1, 22 € (*(P), 2122 C (*(P). Suppose r € z1z2. By Theorem
. forany y € P, 77 @y =7 ®2¢ and T3 ® Y = § ® 2§ , which implies that

TRY = (T1I®T2)RY

= TI®([@207)

= 71O (@)

= (@ey o

= Y® (2 @15)

= FRI.
Then by Theorem we have ryw = yr®w. Therefore, r € (*(P) and x122 C (*(P). Now, we
show that 27" € ¢%(P). Since z; € (¥(P), for all y € P we have

riyw = yafw = TARF=Foa]
— wﬁ@@@@)@ﬁz?@@@@@fa
- @@:pf = ®y
= yazfaw:xl Yw.
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and so 27! € ¢(*(P). Therefore, ((P) is a subpolygroup of P. We show (*(P) is a normal
subpolygroup. Suppose z € (*(P), then for any x,y € P and r € ™2z we have

TRY = rlRIe(TR7Y),
= z71®(T®Y) ®2°,
7® 29,
= zZQUY,
= ZRTR (27 z%),
= Ze@Fer ) ®z%),
= TR R2%Q 1Y,
= yere
Then by Theorem r € ¢¥(P) and so 27 1¢*(P)x C (%(P). Thus ¢*(P) is a normal subpoly-
group of P. O

In the following we obtain a necessary and sufficient condition between elements of P and the
fundamental group P/g*.

Corollary 3.5. Let P be a polygroup. Then x € (*(P) if and only if B*(x) € Z*(P/B*).
Proof. Suppose x € P. Then

z€e(¥(P) & zyw=yrw, forany yec P

& TRY=7y®zY (by Theorem [3.3)
& [g,T]a=c¢

& T EZYP/BY).

O]

Theorem 3.6. Consider o € Aut(P). Then @ € Aut(P/B*), where @ : P/B* — P/B* is defined
by a(x) = x°.

Proof. First we prove that for any x E P,z =c¢if and only if z® =e. If T =&, hen there

n
exist z1, ...,z € P such that {z,e} € sz Then z € sz and e € sz and so 2% € Hz and
=1 =1 =1 =1
n

n

e* € Hzf‘ Therefore, {z% e = %} € szo‘ implies z® = €. By the similar way we have the
; i=1

converse. Thus, @ is well defined and one to one. Now, for any y € P/3*, consider z = y‘fl. Then

a(ye™') = (y*")* =7 and so @ is onto. For 71,7 € P/3*, we have
AT @T3) ={a(l) : t € ;yae} = {1 1t € myae} = {Z: z € 2725} = 2§ @ 2§ = a(T7) @ @(T3).
Thus, @ € Aut(P/B*).

Definition 3.7. Let o € Aut(P). Then:

(1) P is called an a-commutative if xy = yx® for any x,y € P.

(13) P is called a weak a-commutative if xyw = yz®w for any x,y € P.

(#ii) Consider (G,-) is a group and 3 € Aut(G). Then G is called a B-Abelian group if x-y = y- 25
for any x,y € G.
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Clearly, (“(P) = P if and only if P is weak a-commutative.

Theorem 3.8. If P is an a-commutative polygroup, then P/5* is an @-Abelian group. Moreover,
P is a weak a-commutative if and only if P/B* is an @-Abelian group.

Proof. By Theorem a € Aut(P/f*). Since P is an a-commutative polygroup, we have xy =
yx® and so ryw = yx®*w for any z,y € P. Then by Theorems and TRU=7Rr* =7QT%
and so P/f3* is an @-Abelian group. Moreover, since P is a weak a-commutative polygroup, we
have zy = yz® and so by Theorem TRy =y®T*. Therefore, P/3* is an a-Abelian group. [

Definition 3.9. For xz € P the a-centeralizer x in P is defined by
C%x) ={y € P| yrw = zy“w}.
Clearly, ¢*(P) = ﬂ C(x).
zeP

Theorem 3.10. For any x € P, C%(x) is a subpolygroup of P.

Proof. Since e € C%*(x) we have C*(z) # @. Now, we show that for any y, z € C%(x), zy C C*(x)

and z~! € C%(z). For this let » € zy. Since zow = r2%w and yzw = 2y“w, by Theorem we

have ZQT =T ® 2 and YR T =T ® y®. Also, T = Z® Y. Thus,
TRT=ZQURT=2ZQTQY*=TR2°Qy*=TQre,

and so zy C C%(z). By the same manipulation of Theorem 271 € 0%(z). Consequently,

C?(z) is a subpolygroup of P. O

In [10], the center of a polygroup, denoted by Z(P), is defined as ({x € P | xyw = yaw for any y €
P}). Now, we redefine the center of a polygroup as follows.

Definition 3.11. The set {x € P | zyw = yaw for any y € P}, denoted by ((P), is called the
center of a polygroup.

Example 3.12. Suppose P is a polygroup as in Ezample[3.3. Since for any y € P, eyw = yew,
ayw = yaw and byw = ybw we conclude ((P) = P.

Similar to Theorem [3.4] we can prove that ((P) is a normal subpolygroup of P.
Theorem 3.13. Let fiz(a) = {x € P: 2%~ Cw}. Then (*(P) = ((P)N fiz(a).

Proof. Let x € (“(P). Then yz*w = zyw for any y € P. Suppose y = e, then 2% = zw and
so yrw = zyw. Therefore, z € ((P) N fiz(a). Hence, (*(P) C ((P)N fiz(a). Now, assume x €
C(P)N fiz(a). Then for any y € P, yaw = xyw and % = z. Therefore, yr*w = xyw for any y € P
i.e x € (“(P). Therefore, (*(P) = ((P) N fiz(a) . O

Corollary 3.14. If a fizes every element of ((P), then (“(P) = ((P).

Proof. Let x € ((P). Then xyw = yrw. Since « fixes every element of ((P), we have =% = z.
Then zyw = yz®w and so x € (*(P). Thus, {(P) C (“(P). Now, by Theorem C*(P) =
C(P)N fiz(a) C ((P). Therefore, (*(P) = ((P).

—1

Proposition 3.15. (*(P) =¢* (P).
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Proof. Since fiz(a) = fiz(a™!). Then by Theorem

¢N(P) = C(P) N fiz(a) = ((P) N fiz(a™t) = ¢ (P).
Thus, (*(P) = (* ' (P).

4  Graph of polygroups

In this section, we associate a graph I'} to a polygroup P, whose vertices are elements of P\ (“(P)
and z connected to y by edge in case xyw # yx®w or yrw # xy“w. The set of vertices of I'}
is denoted by V(G). Basically, we study polygroups throughout its isomorphic a-graphs (see
Proposition 4.8, Theorem 4.12 and corollaries 4.22, 4.24).

Example 4.1. Let P = {e,a,b,c}. We define the operation - and automorphism o« on P as
follows:

. le a b c

ele a b c b, rT=a
ala P {a,b,c} | {a,b,c} alz) =< a, x="b
b|b|{ab,c} P {a,b,c} x, otherwise
c|c|{ab,c}| {a,b,c} P

Sincece=a=b=c¢c=P and 50TR7Y =y R x® for any z,y € P. Hence, zyw = yx®w. Thus
C*(P) = P. Therefore, the a-graph is empty.

Example 4.2. Let P = {e,a,b,c,d, f,g}. We define the operation- and automorphism o on P as
follows:

ela b f d g
elela b f d g B
alale c b f d g Zl’ a:w—_db
c|c|cl{ea} f b g d B ' B
b|b|b| g |{ea}| d f c o) = i’; i =/
FLrLf d € g b {e,a} :137 ot;efwise
d|d|d f g c {e,a} b ’
9lg9lgl b d_|fea}| ¢ f
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Then (P,-,e,”') is a non-commutative polygroup (see [I0]). Since a = & = {e,a} and T = =
for any x # {a,e}, we conclude that (*(P) = {e,a}. Then for each y,xz € P\ (*(P) we have
TRY #75®x* and so by Theorem ryw # yxr®w which implies x and y are adjacent by an
edge. Therefore, we have a connected graph.

Let (Pr,-,e1,” ') and (Pa, *,e2,”%) be two polygroups. Then (Py x P»,0), where o is defined
as follows, is a polygroup (see [10]).

(x1,y1) o (w2, y2) = {(z,y) | v € x1 - 22, and y € y1 * Y2 }.

Corollary 4.3. [10] If N1, Ny are normal subpolygroups of Py and Ps respectively, then Ny X No
is a normal subpolygroup of Py x Py and (P; X P2)/(N1 x N3) = P /Ny x Py/Ns.

Corollary 4.4. [10] Suppose wp, wik and wpxx are the hearts of polygroups P, K and P x K,
respectively. Then wpxg = wp X Wk .

Lemma 4.5. Let (H,-,e,”) and (K,*,e,”') be two polygroups. Then for each hy,ha € H and
ki,ke € K we have

(ha, k1) o (ha, ka) o wrxi = (ha, ka) o (AS, kD) 0wk,
if and only if hy-ho-wg = ha-h$ -wy and ky x ke xwg = k:g*k:f*wK. In addition, (**P(H x K) =
C*(H) x ¢F(K).
Proof. (=) If (hy, k1) o (ha, k2) o wirxs = (ha, k2) o (h§', k7) o wiric, then

{(T‘l,sl) O WHXK ’ r] € hl . hQ,S]_ c kl * k‘g} = {(T‘Q,Sg) O WHXK | ro € hg . h?,sg c kg * k‘?}

Thus for all (r1,s1) o wnxx where 71 € h{ - he and s; € k:lﬁ * ko, there exists (r2, s2) o wyxx such
that ro € ho - h{ and sg € kg * l-cf and

(ri,s1) ownaxk = (12,52) owmgxk. (I1)

By Corollaries and we have wiw g = wy X wi and XK o H o K 55 g0 there exists

WHX K WH WK

: ) K HxK _
an automorphism ¢ : on Xog ﬁ such that ¢(h - wy, k * ‘wg) = (h, k) o wgxx for any
h € H and k € K. Since (r1,$1) ©c wgxk, and (72,$2) 0o wgxk € % &~y % X %, we get

(r1,s81) cwpxkx = @(r1 - wp, $1 *wg ) and (re, s2) owpxkx = @(r2 - wi, 2 * Wk ) and so, by (II) we
have ¢(r1 - wp, s1 * Wk ) = ©(r2 - wH, S2 * wk). Since ¢ is isomorphism we obtain r1 - wy = 72 - wy
and s1 * Wi = S9 * wg. Thus,

Br(r1) = By (re) and B (s1) = By (s2). (I11)

On the other hand, r1 € hy - hy and 72 € hg - h$, then 5} (r1) = Bj;(h1) ® B3 (he) and B} (r2) =
B3 (h2) ® B3 (h$). Therefore, by Theorem and (III) we have hy - hy - w = hg - A - w. By the
similar way, k1 * kg *x wg = ko * k] * wg.

(<) The proof of converse is similar. O

Corollary 4.6. Let « € Aut(H) and f € Aut(K). Then H and K are o and [-commutative
polygroups, respectively if and only if H x K is o X 5-commutative.

Proof. Polygroups H and K are a and -commutative if and only if (*(H) = H and ¢?(K) = K if
and only if (**8(H x K) = (*(H) x (?(K) = H x K if and only if H x K is a x f-commutative. [J
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Definition 4.7. Let (P,-,e,” '), (H,*,e,” 1) be two polygroups and o € Aut(P) and B € Aut(H).
The graphs It and I‘% are said to be isomorphic with respect to o and B ( T'} = F%) if there is
a bijection map o : P\(*(P) — H\C?(H) preserving edges, means that for each z,y € P\C*(P),
zywp # yz®wp if and only if p(x) * p(y) * wir # @(y) * (p(2))’ * wy.

Proposition 4.8. Let H and K be two subpolygroups of P, o, € Aut(P) and I'¢; = I‘f(. IfH
18 not a weak a-commutative, then K is not a weak 5-commutative.

Proof. Let ki, ko be two arbitary elements of K. Since I'¢; = Fg( we have a bijection 6 : H \
¢*(H) — K \ ¢°(K). Since H is not a weak a-commutative, then there exist hy,ho € H such
that hihow # hoh{w and so by Definition 0(h1)0(ho)w # O(h2)0(h1)Pw. Take k1 = O(hy) and
ko = 0(ha). Then kikow # kgklﬁ w. Therefore, K is not a weak a-commutative. O

The numbers of elements in a polygroup P is called the order of P. Now, we obtain an
isomorphism between I'%3', and FgX;B whenever I'} = F%, 7 is the identity automorphism and A

and B are two weak commutative polygroups with the same order.

Theorem 4.9. Suppose (P,-,e,”') and (H,*,e,”') are two polygroups, (A,x,e,”") and
(B, e, e, 1) are two weak commutative polygroups with the same order, a € Aut(P), € Aut(H),~ €
Aut(A),n € Aut(B) and (*(P) # P,¢°(H) # H. IfT% =T%, then T3S, = 5",

Proof. Let ¢ : I'p — F% be a graph isomorphism. Then there is a one to one map ¢ : P\(*(P) —
H\(P(H) such that g1-g2-wp = ga-g{"-wp where g1, go € P\C*(P) if and only if ¢(g1) *¢(ga) *wpy =
#(g2) * (¢(g1)?) * wg. Since A and B have the same order, we have a bijection map 1 : A — B.
By Lemma we prove ¢ : (g,a) — (#(g),¢(a)) is a graph isomorphism between I'}", and

Ff{XX"B. Moreover, we show that for g1,g2 € P and aj,as € A, (g1,a1) 0 (g2,a2) cwpxa = (g2,a2) ©

(98, a]) owpxa if and only if (g1, a1) 0 p(g2, az) owrxp = (g2, a2) o (p(g1,a1)?*") ocwpx p. For
this, we have

(91,a1) 0 (92,a2) owpxa = (g2,a2) o (97, a]) cwpxa
S gr-g2-wp=g2-g7 -wpand a; *agxwy = ag*QY*wA (by Lemm
& o(g1) * 8(g2) * wi = d(g2) * (¢(g1))” * wy and

P(ar) e Y(az) ewp = 1Y(az) e ((a1))" e wp, (since B is a weak n — commutative)
& (p(g1),¥(a1)) o (d(g2),¥(a2)) o wrxp = (¢(g2), ¥(az)) o (((91))", (¥(a1))") o wr B

& wlg1,a1) 0 p(ge,a2) owrx s = ¢(g2,a2) o ((g1,a1))*" o Wiy B

In the following, with some additional conditions we obtain a connected graph.
Theorem 4.10. Let P be a polygroup such that (“(P) # P. Then diam(I'}) = 2.

Proof. Let x,y be two distinct vertices of I'} and for any z € X, 5*(z) = z. First, we show that
the followings hold.

() If z,y are adjacent, then d(z,y) = 1.

(13) If 2,y are not adjacent, then d(z,y) = 2.

(7) The proof is obviose.

(#7) Since = and y are not adjucent, ryw = yx®w. From (*(P) # P, we have there exist z, y/ €
V(P) such that oz w # ¢ 1% or ¥ zw # zz'“w and yyw # yyw or yyw # yy aw. Now, if
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y,:c or x y are adJacent then d(z,y) = 2. Otherwise, y,a; and x y are not adjusent and so
yz' w—xy w and yxw—xy w, xyaw—yajw and xyw—y:n w. Therefore, by Theorem
yea* =12 ®y, TRy =27 y*andzRy =9y ®2% TRy" =1y ®z. Now, we show that
there is r € zy such that TRT#T®r® and r®y # 7 ® r®. For this, let r®x— 1:®1"0‘ Then
TRy T=202"®y" whichbyz®y'“ =y @T 1mphesa: RTRY* =701 ®y " and so
2 ®T =T®a'® which is a contradiction (since x, 2 are adjusent). Thus 7T # Z® . Similarly,
T®7Y # 7y ®r®. Therefore, by Theorem r is adjacent to both x and y, thus d(z,y) = 2. O

Example 4.11. Let P be a polygroup as in Example . Then (*(P) # P. Therefore, by the
proof of Theorem if x,y are adjacent, then d(z,y) =1, otherwise d(x,y) = 2. Therefore, I'}
is connected.

Theorem 4.12. Let (“(P) # P. If x € fiz(a) and {z} is a dominating set for I'}, then
C¥P) =w, 22 Cw and C%z) = {e,x}.

Proof. First, we show (*(P) = w. Let {} be a dominating set for I'}, and z € (*(P) such that
z & w. Thus zyw = yz%w for any y € P. By Theorem ZRY =7 ® 2% Supposer € T - 2.
Then 7R =TRZR2*=TR1°Q 22 =T r* By Theorem and z € fix(a), we have
xr®w = rezw. By the similar way rz®w = zrw. Thus r is not adjacent to z and so {z} is not a
dominating set, that is a contradiction. Thus (%(P) = w.

Now, we show 2 C w. Since z € fiz(a), we have z-1 ® 2% = € = Z® 2~ ! and so by Theorem
x and ! are not adjacent. But z is dominating set thus = z~!. Therefore, if r € 22, then
T=ZTQT==Tox | =e, which implies that r € w. Therefore, 22 C w.

Finally, since (*(P) = w and z is adjacent to all vertices of I'}, we get C*(z) = {e, x}. O

Theorem 4.13. Let (“(P) # P and S be a subset of V(I'}). Then S is a dominating set if and
only if R*(S)NC%(S) C ¢*(P)US, where R*(S) = {y € P;yx®w = xyw, for anyy € S}.

Proof. (=) Suppose that S is a dominating set and a € R*(S) N C*(S). If a ¢ (*(P) U S, then
by definition of dominating set, there exists an element x € S such that ¢ and x are adjucent and
so we have two cases.

Case (i) azw # za“w. Then a ¢ C(5), that is a contradiction. It follows that R*(S) N C(S) C
¢*(P)us

Case (i) raw # ar®w. Then a ¢ R*(S) and since R*(S) N C*(S) C R*(S) we conclude that
a & R*(S)NC(9), that is a contradiction. Therefore, R*(S) N C*(S) C (*(P)U S.

(<) Now assume that R*(S)NC*(S) C (¥(P)US. If an arbitary element a ¢ (*(P)U S, then by
assumption, a ¢ C*(S) N R*(S). Therefore, a is adjacent to at least one element of S. Therefore,
S is a dominating set. O

Corollary 4.14. Consider a non-commutative polygroup P with a non-empty set X. If P = (X),
then X \ (*(P) is a dominating set of T§.

Proof. Consider Y = X \ (*(P). Since P is non-commutative, we have Y # ¢. We show R*(Y) N
CE(Y) C¢*(P)UY. Suppose r € R(Y)NCB(Y). Then

re Cp(Y) = Cp(X\ ¢*(P)) = Cp({(X) \ ¢*(P)) = CB(P\ (*(P)).

Clearly, r € C3(¢*(P)) and so r € (“(P) C ¢*(P)JY. Thus, by Theorem X\¢*P)isa
dominating set. O
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Lemma 4.15. Let P be a non-commutative finite polygroup. The girth of the graph I'G is at most
4.

Proof. We have two cases

(1) ¢(P) # fiz(a).

(i) C(P) = fiz(a).

Case (i) there exists z € ((P) \ fiz(a) or x € fiz(a) \ ((P). Firstly suppose that there exists a
vertex x € ((P) \ fiz(a), then for any t € V(P), if ta®w = xtw, then by definition {(P) we have
tr“w = rtw = trw. Thus 2% = 2w and so a € fir(a). Hence tx“w # xtw. So t,x are adjusent.
Basically, x,y are adjucent. Let y and z be two arbitrary vertices in V(P). If y is adjacent to z,
then three elements z, y, z induce a cycle of length 3. If y is not adjacent to z, then we show that
there exists r € V(P) such that r is adjusent with y. Since yzw # zy®w or zyw # yz“w, then for
the case yw # y®w, we have [7,7 @ Z)a = 2 * @y~ L @ y¥ ® 2% # 1 and so for any r € yz we have
[U,T]a # 1, then 7 ® r® # 7 ® ¥ and so by Theorem y and 7 are adjusent. Also, for the case
y*w = yw there exists r € V(P) such that r®w # rw (since « is not the identity map) and so if
yréw = ryw and ry“w = yrw, then by y“w = yw we have yr*w = ryw = ry“w = yrw implies that
r®w = rw, that is a contradiction. Hence, y and r are adjusent. Therefore, elements z, y, r induce
a cycle of length 3. Secondly, assume that x € fiz(a)\ ((P) and y and z are two vertices in V(P)
such that y*w # yw and z%w # zw. Then we have two cases;

Case (I) zyw = yaw.

Case (II) zyw # yaw.

Case (I) If zy®w = yzrw, then y*w = yw that is a contradiction.

Case (IT) If yx®w = zyw, then by x € fiz(a) we have yrw = yr“w = ryw, that is a contradiction.
Therefore, if x € fizx(a) \ ((P) and y*w # yw, then x and y are adjasent. Similarly, = and z are
adjasent. Now, if y and z are adjasent, then x,y, z induce a cycle of length 3. If y is not adjacent
to z, then we can see that y and z are adjacent to r. Hence elements z,y, z,r induce a cycle of
length 4.

(ii) Finally, ((P) = fiz(«a). Then (*(P) = ((P) = fiz(w). Since P is non-commuting we
conclude that P is a non-abelian group. If for any 2 € V(P), T® T = 1, then T = 2~ and
so for any y € V(P), we have T@ 7 = 2z 1@y ! = (J®7) ' = @7 Then zyw = yrw
and so x € (*(P) = (“(P), that is a contradiction. Therefore, there exists € V(P) such that
72 £ 1, ie zaw # w, and so zw # x 'w. Now, if v '2%w = 2z 'w, then 2 '2% = w. Thus
r € fiz(a) = ¢*(P), that is a contradiction and so z is adjacent to z—!. Also, if y € V(P) such
that y is adjacent to x, then yzr®w # xyw. Now, if yz~% = 2~ 'yw, then zyz 2% = zo~'yr®w
and so zyw = yx“w, which is a contradiction. Hence, y is adjacent to ™!, too. Thus, elements
x,y, 2~ " induce a cycle of length 3. Therefore, the girth of P is at most 4. O

Lemma 4.16. Let P be a polygroup and o € Aut(P). Then w® = w.

Proof. Let x € w. Then T = e. ie x € II! ;2 and so € H?leio‘fl. Put y = 2° " and so

r=y* and y =€ i.e x € w®. By the similar way, we have w* C w. Thus w* = w. O

Theorem 4.17. Consider TS = (V, E) is a graph of P, W =p\ Z(P) and x € V. Then zw C V.
Also, V = U TW.
zeW
Proof. Since x € V there exists y € V such that xyw # yz®w. Take z € zw. Then by Lemma [4.16
z% € z%?* = % and so we have zw = 2% and zw = zw. Thus zyw = Tyw # Yrw = Yyz°w.
Hence z € V and so zw C V. Now, since z € V if and only if T € W we have V = U Tw.
zeW
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O]

A graph ' = (V| E) is bipartite if V' can be partitioned into two sets Vi, V5 such that every edge
of E has one end vertice in V; and the other in V5. Also, I' is called a complete bipartite graph if
it containes exactly all edges with one end vertex in V; and the other one in V5.

Theorem 4.18. Let P be a non-commutative polygroup and x,y be two edges of graph I's. Then
A ={(a,b) € Ela € zw,b € yw} is a complete bipartite graph.

Proof. First we show that for any z,x € P,

if z € zw ,then 2w = zw. (IV)

Since z € aw there exists r € w such that z € zr and so z=Z®e =7. Then 271 ®z =€ i.e
2712 C w. Hence 2w = zw.
Now, assume a € zw and b € yw. Then by (IV) and Lemma we have a® € z%w® = z%w and
S0 aw = Tw, a“w = % and bw = yw. Sine x,y are two edges of graph I'p, we have zyw # yx®w
and so

awbw = Twyw # Yywrw = bwa®w

Therefore, abw # ba and so there exists an edge between a and b. Next A can be partitioned into
sets V) = zw and V5 = yw. Then every edge (a,b) has end vertices in V; and V5. Consequently, I’
is a complete bipartite graph. ]

In what follows we study the identity graphs. Basically, by some properties of graph of groups
we obtain results on order of polygroups and graph of polygroups.

Theorem 4.19. [10]
Let (G,.) be a group. Then (Pg,o,e, 1) is a polygroup, where P = GU {a}, a ¢ G and o is
defined as follows:
(1) aca=ce,
(2)ecx=x0e=uzx, VreQq,
(3) aocx=xo0a=ux,Vx € G—{ea},
(4) zoy=uwy, V(z,y) € GZy#a ",
(5) vox t =z lox = {e,a}, V2 € G — {e,a}.

Clearly, ((Pg) = Z(G) U{e,a} and wp, = {e,a} and |Pg| = |G| + 1.

Theorem 4.20. Let G and H be two groups, a € G, b¢ H, Pp = HU{b}, Po = GU{a} and i
be the identity automorphism. Then Fé’c ~ FéDH if and only if 'g = T'y.

Proof. (=) Consider g1,92 € G\ Z(G) and g1 - g2 # g2 - g1 (*). Then by Theorem [4.19 (4),
g1 0g20wp, # g2 0 g1 o wp,. Since F};G ~ FéDH we have a bijection f: Pg \ ((Pg) — P \ ((Pg)
and so by (*) we have

f(g1) 0 f(g2) owpy # f(g2) © fg1) owpy- (+*)

Note that f(g)ob =bo f(g) = f(g) for any g € G and so f(g;) # b for i = 1,2. By (**) and
Theorem (4), we have f(g1)- f(g2)-wpy # f(g2)- f(91)-wpy. Then f(g1)- f(g2) # f(g2)- f(g1)-
Therefore, I'c ~ I'y with bijection f|q\ z(q), where fla\z(q) : G\ Z(G) — H\ Z(H) is defined by
flevze () = f(2).

(<) Assume I'g ~ I'y. Then there exists a bijection f : G\ Z(G) — H \ Z(H). Thus f is a
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bijection from Pg \ ((Pg) to Py \ ((Pu). Let z,y € Pg and z oy owp, # y oz owp,. Then
x,y # {e,a} and so by Theorem (4), x-y-wpy, #y-x-wp,. Thus, -y # y-z. Since
I'c ~ I'y we have f(z)- f(y) # f(y) - f(z). Then by Theorem [4.19] (4) and z,y # {e,a} we
conclude f(z) o f(y) owp, # f(y) o f(z) owp,. Consequently, F}G ~ FZ)DH.

O

Theorem 4.21. [I5] Let G and H be two groups and I'c =~ T'y. Then |G| # |H| in general.
Corollary 4.22. If ' ~ Ty, then |Pg| # |Py| in general.
Proof. Let I'¢ ~ T'y. By Theorem |G| # |H| in general and so |Pg| # |Pg| in general. [

Definition 4.23. A polygroup (P,o) is called a polygroup of exponent n (n € N) if for each
non-trivial element x of P we have roxo..ox =e.
—

n

Corollary 4.24. Every polygroup of exponent 3 is a group. In addition, if P and H are two
polygroups of exponent 3 and T'p ~ 'y, then |P| # |H| in general.

Proof. Let P be a polygroup of exponent 3 and b € P be an arbitrary element. Since bbb = e,
then bz = e for some = € bb. Thus b~! = x, which implies

bb=! =e forany be P. (V)

Let x € yz. By Definition we have 2 € y~tx. Thus by (V) 2 € yz C yy ' = x. Therefore,
x = yz and so every polygroups of exponent 3 is a group.

In addition, consider P and H are two polygroups of exponent 3 and I'p ~ I'y;. Then P and H
are two groups. Now, we get the result by Theorem i.e |P| # |H| in general. O

It is proved that, for many groups G if H is a group with ' isomorphic to I'y, then |G| = |H]|
(see [17]). Now, by Theorem we have the following corollary.

Corollary 4.25. For many groups G if H is a group with I'p, isomorphic to I'p,, then |Pg| =
| Prrl.

5 Conclusion

In this paper, the notion of weak a-commutative polygroup was defined. Then a connection be-
tween a weak a-commutative polygroup with its S-commutative fundamental group was obtained.
Espesially, the notion of an a-graph was introduced. Also, some properties of this graph, like girth
and diameter, was stated. Moreover, a-isomorphic graphs were investigated. This paper would be
useful to study polygroups (see Corollaries 4.22, 4.24 ).

References

[1] A. Abdollahi, S. Akbari, H. R. Maimani, Non-commuting graph of a group, Journal of Algebra,
298 (2006), 468-492.

[2] R. Ameri, On categories of hypergroups and hypermodules, Journal of Discrete Mathematical
Sciences and Cryptography, 6 (2003), 121-132.



112

[3]

[15]

[16]

[17]

[18]

E. Mohammadzadeh

R. Barzegar, A. Erfanian, Nilpotency and solubility of groups relative to an automorphism,
Caspian Journal of Mathematics Sciety, 4(2) (2015), 271-283.

I. Beck, Coloring of commutative rings, Journal of Algebra, 116 (1998), 208-226.

E.A. Bertram, Some applications of graph theory to finite groups, Discrete Mathematics, 44
(1983), 31-43.

P. Bonansinga, P. Corsini, Sugli omomrfismi di semi-ipergruppi e di ipergruppi, Bollettino
della Unione Matematica Italiana, 6(1B) (1982), 717-727.

S.D. Comer, Hyperstructures associated with character algebra and color schemes, in: New
Frontiers in Hyperstructures, Palm Harbor, (1996), 49-66.

P. Corsini, Prolegomena of hypergroup Theory, Aviani Editore, Tricesimo, 1993.

P. Corsini, V. Leoreanu, Applications of hyperstructure theory, Kluwer Academic Publishers,
Dordrecht, 2003.

B. Davvaz, Polygroup theory and related systems, World Scientific, 2013.

M. Farshi, B. Davvaz, S. Mirvakili, Hypergraphs and hypergroups based on special elements,
Communications in Algebra, 42 (2014), 3395-3406.

J. Jantosciak, Transposition hypergroups: Non-commutative join spaces, Journal of Algebra,

187 (1997), 97-119.

F. Marty, Sur une generalization de la notion de groupe, in: 8th Congress Mathematics
Scandenaves, Stockholm, Sweden, (1934), 45-49.

S. Mirvakili, H. Naraghi, Connected between reversible reqular hypergroups, t-fuzzy subgroups
and t-fuzzy graphs, Journal of Algebraic Hyperstructures and Logical Algebras, 1(4) (2020),
71-82.

A. R. Moghaddamfar, About noncommuting graphs, Siberian Mathematical Journal, 47(5)
(2006), 911-914.

J.N. Mordeson, S. Mathew, Sustainable goals in combating human trafficking: Analysis by
mathematics of uncertainty, Journal of Algebraic Hyperstructures and Logical Algebras, 1(1)
(2020), 40-59.

A. R. Moghaddamfar, W. J. Shi, W. Zhou and A. R. Zokayi, On the noncommuting graph
associated with a nite group, Siberian Mathematical Journal, 46(2) (2005), 325-332.

M. Suzuki, Group theory I, Springer-verlag, New York, 1982.



	 Introduction
	Preliminaries 
	 -Center of polygroups
	 Graph of polygroups
	Conclusion

