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Abstract

In this paper, we introduce and study, ζα(P ), the α-
center of a polygroup (P, ·) with respect to an automor-
phism α. Then we associate to P a graph ΓαP , whose
vertices are elements of P \ ζα(P ) and x connected to y
by an edge in case x ·y ·ω 6= y ·xα ·ω or y ·x ·ω 6= x ·yα ·ω,
where ω is the heart of P . We obtain some basic prop-
erties of this graph. In particular, we prove that if
ζα(P ) 6= P , then dim(ΓαP ) = 2. Moreover, we define a

weak α-commutative polygroup to state that if ΓαH
∼= ΓβK

and H is a weak α-commutative, then K is a weak β-
commutative. Also, we show that if H and K are two
polygroups such that ΓαH

∼= ΓβK , then for some automor-
phisms η and λ, ΓηH×A

∼= ΓλK×B, where A and B are two
weak commutative polygroups.
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A Title

1 Introduction

Graph theory have been applied in areas such as computer science, image capturing, networking,
etc. Some extensive papers are on assigning a graph to a ring, group, polygroup and etc. This
help you to study some properties of theses structures by the associated graph (see [1],[4],[5]).
Furtheremore, in [1], we see that a finite group with some conditions on its graph is a solvabel
group.
Marty [13], defined hypergroups and analize their properties. You can find the applications of
hyperstructures in many areas, such as geometry, automata, probabilities, and so on. One of the
most important subclasses of hypergroups are Polygroups, introduced by Bonansinga and Corsini
[6], that appear in many contents such as nilpotent polygroups, fundamental relation of polygroups.
Polygroups discussed by many scholars (see [2, 7, 8, 9, 10, 12]). One of the intersting problems
in hypergroup theory is the relation between hypergroups (polygroups) and hypergraphs. Corsini
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studied the relations between hypergroups and hypergraphs and Farshi et. all in [11] studied the
hypergraphs and hypergroups based on special elements.
Now, in this paper first we define ζα(P ), the notions of α-center of a polygroup with respect to an
automorphism α. Then we define an α-graph ΓαP , as a generalization of classical group, with the
vertex set P \ζα(P ) and adjoint two vertices x and y if x ·y ·ω 6= y ·xα ·ω or y ·x ·ω 6= x ·yα ·ω, where
ω is the heart of P . We introduce the notion of weak α-commutative polygroups. Basically, we
obtain an isomorphism between Γα×iP×A and Γβ×iH×B in which ΓαP

∼= ΓβH , i is the identity automorphism
and A,B are two weak commutative polygroups with the same order.

2 Preliminaries

We recall some basic definitions which are proposed by the pioneers of this subject.
Let G be a group and α ∈ Aut(G). For two elements x, y ∈ G, we say x and y commute under the
automorphism α whenever yx = xyα.

Hyperstructure theory was first identified by Marty [13] in 1934 when he defined hypergroups
and started to analyze their properties. A hyperstructure (or hypergroupoid) is a non-empty set H
with a hyperoperation ◦ defined on H, that is, a mapping of H ×H into the family of non-empty
subsets of H. If (x, y) ∈ H × H, then its image under ◦ is denoted by x ◦ y. If A,B are two
non-empty subsets of H, then A ◦ B is given by A ◦ B =

⋃
{x ◦ y|x ∈ A, y ∈ B}. We use x ◦ A

instead of {x} ◦ A and A ◦ x for A ◦ {x}. Generally, the singleton a is identified with its member
a. The structure (H, ◦) is called a semihypergroup if a ◦ (b ◦ c) = (a ◦ b) ◦ c for any a, b, c ∈ H, and
a semihypergroup (H, ◦) is a hypergroup if

x ◦H = H ◦ x = H, for any x ∈ H,

which is called the reproduction axiom.

Definition 2.1. [10] A polygroup is an algebraic structure (P, ·, e,−1 ), where ”·” is a hyperoperation
on P , ”−1” is an unary operation on P and e ∈ P such that the following axioms hold for any
x, y, z ∈ P ,
(i) (x · y) · z = x · (y · z);
(ii) e · x = x · e = x;
(iii) x ∈ y · z implies y ∈ x · z−1 and z ∈ y−1 · x.

It is easy to see that for any x ∈ P , e ∈ (x · x−1) ∩ (x−1 · x) and (x · y)−1 = y−1 · x−1, where
A−1 = {a−1 | a ∈ A}.

A non-empty subset K of a polygroup P is called a subpolygroup of P if a, b ∈ K implies
a · b ⊆ K and a ∈ K implies a−1 ∈ K. A subpolygroup N of a polygroup P is called normal if
a−1 · N · a ⊆ N , for any a ∈ P . Also, for a subpolygroup K of P and x ∈ P , denote the left
(right) coset of K by x ·K (K · x) and suppose P/K is the set of all left (right) cosets of K in P .
Note that for a normal subpolygroup N of P , we have N · x = x ·N and for all x, y ∈ P we have
N · x · y = N · z for all z ∈ x · y. Also, (P/N,�, N,−1 ) is a polygroup, where

(N · x)� (N · y) = {N · z | z ∈ x · y} and (N · x)−1 = N · x−1.

A polygroup in which x · y = y · x for all x, y ∈ P is called commutative polygroup.
Let P be a polygroup and ρ ⊆ P × P be an equivalence relation on P . For non-empty subsets A
and B of P , we define AρB ⇐⇒ (∀a ∈ A and ∀b ∈ B we get aρb). Then the relation ρ is called a
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strongly regular on the left (on the right) if xρy =⇒ a · xρa · y(x · aρy · a), for any x, y, a ∈ P . In
addition, ρ is called strongly regular if it is strongly regular on the right and on the left (see [10]).

Let P be a polygroup and β∗ be the smallest equvalence relation on P such that the quotient
P/β∗, the set of all equvalence classes, is a group. In this case, β∗ is called the fundamental
equivalence relation on P and P/β∗ is called the fundamental group. The product ⊗ in P/β∗ is as
follows:

β∗(x)⊗ β∗(y) = β∗(z) for all z ∈ x · y.

Let UP be the set of finite products of elements of P and u ⊆ UP . We define the relation β as
follows:

xβy if and only if {x, y} ⊆ u (I).

We have β∗ = β for hypergroups. Since polygroups are certain subclasses of hypergroups, we have
β∗ = β. The kernal of the canonical map ϕ : P → P/β∗ is called the core (or heart) of P and
is denoted by ωP (or ω). Here, we also denote by ωP the unit of P/β∗. It is easy to prove that
ωP = β∗(e) and β∗(x)−1 = β∗(x−1) for all x ∈ P (see [10]).

Let (H, ·, e1,
−1 ) and (H

′
, ?, e2,

−1 ) be two polygroups. A function f : H −→ H
′

is called a
homomorphism if f(a · b) ⊆ f(a) ? f(b), for any a, b ∈ H. We say that f is a good homomorphism
if f(a · b) = f(a) ? f(b) for any a, b ∈ H.

Definition 2.2. [10] Let P be a polygroup and A be a non-empty subset of H. By < A > we mean
the intersection of all subpolygroups of P containing A.

It is easy to verify that

< A >= ∪{xε11 · ... · x
εk
k |xi ∈ A, k ∈ N, εi ∈ {1,−1}}.

Also, < A,B > is used for < A ∪B >.
Let G be a group and Z(G) be the center of it. A graph ΓG, whose vertices are elements of

G \ Z(G) and x connected to y by an edge in case xy 6= yx, was first considered by Paul Erdos.
The set of vertices of ΓG is denoted by V (G). A path ρ is a sequence v0e1v1...ekvk whose terms are
alternately distinct vertices and distinct edges, such that the ends of ei are vi−1 and vi for any i,
1 ≤ i ≤ k. In this case, ρ is called a path between v0 and vk and the number k is called the length
of ρ. If v0 and vk are adjacent in Γ by an edge ek+1, then ρ∪{ek+1} is called a cycle. The length of
a cycle define the number of its edges. The length of the shortest cycle in a graph Γ is called girth
of Γ and denoted by girth(Γ). If v and w are vertices of Γ, then d(v, w) denotes the length of the
shortest path between v and w. The largest distance between all pairs of the vertices of Γ is called
the diameter of Γ, and is denoted by diam(Γ). A graph is connected if there is a path between
each pair of the vertices of Γ. A subset S of the vertices of a connected graph Γ is called a cut set
if Γ\S is not a connected graph. For a graph Γ and a subset S of the vertex set V (Γ), denoted by
NΓ[S] the set of vertices in Γ which are in S or adjacent to a vertex in S. If NΓ[S] = V (Γ), then
S is said to be a dominating set.

Notation. Let (P, ·, e,−1 ), (P/β∗,⊗, e,−1 ) be a polygroup and fundamental group, respec-
tively from now on. Consider n ∈ N, Aut(P ) is the set of all automorphism of P and α ∈ Aut(P ).
Also, for any x ∈ P , set x = β∗(x).

3 α-Center of polygroups

In this section, first we define and study the α-center of a polygroup P , denoted by ζα(P ). Then,
we redefine the cener of a polygroup, denoted by ζ(P ). Finally, we obtain a relation between ζα(P )
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and ζ(P ). This help us to see that ζα(P ) = ζα
−1

(P ).
Note. For any x ∈ P we use xα and xy instead of α(x) and x · y, respectively.

Definition 3.1. The set ζα(P ) is called α-center of P defined as follows:

ζα(P ) = {x ∈ P |xyω = yxαω for any y ∈ P}.

Example 3.2. Let P = {e, a, b}. We define the operation · and automorphism α on P as follows:

. e a b

e e a b

a a b e

b b e a

α(x) =


b, x = a
a, x = b
e, x = e

Clearly, ω = {e} and so for any y ∈ P we have eyω = yeαω. Then e ∈ ζα(P ). Since
abω 6= baαω and baω 6= abαω we conclude a, b 6∈ ζα(P ). Therefore ζα(P ) = {e}.

Theorem 3.3. For any x, y ∈ P , x⊗ y = y ⊗ xα if and only if xyω = yxαω.

Proof. (⇒) Let x⊗y = y⊗xα. Then for any t ∈ xy and t
′ ∈ yxα we have t = t′ and so t−1⊗ t′ = e

. Then for any r ∈ t−1t
′

we have r = e and so t−1t
′ ⊆ ω, i.e (t−1t

′
)ω = ω. Then, t

′
ω = tω and so

xyω = yxαω.
(⇐) Assume xyω = yxαω. Then for any t ∈ xy there exists t

′ ∈ yxα such that , t
′
ω = tω. Then

t′ = t and so x⊗ y = y ⊗ xα.

We recall that for a group G, Zα(G) = {y ∈ G; [x, y]α = e}, where [x, y]α = x−1y−1xyα (see
[3]).

Theorem 3.4. ζα(P ) is a normal subpolygroup of P .

Proof. First we show that for any x1, x2 ∈ ζα(P ), x1x2 ⊆ ζα(P ). Suppose r ∈ x1x2. By Theorem
3.3, for any y ∈ P , x1 ⊗ y = y ⊗ xα1 and x2 ⊗ y = y ⊗ xα2 , which implies that

r ⊗ y = (x1 ⊗ x2)⊗ y
= x1 ⊗ (x2 ⊗ y)

= x1 ⊗ (y ⊗ xα2 )

= (x1 ⊗ y)⊗ xα2
= y ⊗ (xα1 ⊗ xα2 )

= y ⊗ rα.

Then by Theorem 3.3, we have ryω = yrαω. Therefore, r ∈ ζα(P ) and x1x2 ⊆ ζα(P ). Now, we
show that x−1

1 ∈ ζα(P ). Since x1 ∈ ζα(P ), for all y ∈ P we have

x1yω = yxα1ω =⇒ x1 ⊗ y = y ⊗ xα1
=⇒ x−1

1 ⊗ (x1 ⊗ y)⊗ x−α1 = x−1
1 ⊗ (y ⊗ xα1 )⊗ x−α1

=⇒ y ⊗ x−α1 = x−1
1 ⊗ y

=⇒ yx−α1 ω = x−1
1 yω.
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and so x−1
1 ∈ ζα(P ). Therefore, ζ(P ) is a subpolygroup of P . We show ζα(P ) is a normal

subpolygroup. Suppose z ∈ ζα(P ), then for any x, y ∈ P and r ∈ x−1zx we have

r ⊗ y = x−1 ⊗ z ⊗ (x⊗ y),

= x−1 ⊗ (x⊗ y)⊗ zα,
= y ⊗ zα,
= z ⊗ y,
= z ⊗ y ⊗ (x−α ⊗ xα),

= (z ⊗ (y ⊗ x−α))⊗ xα),

= (y ⊗ x−α)⊗ zα ⊗ xα,
= y ⊗ rα.

Then by Theorem 3.3, r ∈ ζα(P ) and so x−1ζα(P )x ⊆ ζα(P ). Thus ζα(P ) is a normal subpoly-
group of P .

In the following we obtain a necessary and sufficient condition between elements of P and the
fundamental group P/β∗.

Corollary 3.5. Let P be a polygroup. Then x ∈ ζα(P ) if and only if β∗(x) ∈ Zα(P/β∗).

Proof. Suppose x ∈ P . Then

x ∈ ζα(P ) ⇔ xyω = yxαω, for any y ∈ P
⇔ x⊗ y = y ⊗ xα (by Theorem 3.3)

⇔ [y, x]α = e

⇔ x ∈ Zα(P/β∗).

Theorem 3.6. Consider α ∈ Aut(P ). Then α ∈ Aut(P/β∗), where α : P/β∗ → P/β∗ is defined
by α(x) = xα.

Proof. First we prove that for any x ∈ P , x = e if and only if xα = e. If x = e, then there

exist z1, ..., zn ∈ P such that {x, e} ∈
n∏
i=1

zi. Then x ∈
n∏
i=1

zi and e ∈
n∏
i=1

zi and so xα ∈
n∏
i=1

zαi and

eα ∈
n∏
i=1

zαi . Therefore, {xα, e = eα} ∈
n∏
i=1

zαi implies xα = e. By the similar way we have the

converse. Thus, α is well defined and one to one. Now, for any y ∈ P/β∗, consider x = yα
−1

. Then

α(yα−1) = (yα−1)α = y and so α is onto. For x1, x2 ∈ P/β∗, we have

α(x1 ⊗ x2) = {α(t) : t ∈ x1x2} = {tα : t ∈ x1x2} = {z : z ∈ xα1xα2 } = xα1 ⊗ xα2 = α(x1)⊗ α(x2).

Thus, α ∈ Aut(P/β∗).

Definition 3.7. Let α ∈ Aut(P ). Then:
(i) P is called an α-commutative if xy = yxα for any x, y ∈ P .
(ii) P is called a weak α-commutative if xyω = yxαω for any x, y ∈ P .
(iii) Consider (G, ·) is a group and β ∈ Aut(G). Then G is called a β-Abelian group if x ·y = y ·xβ
for any x, y ∈ G.
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Clearly, ζα(P ) = P if and only if P is weak α-commutative.

Theorem 3.8. If P is an α-commutative polygroup, then P/β∗ is an α-Abelian group. Moreover,
P is a weak α-commutative if and only if P/β∗ is an α-Abelian group.

Proof. By Theorem 3.6, α ∈ Aut(P/β∗). Since P is an α-commutative polygroup, we have xy =
yxα and so xyω = yxαω for any x, y ∈ P . Then by Theorems 3.3 and 3.6, x⊗ y = y⊗xα = y⊗xα
and so P/β∗ is an α-Abelian group. Moreover, since P is a weak α-commutative polygroup, we
have xy = yxα and so by Theorem 3.3, x⊗y = y⊗xα. Therefore, P/β∗ is an α-Abelian group.

Definition 3.9. For x ∈ P the α-centeralizer x in P is defined by

Cα(x) = {y ∈ P | yxω = xyαω}.

Clearly, ζα(P ) =
⋂
x∈P

Cα(x).

Theorem 3.10. For any x ∈ P , Cα(x) is a subpolygroup of P .

Proof. Since e ∈ Cα(x) we have Cα(x) 6= �. Now, we show that for any y, z ∈ Cα(x), zy ⊆ Cα(x)
and z−1 ∈ Cα(x). For this let r ∈ zy. Since zxω = xzαω and yxω = xyαω, by Theorem 3.3, we
have z ⊗ x = x⊗ zα and y ⊗ x = x⊗ yα. Also, r = z ⊗ y. Thus,

r ⊗ x = z ⊗ y ⊗ x = z ⊗ x⊗ yα = x⊗ zα ⊗ yα = x⊗ rα,

and so zy ⊆ Cα(x). By the same manipulation of Theorem 3.4, z−1 ∈ Cα(x). Consequently,
Cα(x) is a subpolygroup of P .

In [10], the center of a polygroup, denoted by Z(P ), is defined as 〈{x ∈ P | xyω = yxω for any y ∈
P}〉. Now, we redefine the center of a polygroup as follows.

Definition 3.11. The set {x ∈ P | xyω = yxω for any y ∈ P}, denoted by ζ(P ), is called the
center of a polygroup.

Example 3.12. Suppose P is a polygroup as in Example 3.2. Since for any y ∈ P , eyω = yeω,
ayω = yaω and byω = ybω we conclude ζ(P ) = P .

Similar to Theorem 3.4, we can prove that ζ(P ) is a normal subpolygroup of P .

Theorem 3.13. Let fix(α) = {x ∈ P : xαx−1 ⊆ ω}. Then ζα(P ) = ζ(P ) ∩ fix(α).

Proof. Let x ∈ ζα(P ). Then yxαω = xyω for any y ∈ P . Suppose y = e, then xαω = xω and
so yxω = xyω. Therefore, x ∈ ζ(P ) ∩ fix(α). Hence, ζα(P ) ⊆ ζ(P ) ∩ fix(α). Now, assume x ∈
ζ(P )∩fix(α). Then for any y ∈ P , yxω = xyω and xα = x. Therefore, yxαω = xyω for any y ∈ P
i.e x ∈ ζα(P ). Therefore, ζα(P ) = ζ(P ) ∩ fix(α) .

Corollary 3.14. If α fixes every element of ζ(P ), then ζα(P ) = ζ(P ).

Proof. Let x ∈ ζ(P ). Then xyω = yxω. Since α fixes every element of ζ(P ), we have xα = x.
Then xyω = yxαω and so x ∈ ζα(P ). Thus, ζ(P ) ⊆ ζα(P ). Now, by Theorem 3.13, ζα(P ) =
ζ(P ) ∩ fix(α) ⊆ ζ(P ). Therefore, ζα(P ) = ζ(P ).

Proposition 3.15. ζα(P ) = ζα
−1

(P ).
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Proof. Since fix(α) = fix(α−1). Then by Theorem 3.13,

ζα(P ) = ζ(P ) ∩ fix(α) = ζ(P ) ∩ fix(α−1) = ζα
−1

(P ).

Thus, ζα(P ) = ζα
−1

(P ).

4 Graph of polygroups

In this section, we associate a graph ΓαP to a polygroup P , whose vertices are elements of P \ζα(P )
and x connected to y by edge in case xyω 6= yxαω or yxω 6= xyαω. The set of vertices of ΓαP
is denoted by V (G). Basically, we study polygroups throughout its isomorphic α-graphs (see
Proposition 4.8, Theorem 4.12 and corollaries 4.22, 4.24).

Example 4.1. Let P = {e, a, b, c}. We define the operation · and automorphism α on P as
follows:

. e a b c

e e a b c

a a P {a, b, c} {a, b, c}
b b {a, b, c} P {a, b, c}
c c {a, b, c} {a, b, c} P

α(x) =


b, x = a
a, x = b
x, otherwise

Since e = a = b = c = P and so x ⊗ y = y ⊗ xα for any x, y ∈ P . Hence, xyω = yxαω. Thus
ζα(P ) = P . Therefore, the α-graph is empty.

Example 4.2. Let P = {e, a, b, c, d, f, g}. We define the operation· and automorphism α on P as
follows:

. e a c b f d g

e e a c b f d g

a a e c b f d g

c c c {e, a} f b g d

b b b g {e, a} d f c

f f f d c g b {e, a}
d d d f g c {e, a} b

g g g b d {e, a} c f

α(x) =


d, x = b
b, x = d
g, x = f
f, x = g
x, otherwise

b

c

d

f

g



106 E. Mohammadzadeh

Then (P, ·, e,−1 ) is a non-commutative polygroup (see [10]). Since a = e = {e, a} and x = x
for any x 6= {a, e}, we conclude that ζα(P ) = {e, a}. Then for each y, x ∈ P \ ζα(P ) we have
x ⊗ y 6= y ⊗ xα and so by Theorem 3.3, xyω 6= yxαω which implies x and y are adjacent by an
edge. Therefore, we have a connected graph.

Let (P1, ·, e1,
−1 ) and (P2, ∗, e2,

−1 ) be two polygroups. Then (P1 × P2, ◦), where ◦ is defined
as follows, is a polygroup (see [10]).

(x1, y1) ◦ (x2, y2) = {(x, y) | x ∈ x1 · x2, and y ∈ y1 ∗ y2}.

Corollary 4.3. [10] If N1, N2 are normal subpolygroups of P1 and P2 respectively, then N1 ×N2

is a normal subpolygroup of P1 × P2 and (P1 × P2)/(N1 ×N2) ∼= P1/N1 × P2/N2.

Corollary 4.4. [10] Suppose ωP , ωK and ωP×K are the hearts of polygroups P,K and P × K,
respectively. Then ωP×K = ωP × ωK .

Lemma 4.5. Let (H, ·, e,−1 ) and (K, ∗, e,−1 ) be two polygroups. Then for each h1, h2 ∈ H and
k1, k2 ∈ K we have

(h1, k1) ◦ (h2, k2) ◦ ωH×K = (h2, k2) ◦ (hα1 , k
β
1 ) ◦ ωH×K ,

if and only if h1 ·h2 ·ωH = h2 ·hα1 ·ωH and k1 ∗k2 ∗ωK = k2 ∗kβ1 ∗ωK . In addition, ζα×β(H×K) =
ζα(H)× ζβ(K).

Proof. (⇒) If (h1, k1) ◦ (h2, k2) ◦ ωH×K = (h2, k2) ◦ (hα1 , k
β
1 ) ◦ ωH×K , then

{(r1, s1) ◦ ωH×K | r1 ∈ h1 · h2, s1 ∈ k1 ∗ k2} = {(r2, s2) ◦ ωH×K | r2 ∈ h2 · hα1 , s2 ∈ k2 ∗ kβ1 }.

Thus for all (r1, s1) ◦ ωH×K where r1 ∈ hα1 · h2 and s1 ∈ kβ1 ∗ k2, there exists (r2, s2) ◦ ωH×K such

that r2 ∈ h2 · hα1 and s2 ∈ k2 ∗ kβ1 and

(r1, s1) ◦ ωH×K = (r2, s2) ◦ ωH×K . (II)

By Corollaries 4.3 and 4.4, we have ωH×K ∼= ωH × ωK and H×K
ωH×K

∼= H
ωH
× K

ωK
and so there exists

an automorphism ϕ : H
ωH
× K

ωK
→ H×K

ωH×K
such that ϕ(h · ωH , k ∗ ·ωK) = (h, k) ◦ ωH×K for any

h ∈ H and k ∈ K. Since (r1, s1) ◦ ωH×K , and (r2, s2) ◦ ωH×K ∈ H×K
ωH×K

∼=ϕ H
ωH
× K

ωK
, we get

(r1, s1) ◦ ωH×K = ϕ(r1 · ωH , s1 ∗ ωK) and (r2, s2) ◦ ωH×K = ϕ(r2 · ωH , s2 ∗ ωK) and so, by (II) we
have ϕ(r1 · ωH , s1 ∗ ωK) = ϕ(r2 · ωH , s2 ∗ ωK). Since ϕ is isomorphism we obtain r1 · ωH = r2 · ωH
and s1 ∗ ωK = s2 ∗ ωK . Thus,

β∗H(r1) = β∗H(r2) and β∗K(s1) = β∗K(s2). (III)

On the other hand, r1 ∈ h1 · h2 and r2 ∈ h2 · hα1 , then β∗H(r1) = β∗H(h1) ⊗ β∗H(h2) and β∗H(r2) =
β∗H(h2) ⊗ β∗H(hα1 ). Therefore, by Theorem 3.3, and (III) we have h1 · h2 · ω = h2 · hα1 · ω. By the

similar way, k1 ∗ k2 ∗ ωK = k2 ∗ kβ1 ∗ ωK .
(⇐) The proof of converse is similar.

Corollary 4.6. Let α ∈ Aut(H) and β ∈ Aut(K). Then H and K are α and β-commutative
polygroups, respectively if and only if H ×K is α× β-commutative.

Proof. Polygroups H and K are α and β-commutative if and only if ζα(H) = H and ζβ(K) = K if
and only if ζα×β(H×K) = ζα(H)×ζβ(K) = H×K if and only if H×K is α×β-commutative.
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Definition 4.7. Let (P, ·, e,−1 ), (H, ∗, e,−1 ) be two polygroups and α ∈ Aut(P ) and β ∈ Aut(H).

The graphs ΓαP and ΓβH are said to be isomorphic with respect to α and β ( ΓαP
∼= ΓβH) if there is

a bijection map ϕ : P\ζα(P ) −→ H\ζβ(H) preserving edges, means that for each x, y ∈ P\ζα(P ),
xyωP 6= yxαωP if and only if ϕ(x) ∗ ϕ(y) ∗ ωH 6= ϕ(y) ∗ (ϕ(x))β ∗ ωH .

Proposition 4.8. Let H and K be two subpolygroups of P , α, β ∈ Aut(P ) and ΓαH
∼= ΓβK . If H

is not a weak α-commutative, then K is not a weak β-commutative.

Proof. Let k1, k2 be two arbitary elements of K. Since ΓαH
∼= ΓβK we have a bijection θ : H \

ζα(H) → K \ ζβ(K). Since H is not a weak α-commutative, then there exist h1, h2 ∈ H such
that h1h2ω 6= h2h

α
1ω and so by Definition 4.7, θ(h1)θ(h2)ω 6= θ(h2)θ(h1)βω. Take k1 = θ(h1) and

k2 = θ(h2). Then k1k2ω 6= k2k
β
1ω. Therefore, K is not a weak α-commutative.

The numbers of elements in a polygroup P is called the order of P . Now, we obtain an
isomorphism between Γα×iP×A and Γβ×iH×B whenever ΓαP

∼= ΓβH , i is the identity automorphism and A
and B are two weak commutative polygroups with the same order.

Theorem 4.9. Suppose (P, ·, e,−1 ) and (H, ∗, e,−1 ) are two polygroups, (A, ?, e,−1 ) and
(B, •, e,−1 ) are two weak commutative polygroups with the same order, α ∈ Aut(P ), β ∈ Aut(H), γ ∈
Aut(A), η ∈ Aut(B) and ζα(P ) 6= P, ζβ(H) 6= H. If ΓαP

∼= ΓβH , then Γα×γP×A
∼= Γβ×ηH×B,

Proof. Let φ : ΓαP −→ ΓβH be a graph isomorphism. Then there is a one to one map φ : P\ζα(P )→
H\ζβ(H) such that g1 ·g2 ·ωP = g2 ·gα1 ·ωP where g1, g2 ∈ P\ζα(P ) if and only if φ(g1)∗φ(g2)∗ωH =
φ(g2) ∗ (φ(g1)β) ∗ ωH . Since A and B have the same order, we have a bijection map ψ : A → B.
By Lemma 4.5, we prove ϕ : (g, a) −→ (φ(g), ψ(a)) is a graph isomorphism between Γα×γP×A and

Γβ×ηH×B. Moreover, we show that for g1, g2 ∈ P and a1, a2 ∈ A, (g1, a1) ◦ (g2, a2) ◦ ωP×A = (g2, a2) ◦
(gα1 , a

γ
1) ◦ ωP×A if and only if ϕ(g1, a1) ◦ ϕ(g2, a2) ◦ ωH×B = ϕ(g2, a2) ◦ (ϕ(g1, a1)β×η) ◦ ωH×B. For

this, we have

(g1, a1) ◦ (g2, a2) ◦ ωP×A = (g2, a2) ◦ (gα1 , a
γ
1) ◦ ωP×A

⇔ g1 · g2 · ωP = g2 · gα1 · ωP and a1 ? a2 ? ωA = a2 ? a
γ
1 ? ωA (by Lemma4.5)

⇔ φ(g1) ∗ φ(g2) ∗ ωH = φ(g2) ∗ (φ(g1))β ∗ ωH and

ψ(a1) • ψ(a2) • ωB = ψ(a2) • (ψ(a1))η • ωB, (since B is a weak η − commutative)

⇔ (φ(g1), ψ(a1)) ◦ (φ(g2), ψ(a2)) ◦ ωH×B = (φ(g2), ψ(a2)) ◦ ((φ(g1))β, (ψ(a1))η) ◦ ωH×B
⇔ ϕ(g1, a1) ◦ ϕ(g2, a2) ◦ ωH×B = ϕ(g2, a2) ◦ (ϕ(g1, a1))β×η ◦ ωH×B.

In the following, with some additional conditions we obtain a connected graph.

Theorem 4.10. Let P be a polygroup such that ζα(P ) 6= P . Then diam(ΓαP ) = 2.

Proof. Let x, y be two distinct vertices of ΓαP and for any z ∈ X, β∗(z) = z. First, we show that
the followings hold.
(i) If x, y are adjacent, then d(x, y) = 1.
(ii) If x, y are not adjacent, then d(x, y) = 2.
(i) The proof is obviose.
(ii) Since x and y are not adjucent, xyω = yxαω. From ζα(P ) 6= P , we have there exist x

′
, y
′ ∈

V (P ) such that xx
′
ω 6= x

′
xαω or x

′
xω 6= xx

′α
ω and yy

′
ω 6= y

′
yαω or y

′
yω 6= yy

′
αω. Now, if
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y, x
′

or x, y
′

are adjacent, then d(x, y) = 2. Otherwise, y, x
′

and x, y
′

are not adjusent and so
yx
′α
ω = x

′
y · ω and yx

′
ω = x

′
yαω, xy

′α
ω = y

′
xω and xy

′
ω = y

′
xαω. Therefore, by Theorem 3.3,

y ⊗ x′α = x′ ⊗ y, y ⊗ x′ = x′ ⊗ yα and x ⊗ y′ = y′ ⊗ xα, x ⊗ y′α = y′ ⊗ x. Now, we show that
there is r ∈ x′y′ such that r ⊗ x 6= x⊗ rα and r ⊗ y 6= y ⊗ rα. For this, let r ⊗ x = x⊗ rα. Then
x′ ⊗ y′ ⊗ x = x⊗ x′α ⊗ y′α which by x⊗ y′α = y′ ⊗ x implies x′ ⊗ x⊗ y′α = x⊗ x′α ⊗ y′α and so
x′ ⊗x = x⊗x′α which is a contradiction (since x, x

′
are adjusent). Thus r⊗x 6= x⊗ rα. Similarly,

r ⊗ y 6= y ⊗ rα. Therefore, by Theorem 3.3, r is adjacent to both x and y, thus d(x, y) = 2.

Example 4.11. Let P be a polygroup as in Example 4.2. Then ζα(P ) 6= P . Therefore, by the
proof of Theorem 4.10, if x, y are adjacent, then d(x, y) = 1, otherwise d(x, y) = 2. Therefore, ΓαP
is connected.

Theorem 4.12. Let ζα(P ) 6= P . If x ∈ fix(α) and {x} is a dominating set for ΓαP , then
ζα(P ) = ω, x2 ⊆ ω and Cα(x) = {e, x}.

Proof. First, we show ζα(P ) = ω. Let {x} be a dominating set for ΓαP and z ∈ ζα(P ) such that
z 6∈ ω. Thus zyω = yzαω for any y ∈ P . By Theorem 3.3, z ⊗ y = y ⊗ zα. Suppose r ∈ x · z.
Then r ⊗ xα = x ⊗ z ⊗ xα = x ⊗ xα ⊗ zα = x ⊗ rα. By Theorem 3.3, and x ∈ fix(α), we have
xrαω = rxω. By the similar way rxαω = xrω. Thus r is not adjacent to x and so {x} is not a
dominating set, that is a contradiction. Thus ζα(P ) = ω.
Now, we show x2 ⊆ ω. Since x ∈ fix(α), we have x−1 ⊗ xα = e = x ⊗ x−1 and so by Theorem
3.3, x and x−1 are not adjacent. But x is dominating set thus x = x−1. Therefore, if r ∈ x2, then
r = x⊗ x = x ◦ x−1 = e, which implies that r ∈ ω. Therefore, x2 ⊆ ω.
Finally, since ζα(P ) = ω and x is adjacent to all vertices of ΓαP , we get Cα(x) = {e, x}.

Theorem 4.13. Let ζα(P ) 6= P and S be a subset of V (ΓαP ). Then S is a dominating set if and
only if Rα(S) ∩ Cα(S) ⊆ ζα(P ) ∪ S, where Rα(S) = {y ∈ P ; yxαω = xyω, for any y ∈ S}.

Proof. (⇒) Suppose that S is a dominating set and a ∈ Rα(S) ∩ Cα(S). If a 6∈ ζα(P ) ∪ S, then
by definition of dominating set, there exists an element x ∈ S such that a and x are adjucent and
so we have two cases.
Case (i) axω 6= xaαω. Then a 6∈ Cα(S), that is a contradiction. It follows that Rα(S) ∩ Cα(S) ⊆
ζα(P ) ∪ S.
Case (ii) xaω 6= axαω. Then a 6∈ Rα(S) and since Rα(S) ∩ Cα(S) ⊆ Rα(S) we conclude that
a 6∈ Rα(S) ∩ Cα(S), that is a contradiction. Therefore, Rα(S) ∩ Cα(S) ⊆ ζα(P ) ∪ S.
(⇐) Now assume that Rα(S)∩Cα(S) ⊆ ζα(P )∪S. If an arbitary element a 6∈ ζα(P )∪S, then by
assumption, a 6∈ Cα(S) ∩Rα(S). Therefore, a is adjacent to at least one element of S. Therefore,
S is a dominating set.

Corollary 4.14. Consider a non-commutative polygroup P with a non-empty set X. If P = 〈X〉,
then X \ ζα(P ) is a dominating set of TαP .

Proof. Consider Y = X \ ζα(P ). Since P is non-commutative, we have Y 6= φ. We show Rα(Y )∩
CαP (Y ) ⊆ ζα(P ) ∪ Y . Suppose r ∈ Rα(Y ) ∩ CαP (Y ). Then

r ∈ CαP (Y ) = CαP (X \ ζα(P )) = CαP (〈X〉 \ ζα(P )) = CαP (P \ ζα(P )).

Clearly, r ∈ CαP (ζα(P )) and so r ∈ ζα(P ) ⊆ ζα(P ) ∪ Y . Thus, by Theorem 4.13, X \ ζα(P ) is a
dominating set.
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Lemma 4.15. Let P be a non-commutative finite polygroup. The girth of the graph ΓαP is at most
4.

Proof. We have two cases
(i) ζ(P ) 6= fix(α).
(ii) ζ(P ) = fix(α).
Case (i) there exists x ∈ ζ(P ) \ fix(α) or x ∈ fix(α) \ ζ(P ). Firstly suppose that there exists a
vertex x ∈ ζ(P ) \ fix(α), then for any t ∈ V (P ), if txαω = xtω, then by definition ζ(P ) we have
txαω = xtω = txω. Thus xαω = xω and so α ∈ fix(α). Hence txαω 6= xtω. So t, x are adjusent.
Basically, x, y are adjucent. Let y and z be two arbitrary vertices in V (P ). If y is adjacent to z,
then three elements x, y, z induce a cycle of length 3. If y is not adjacent to z, then we show that
there exists r ∈ V (P ) such that r is adjusent with y. Since yzω 6= zyαω or zyω 6= yzαω, then for
the case yω 6= yαω, we have [y, y ⊗ z]α = z−α ⊗ y−1 ⊗ yα ⊗ zα 6= 1 and so for any r ∈ yz we have
[y, r]α 6= 1, then y ⊗ rα 6= r ⊗ y and so by Theorem 3.3, y and r are adjusent. Also, for the case
yαω = yω there exists r ∈ V (P ) such that rαω 6= rω (since α is not the identity map) and so if
yrαω = ryω and ryαω = yrω, then by yαω = yω we have yrαω = ryω = ryαω = yrω implies that
rαω = rω, that is a contradiction. Hence, y and r are adjusent. Therefore, elements x, y, r induce
a cycle of length 3. Secondly, assume that x ∈ fix(α) \ ζ(P ) and y and z are two vertices in V (P )
such that yαω 6= yω and zαω 6= zω. Then we have two cases;
Case (I) xyω = yxω.
Case (II) xyω 6= yxω.
Case (I) If xyαω = yxω, then yαω = yω that is a contradiction.
Case (II) If yxαω = xyω, then by x ∈ fix(α) we have yxω = yxαω = xyω, that is a contradiction.
Therefore, if x ∈ fix(α) \ ζ(P ) and yαω 6= yω, then x and y are adjasent. Similarly, x and z are
adjasent. Now, if y and z are adjasent, then x, y, z induce a cycle of length 3. If y is not adjacent
to z, then we can see that y and z are adjacent to r. Hence elements x, y, z, r induce a cycle of
length 4.
(ii) Finally, ζ(P ) = fix(α). Then ζα(P ) = ζ(P ) = fix(α). Since P is non-commuting we
conclude that P is a non-abelian group. If for any x ∈ V (P ), x ⊗ x = 1, then x = x−1 and
so for any y ∈ V (P ), we have x ⊗ y = x−1 ⊗ y−1 = (y ⊗ x)−1 = y ⊗ x. Then xyω = yxω
and so x ∈ ζα(P ) = ζα(P ), that is a contradiction. Therefore, there exists x ∈ V (P ) such that
x2 6= 1, i.e xxω 6= ω, and so xω 6= x−1ω. Now, if x−1xαω = xx−1ω, then x−1xαω = ω. Thus
x ∈ fix(α) = ζα(P ), that is a contradiction and so x is adjacent to x−1. Also, if y ∈ V (P ) such
that y is adjacent to x, then yxαω 6= xyω. Now, if yx−αω = x−1yω, then xyx−αxαω = xx−1yxαω
and so xyω = yxαω, which is a contradiction. Hence, y is adjacent to x−1, too. Thus, elements
x, y, x−1 induce a cycle of length 3. Therefore, the girth of P is at most 4.

Lemma 4.16. Let P be a polygroup and α ∈ Aut(P ). Then ωα = ω.

Proof. Let x ∈ ω. Then x = e. i.e x ∈ Πn
i=1zi and so xα

−1 ∈ Πn
i=1z

α−1

i . Put y = xα
−1

and so
x = yα and y = e i.e x ∈ ωα. By the similar way, we have ωα ⊆ ω. Thus ωα = ω.

Theorem 4.17. Consider ΓαP = (V,E) is a graph of P , W = p \Z(P ) and x ∈ V . Then xω ⊆ V .

Also, V =
⋃
x∈W

xω.

Proof. Since x ∈ V there exists y ∈ V such that xyω 6= yxαω. Take z ∈ xω. Then by Lemma 4.16,
zα ∈ xαωα = xαω and so we have zω = xαω and zω = xω. Thus zyω = xyω 6= yxαω = yzαω.

Hence z ∈ V and so xω ⊆ V . Now, since x ∈ V if and only if x ∈W we have V =
⋃
x∈W

xω.
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A graph Γ = (V,E) is bipartite if V can be partitioned into two sets V1, V2 such that every edge
of E has one end vertice in V1 and the other in V2. Also, Γ is called a complete bipartite graph if
it containes exactly all edges with one end vertex in V1 and the other one in V2.

Theorem 4.18. Let P be a non-commutative polygroup and x, y be two edges of graph ΓαP . Then
A = {(a, b) ∈ E|a ∈ xω, b ∈ yω} is a complete bipartite graph.

Proof. First we show that for any z, x ∈ P ,

if z ∈ xω ,then zω = xω. (IV )

Since z ∈ xω there exists r ∈ ω such that z ∈ xr and so z = x ⊗ e = x. Then x−1 ⊗ z = e i.e
x−1z ⊆ ω. Hence zω = xω.
Now, assume a ∈ xω and b ∈ yω. Then by (IV) and Lemma 4.16, we have aα ∈ xαωα = xαω and
so aω = xω, aαω = xαω and bω = yω. Sine x, y are two edges of graph ΓαP we have xyω 6= yxαω
and so

aωbω = xωyω 6= yωxαω = bωaαω

Therefore, abω 6= ba and so there exists an edge between a and b. Next A can be partitioned into
sets V1 = xω and V2 = yω. Then every edge (a, b) has end vertices in V1 and V2. Consequently, Γ
is a complete bipartite graph.

In what follows we study the identity graphs. Basically, by some properties of graph of groups
we obtain results on order of polygroups and graph of polygroups.

Theorem 4.19. [10]
Let (G, .) be a group. Then (PG, ◦, e,−1 ) is a polygroup, where PG = G ∪ {a}, a 6∈ G and ◦ is

defined as follows:
(1) a ◦ a = e,
(2) e ◦ x = x ◦ e = x, ∀x ∈ G,
(3) a ◦ x = x ◦ a = x, ∀x ∈ G− {e, a},
(4) x ◦ y = x.y, ∀(x, y) ∈ G2; y 6= x−1,
(5) x ◦ x−1 = x−1 ◦ x = {e, a}, ∀x ∈ G− {e, a}.

Clearly, ζ(PG) = Z(G) ∪ {e, a} and ωPG
= {e, a} and |PG| = |G|+ 1.

Theorem 4.20. Let G and H be two groups, a 6∈ G, b 6∈ H, PH = H ∪ {b}, PG = G ∪ {a} and i
be the identity automorphism. Then ΓiPG

≈ ΓiPH
if and only if ΓG ≈ ΓH .

Proof. (⇒) Consider g1, g2 ∈ G \ Z(G) and g1 · g2 6= g2 · g1 (*). Then by Theorem 4.19 (4),
g1 ◦ g2 ◦ ωPG

6= g2 ◦ g1 ◦ ωPG
. Since ΓiPG

≈ ΓiPH
we have a bijection f : PG \ ζ(PG)→ PH \ ζ(PH)

and so by (*) we have

f(g1) ◦ f(g2) ◦ ωPH
6= f(g2) ◦ f(g1) ◦ ωPH

. (∗∗)

Note that f(g) ◦ b = b ◦ f(g) = f(g) for any g ∈ G and so f(gi) 6= b for i = 1, 2. By (**) and
Theorem 4.19 (4), we have f(g1) ·f(g2) ·ωPH

6= f(g2) ·f(g1) ·ωPH
. Then f(g1) ·f(g2) 6= f(g2) ·f(g1).

Therefore, ΓG ≈ ΓH with bijection f |G\Z(G), where f |G\Z(G) : G \Z(G)→ H \Z(H) is defined by
f |G\Z(G)(x) = f(x).
(⇐) Assume ΓG ≈ ΓH . Then there exists a bijection f : G \ Z(G) → H \ Z(H). Thus f is a
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bijection from PG \ ζ(PG) to PH \ ζ(PH). Let x, y ∈ PG and x ◦ y ◦ ωPG
6= y ◦ x ◦ ωPG

. Then
x, y 6= {e, a} and so by Theorem 4.19 (4), x · y · ωPG

6= y · x · ωPG
. Thus, x · y 6= y · x. Since

ΓG ≈ ΓH we have f(x) · f(y) 6= f(y) · f(x). Then by Theorem 4.19 (4) and x, y 6= {e, a} we
conclude f(x) ◦ f(y) ◦ ωPH

6= f(y) ◦ f(x) ◦ ωPH
. Consequently, ΓiPG

≈ ΓiPH
.

Theorem 4.21. [15] Let G and H be two groups and ΓG ≈ ΓH . Then |G| 6= |H| in general.

Corollary 4.22. If ΓG ≈ ΓH , then |PG| 6= |PH | in general.

Proof. Let ΓG ≈ ΓH . By Theorem 4.21, |G| 6= |H| in general and so |PG| 6= |PH | in general.

Definition 4.23. A polygroup (P, ◦) is called a polygroup of exponent n (n ∈ N) if for each
non-trivial element x of P we have x ◦ x ◦ ... ◦ x︸ ︷︷ ︸

n

= e.

Corollary 4.24. Every polygroup of exponent 3 is a group. In addition, if P and H are two
polygroups of exponent 3 and ΓP ≈ ΓH , then |P | 6= |H| in general.

Proof. Let P be a polygroup of exponent 3 and b ∈ P be an arbitrary element. Since bbb = e,
then bx = e for some x ∈ bb. Thus b−1 = x, which implies

bb−1 = e for any b ∈ P. (V )

Let x ∈ yz. By Definition 2.1, we have z ∈ y−1x. Thus by (V) x ∈ yz ⊆ yy−1x = x. Therefore,
x = yz and so every polygroups of exponent 3 is a group.
In addition, consider P and H are two polygroups of exponent 3 and ΓP ≈ ΓH . Then P and H
are two groups. Now, we get the result by Theorem 4.21, i.e |P | 6= |H| in general.

It is proved that, for many groups G if H is a group with ΓG isomorphic to ΓH , then |G| = |H|
(see [17]). Now, by Theorem 4.20, we have the following corollary.

Corollary 4.25. For many groups G if H is a group with ΓPG
isomorphic to ΓPH

, then |PG| =
|PH |.

5 Conclusion

In this paper, the notion of weak α-commutative polygroup was defined. Then a connection be-
tween a weak α-commutative polygroup with its β-commutative fundamental group was obtained.
Espesially, the notion of an α-graph was introduced. Also, some properties of this graph, like girth
and diameter, was stated. Moreover, α-isomorphic graphs were investigated. This paper would be
useful to study polygroups (see Corollaries 4.22, 4.24 ).
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