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Abstract

The present paper is an attempt to suggest and scru-
tinize tense operators in the dynamic logic B which is
regarded as a set of propositions about the general fuzzy
automaton F̃ , in which its underlying structure has been
a bounded poset. Here, the operators Tδ, Pδ, Hδ and Fδ
are proposed regardless of what propositional connectives
the logic comprises. For this purpose, the axiomatiza-
tion of universal quantifiers is applied as a starting point
and these axioms are modified. In this study, firstly, we
demonstrate that the operators can be identified as modal
operators and the pairs (Tδ, Pδ) are examined as the so-
called dynamic pairs. In addition, constructions of these
operators are attained in the corresponding algebra and
in the following a transition frame is suggested. Besides,
the problem of finding a transition frame is solved in the
case when the tense operators are given. Specifically, this
study shows that the tense algebra B is representable in
its Dedekind-MacNeille completion. Representation the-
orems for dynamic and tense algebra are explicated in
details in the related given theorems.
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A Title

1 Introduction

The ever increasing concern to apply fuzzy logic in different areas and for different purposes has
emphasized that the construction of fuzzy automata be more developed and better characterized to
accomplish implementational conditions in a well-established manner. This requirement is because
despite lots of research being done on fuzzy automata and also long history of its application in
different fields, there are still some areas which have not been well-defined and issues which need
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much more modification.
The notion of general fuzzy automata (GFA) was suggested by M. Doostfatemeh and S.C. Kremer
[15] in order to underline the inadequacy of the existing literature and to manage the applications
which depend on fuzzy automata as a modeling tool. Further, Abolpour and Zahedi [2, 1, 3]
extended this concept as BL-general fuzzy automata, and explicated it based on the complete
residuated lattice-valued (L-GFAs). In addition, bisimulation for BL-general fuzzy automata was
defined and explained in more details by Shamsizadeh, Zahedi, and Abolpour [20, 21]. They in-
vestigated the minimal BL-general fuzzy automata on the basis of Myhill-Nerode’s theory and
introduced derivatives of the given fuzzy behavior [4].
In their studies, they also demonstrated that for every given GFA, which is regarded as an acceptor,
a definite dynamic logic B can be assigned. The dynamic nature of a general fuzzy automaton is
stated through its transition relation which is labeled by inputs. The logic comprises propositions
on the given GFA and its dynamic nature is stated through the so-called transition functor. On
the other hand, this logic makes them capable of driving again a definite relation on the set of
states labeled by inputs. Indeed, they have demonstrated that if their set of propositions is large
enough, this recovering of the transition relation is possible. On the contrary, through holding a set
B of propositions that explains the behavior of their intended GFA and the transition functor, as
stating the dynamicity of this process along with the set Σ of inputs, they suggested a construction
of a set of states Q and the state-transition 4 on Q. Such constructed general fuzzy automaton
(Σ, Q,4) identifies the description given by the propositions [5].
It is said that propositional logic, whether classic or non-classic; does not include the dimension of
time. To attain a tense logic, we will enrich the given propositional logic through the use of new
unary operators which are generally indicated by G, H, F and P (for more examples see [7], [13],
[14] and [9]).The aforementioned G, H, F and P are usually called tense operators. They are in
certain sense which quantify over the time dimension of the logic under consideration. However,
these tense operators can be given axiomatically and this rises a natural question on the existence
of a time frame for which these operators can be derived as mentioned above. This is called a
representation problem. It is well known that this problem is easily solvable for Boolean algebras
but is not solvable, for example, for MV-algebras or effect algebras in general. Hence, we are
encouraged to find certain restrictions that are still in accordance with physical reality. These
restrictions will enable us to solve the restricted problem for those algebras that are useful for
axiomatization of many-valued and/ or quantum logics.
It is important to say that the operators G and H can be regarded as specific types of modal
operators which are already examined for intuitionistic calculus by Wijesekera [21], and also in
the De Morgan framework by cattaneo, Ciucci and Dubois [8]. This issue is also studied it is
studied in a general setting by Ewald [17]; for the logic of quantum mechanics (also see [16] for
the details on the so-called quantum structures). For instance, the underling algebraic structure
is an orthomodular lattice or the so called effect algebra (for more examples see [16], [18] and the
corresponding tense logic which is studied in [10, 11, 19], and in a bit more general setting in [6]
as well.
The abovementioned operators G,H,F and P are generally tense operators. In particular sense,
they are quantifiers which quantify over the time dimension of the logic under consideration. The
semantical interpretation of these tense operators G and H is specified in the following: Consider
a pair (T,≤) where T is a non-void set and ≤ is a partial order on T . Let x ∈ T and f(x) be a
formula of a given logical calculus. We declare that G(f(t)) is valid if for any s ≥ t the formula
f(s) is valid. Analogously, H(f(t)) is valid if f(s) is valid for each s ≤ t. Therefore, the unary
operators G and H constitute an algebraic counterpart of the tense operations ”it is always going
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to be the case that” and ”it has always been the case that”, respectively. These tense operators
were first suggested as operators on Boolean algebras (see also [7] for an overview). In the cur-
rent study, after proposing several necessary algebraic concepts and the notion of general fuzzy
automaton, we present tense operators in the dynamic logic B with a set of propositions about
GFA regardless of what propositional connectives the logic comprises. In addition, we demonstrate
a simple construction of tense operators which makes use of lattice theoretical properties of the
underlying ordered set B. When the underlying ordered set is not a complete lattice, we prove
how to use the lattice completion for this construction. This study also tries to solve the problem
of a representation of dynamic or tense algebra B. In other words, we suggest a procedure how to
construct a corresponding transition frame to be in line with the proposed construction. Particu-
larly, we explain that the dynamic or tense algebra B is representable in its Dedekind-MacNeille
completion.

2 Preliminaries

The basic underlying definitions and theorems used for the elucidation of the proposed concepts
in this study are presented in details in this section.

Definition 2.1. [15] A general fuzzy automaton (GFA) is considered as:

F̃ = (Q,Σ, R̃, Z, δ̃, ω, F1, F2),

where (i) Q = {q1, q2, . . . , qn} is a finite set of states, (ii) Σ = {a1, a2, . . . , am} is a finite set of
input symbols, (iii) R̃ is the set of fuzzy start states, R̃ ⊆ P̃ (Q), (iv) Z = {b1, b2, . . . , bk} is a finite
set of output symbols, (v) ω : Q→ Z is the output function, (vi) δ̃ : (Q× [0, 1])×Σ×Q→ [0, 1] is
the augmented transition function. (vii) Function F1 : [0, 1] × [0, 1] → [0, 1] is called membership
assignment function. Function F1(µ, δ), as is seen, is motivated by two parameters µ and δ, where
µ is the membership value of a predecessor and δ is the weight of a transition.
With this definition, the process that occurs upon the transition from state qi to qj on input ak is
characterized by:

µt+1(qj) = δ̃((qi, µ
t(qi)), ak, qj) = F1(µt(qi), δ(qi, ak, qj)).

It means that membership value (mv) of the state qj at time t + 1 is calculated by function F1,
utilizing both the membership value of qi at time t and the weight of the transition.
There have been many options for the function F1(µ, δ). For instance, it can be max{µ, δ},

min{µ, δ}, µ+ δ

2
, or any other pertinent mathematical functions.

As it can be observed in the above mentioned definition, associated with each fuzzy transition, there
exists a membership value (mv) in unit interval [0, 1]. We identify this membership value the weight
of the transition. The transition from state qi (current state) to state qj (next state) upon input
ak is designated as δ(qi, ak, qj). Hereafter, we apply this notation to refer both to a transition and
its weight.
Whenever δ(qi, ak, qj) is used as a value, it refers to the weight of the transition. Otherwise, it
identifies the transition itself. The set of all transitions of a general fuzzy automaton F̃ is denoted
as ∆F̃ . However, whenever it is understood, we remove the subscript, and write simply ∆.
Concerning this, we say that ∆ is a state-transition relation and it is regarded as a dynamics of
F̃ . On the other hand, we regularly formulate certain propositions on an automaton F̃ and draw
conclusions from the behavior of F̃ in the present or in the future.
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(viii) F2 : [0, 1]∗ → [0, 1] is called multi-membership resolution function. The multi-membership
resolution function determines the multi-membership active states and allocates a single member-
ship value to them.
We let Qact(ti) be the set of all active state at time ti, ∀i ≥ 0. We have Qact(t0) = R̃ and

Qact(ti) = {(q, µti(q))|∃q′ ∈ Qact(ti−1), ∃a ∈ Σ, δ(q′, a, q) ∈ ∆},

∀i ≥ 1. Since Qact(ti) is a fuzzy set, to demonstrate that a state q belongs to Qact(ti) and T is a
subset of Qact(ti), we should write: q ∈ Domain(Qact(ti)) and T ⊆ Domain(Qact(ti)); henceforth,
we simply specify them by: q ∈ Qact(ti) and T ⊆ Qact(ti).

Definition 2.2. [12] Let S be a non-empty set. Every subset R ⊆ S × S is called a relation on S
and we declare that the couple (S,R) is a transition frame. The converse of R means the relation
Rop = {(x, y) ∈ S × S|(y, x) ∈ R}.

Definition 2.3. [12] A mapping f is called order-preserving or monotone if a, b ∈ A and a ≤ b
imply f(a) ≤ f(b) and order-reflecting if a, b ∈ A and f(a) ≤ f(b) imply a ≤ b. An objective
order-preserving and order-reflecting mapping f : A → B is called an isomorphism and then we
state that the partially ordered sets (A;≤) and (B;≤) are isomorphic.

Definition 2.4. [12] If a partially ordered set A has both a bottom and a top element, then it
will be called bounded; the pertinent notation for a bounded partially ordered set is (A;≤, 0, 1). Let
(A;≤, 0, 1) and (B;≤, 0, 1) be bounded partially ordered sets. A morphism f : A → B of bounded
partially ordered sets is an order, top element and bottom element preserving map.

Observation 2.5. [12] Let A and M be bounded partially ordered sets, S be an orbitrary index
set, and hs : A → M , s ∈ S, morphisms of bounded partially ordered sets. Then, the following
conditions are equivalent:
(i) ∀s ∈ S hs(a) ≤ hs(b)⇒ a ≤ b for any elements a, b ∈ A;
(ii) The map iSA : A→MS defined by iSA(a) = (hs(a))s∈S for all a ∈ A is order-reflecting.
Then, we declare that {hs : A → M ; s ∈ S} is a full set of order-preserving mappings concerning
M . Note that in this situation, we may specify A with a bounded subposets of MS because iSA is
an order reflecting morphism alias embedding of bounded partially ordered sets. For any s ∈ S and
any p = (ps)s∈S, we indicate it by p(s) the s-th projection ps. Note that iSA(a)(s) = hs(a) for all
a ∈ A and all s ∈ S.

Definition 2.6. [9] Consider an algebra A = (A;≤, 0, 1). A couple (P,G) of partial mappings
P,G : A→ A is called dynamic pair on A if the following conditions hold:
(P1) G(0) = 0, G(1) = 1, P (0) = 0 and P (1) = 1,
(P2) x ≤ y implies G(x) ≤ G(y), whenever G(x), G(y) exist and P (x) ≤ P (y), whenever
P (x), P (y) exist,
(P3) x ≤ GP (x), where P (x) and GP (x) exist, PG(y) ≤ y, where G(y) and PG(y) exist.
The operator P is called a weak dynamic operator and the operator G is called a strong dynamic
operator (shortly dynamic operators). The triple (A;G,P ) is called a partial dynamic algebra.
If both G and P are total mappings, then we speak about a dynamic algebra.
We say that a partial map G : A → A is contractive (transitive) if G(x) ≤ x (G(x) ≤ GG(x))
for all x ∈ A such that G(x) is defined (for all x ∈ A such that G(x) and GG(x) are defined). A
partial map G that is both contractive and transitive is called a conucleus. A dynamic pair (P,G)
is called modal if G is a conucleus, then we speak about a partial modal algebra. If both G and P
are total mappings, we speak about a modal algebra.
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Definition 2.7. [9] If (A1;G1, P1) and (A2;G2, P2) are partial dynamic algebras, then a morphism
of partial dynamic algebras f : (A1;G1, P1) → (A2;G2, P2) is a morphism of bounded posets such
that f(G1(x)) = G2(f(x)), and for any x ∈ A1 such G1(x) is defined and G2(f(x)) exists and
f(P1(y)) = P2(f(y)), for any y ∈ A1 such P1(y) is defined and P2(f(y)) exists.

Remark 2.8. [9] If (A;≤) is an ordered set, then there always exists a lattice L = (L;∨,∧) with
the induced order ≤ such that A ⊆ L and x ≤ y in (A;≤) implies x ≤ y in L. One of possible
constructions of L for a given ordered set (A;≤) is the use of so-called cuts. Then, L is called the
DedeKind-MacNeille completion of (A;≤).
Due to these reasons, it is an important fact that the DedeKind-MacNeille completion of any
ordered set is a complete lattice; in particular, for each subset S ⊆ A, there exists ∨S = supS and
∧S = infS in L.

3 The construction of dynamic algebra on GFA

This section is an attempt to derive the logic B, which is a set of propositions about the general
fuzzy automaton F̃ formulated by the observer, and to construct an ordered algebra structure on
B. If we fix an input ak ∈ Σ at time ti, then the proposition α|ak can be computed by µti(qi) if
the general fuzzy automaton F̃ is in the state qi at time ti, otherwise α|ak is 0 if F̃ is not in the
active state qi.
Therefore, for each state qi ∈ Q we can examine the truth value of α|ak , and it is indicated by
α|ak(qi). As explained for above, α|ak(qi) ∈ [0, 1], we can establish the order ≤ on B as follows:
for; α, β ∈ B, α ≤ β if and only if α(qi) ≤ β(qi) for all qi ∈ Q. One can instantly check that the
contradiction, i.e., the proposition with the constant truth value 0, is the least element and the
tautology, i.e., the proposition with the constant truth value 1 is the greatest component of the
partially order set (B;≤). Note that any component ith of 1 is the maximum membership values
of active states at time ti, for any i ≥ 0. This fact will be stated by the notation B = (B;≤, 0, 1)
for the bounded partially order set of proposition about the general fuzzy automaton F̃ . Every
automaton F̃ will be identified with the triple (B,Σ, Q). Where B is the set of propositions about
F̃ , Σ is the set of possible inputs and Q is the set of states on F̃ . In what follows, the truth-values
of our logic B will be considered to be from the complete lattice M = ([0, 1];≤, 0, 1). Thus, B will
be bounded subposet of MQ for the complete lattice M of truth-values.

Definition 3.1. As in the following, let M = ([0, 1];≤, 0, 1) be a bounded partially ordered set
and the bounded subposets A = (A;≤, 0, 1) and B = (B;≤, 0, 1) of MQ will stand for the possibly
different logics of propositions pertaining to our automaton F̃ , a corresponding set of states Q,
and a state-transition relation 4 on Q. Define mappings Pδ : A → (MQ)Σ and Tδ : B → (MQ)Σ

as follows: for all b ∈ B, qm ∈ Q and ak ∈ Σ,

Tδak (b)(qm) =
∧
{b(qj)|qj ∈ Qsucc(qm, ak)}, (∗)

where
Qsucc(qm, ak) = {qj |δ(qm, ak, qj) ∈ 4},

and for all a ∈ A,

Pδak (a)(qm) =
∨
{a(qj)|qj ∈ Qpred(qm, ak)}, (∗∗)

where
Qpred(qm, ak) = {qj |δ(qj , ak, qm) ∈ 4}.
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Then, we state that Tδ(Pδ) is an upper transition functor (lower transition functor) canstructed
through the transition frame (Q,4), respectively. We signify that Tδ is an order-preserving map
such that Tδ(1) = 1, Tδ(0) = 0 and correspondingly, Pδ is an order-preserving map such that
Pδ(0) = 0 and Pδ(1) = 1.

Example 3.2. Consider the GFA in Figure 1, it is specified as: F̃ = (Q,Σ, R̃, Z, ω, δ̃, F1, F2),
where Q = {q0, q1, q2} is the set of states, Σ = {a, b} is the set of input symbols, R̃ = {(q0, 1)},
Z = ∅ and ω is not applicable.

Figure 1: The GFA of Example 3.2

If we choose F1(µ, δ) = δ, F2() = µt+1(qm) =
n∧
i=1

(F1(µt(qi), δ(qi, ak, qm))), then we have:

µt0(q0) = 1

µt1(q1) = F1(µt0(q0), δ(q0, b, q1)) = δ(q0, b, q1) = 0.4,

µt2(q2) = F1(µt1(q1), δ(q1, a, q2)) = δ(q1, a, q2) = 0.3,

µt3(q1) = F1(µt2(q2), δ(q2, a, q1)) = δ(q2, a, q1) = 0.8,

µt3(q2) = F1(µt2(q2), δ(q2, a, q2)) = δ(q2, a, q2) = 0.1,

µt4(q2) = F1(µt3(q2), δ(q2, b, q2)) = δ(q2, b, q2) = 0.35.

Table 1: Active states and their membership values (mv) at different times in Example 3.2 upon
input string ”ba2b”

time t0 t1 t2 t3 t4
input ∧ b a a b

Qact(ti) q0 q1 q2 q1 q2 q2

mv 1 0.4 0.3 0.8 0.1 0.35

The set B = {0, s0, s1, s2, s
′
0, s
′
1, s
′
2, 1} of possible propositions B about the automaton F̃ is as

follows:
-0 means that the GFA is not in active states of Q,
-s0 means that the GFA is in active state q0,
-s1 means that the GFA is in active state q1,
-s2 means that the GFA is in active state q2,
-s

′
0 means that the GFA is either in active state q1 or in the active state q2,
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-s
′
1 means that the GFA is either in active state q0 or in the active state q2,

-s
′
2 means that the GFA is either in active state q0 or in the active state q1,

-1 means that the GFA is in at least one active state of Q.
We may B with the algebra [0, 1]Q as follows:

0 = (0, 0, 0), s0 = (1, 0, 0), s1 = (0, 0.8, 0), s2 = (0, 0, 0.35),

s′0 = (0, 0.8, 0.35), s′1 = (1, 0, 0.35), s′2 = (1, 0.8, 0), 1 = (1, 0.8, 0.35).

Here, α(qi) is the maximum membership values of active states at time ti for any i ≥ 0. We have
δa = {(q1, q2), (q2, q1), (q2, q2)} and δb = {(q0, q1), (q2, q2)}, then ∆ = {(q0, q1), (q1, q2), (q2, q1), (q2, q2)}.
Using our formulas (∗) and (∗∗), we can obtain the upper transition functors Tδa , Tδb : B → [0, 1]Q

and the lower transition functors Pδa , Pδb : B → [0, 1]Q as follows:

Tδa(0) = 0,
Tδa(0) = s0,
Tδa(s2) = s1,
Tδa(s′0) = s2,
Tδa(s′0) = s′0,
Tδa(s′0) = s′1,
Tδa(s2) = s′2,
Tδa(1) = 1,

Pδa(0) = 0,
Pδa(s0) = 0,
Pδa(s1) = s2,
Pδa(s2) = s′0,
Pδa(s′0) = s′0,
Pδa(s′1) = s′0,
Pδa(s′2) = s2,
Pδa(1) = 1,

Tδb(0) = 0,
Tδb(s1) = s0,
Tδb(0) = s1,
Tδb(s2) = s2,
Tδb(s2) = s′0,
Tδb(s

′
0) = s′1,

Tδb(s1) = s′2,
Tδb(1) = 1,

Pδb(0) = 0,
Pδb(s0) = s1,
Pδb(s1) = 0,
Pδb(s2) = s2,
Pδb(s

′
0) = s2.

Pδb(s
′
1) = s′0,

Pδb(s
′
2) = s1,

Pδb(1) = 1.

E.g. Tδa(s2) = s1 means that if the GFA is in active state q1, when it enters input a, it will change
to q2 and Pδa(s2) = s′0 means that if the GFA is in active state q2, when it enters a, it will change
to q1 or q2.

Theorem 3.3. Let F̃ = (Q,Σ, R̃, Z, δ̃, ω, F1, F2) be a general fuzzy automaton, B = (B;≤, 0, 1) be
a bounded poset of proposition about the F̃ and Tδ, Pδ : B → (MQ)Σ be labaled transition functors
constructed through the transition frame (Q,4). Also, let for all ak ∈ Σ, b ∈ B and qm ∈ Q,

Hδak
(b)(qm) =

∧
{b(qj)|qj ∈ Qpred(qm, ak)},

Fδak (b)(qm) =
∨
{b(qj)|qj ∈ Qsucc(qm, ak)}.

If this is the case, then Tδ, Pδ, Hδ and Fδ are dynamic operators on B such that for all α ∈ B,

Tδ(α) ≤ Fδ(α) and Hδ(α) ≤ Pδ(α),

whenever the respective sides of the relation ≤ are defined, i.e., both D = (B;Tδ, Pδ) and E =
(B;Hδ, Fδ) are partial daynamic algebras. Moreover, the following holds:
(a) If 4 is reflexive, then Tδ and Hδ are contractive.
(b) If 4 is transitive, then Tδ and Hδ are transitive.
(c) If 4 is both reflexive and transitive, then both D = (B;Tδ, Pδ) and E = (B;Hδ, Fδ) are partial
modal algebras.

Proof. By the definition of Tδ and Pδ, we have Tδ(0) = 0, Tδ(1) = 1, Pδ(0) = 0 and Pδ(1) = 1;
thus, (P1) holds. Let us check (P2). Assume that Tδ(α) and Tδ(β) exist and α ≤ β for α, β ∈ B.
Then for all qj ∈ Q, α(qj) ≤ β(qj). This yields that for ak ∈ Σ, qm ∈ Q,

Tδak (α)(qm) =
∧
{α(qj)|qj ∈ Qsucc(qm, ak)} ≤

∧
{β(qj)|qj ∈ Qsucc(qm, ak)} = Tδak (β)(qm).
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Therefore, Tδ(α) ≤ Tδ(β). Similarly, Pδ(α) ≤ Pδ(β), whenever Pδ(α) and Pδ(β) exist and α ≤ β.
It remains to prove (P3). Assume that Pδ(α) and TδPδ(α) exist. We have for ak ∈ Σ, qm ∈ Q,

Pδak (α)(qm) =
∨
{α(qj)|qj ∈ Qpred(qm, ak)},

and
TδakPδak (α)(qi) =

∧
{
∨
{α(qj)|qj ∈ Qpred(qm, ak)}; qm ∈ Qsucc(qi, ak)}.

Since every member of the infimum is greater or equal to α(qi), we conclude TδakPδak (α)(qi) ≥ α(qi)
for each qi ∈ Q, ak ∈ Σ, i.e., α ≤ TδPδ. Analogously, it can be shown PδTδ(α) ≤ α. Now, assume
that α ∈ B and both Tδ(α) and Fδ(α) are defined. Let us verify that Tδ(α) ≤ Fδ(α). Let qi ∈ Q.
Then, there is qj ∈ Qsucc(qi, ak) such that (qi, qj) ∈ 4. It follows that Tδ(α)(qi) ≤ α(qi) ≤
Fδ(α)(qi). Let us check (a). Assume that α ∈ B and Tδ(α) is defined. Since 4 is reflexive; then
from (qi, qi) ∈ 4, we obtain that

Tδak (α)(qi) =
∧
{α(qj)|qj ∈ Qsucc(qi, ak)} ≤ α(qi),

for ak ∈ Σ. Let us proceed similarly for (b).
Assume that α ∈ B and both Tδ(α) and TδTδ(α) are defined. We have for qi ∈ Q, ak ∈ Σ,

Tδak (α)(qi) =
∧
{α(qj)|qj ∈ Qsucc(qi, ak)}

≤
∧
{α(qj)|qk ∈ Qsucc(qi, ak), qk ∈ Qpred(qj , ak)}

=
∧
{
∧
{α(qj)|qj ∈ Qsucc(qk, ak)}; qk ∈ Qsucc(qi, ak)}

=
∧
{Tδak (α)(qk)|qk ∈ Qsucc(qi, ak)} = TδakTδak (α)(qi).

Since {qj ∈ Q|qk ∈ Q, qk ∈ Qsucc(qi, ak), qk ∈ Qpred(qj , ak)} ⊆ {qj ∈ Q|qj ∈ Qsucc(qi, ak)} by
transitivity the proof is complete.
The validity of (c) follows immediately from (a) and (b).
The remaining part of the proof for operators Hδ and Fδ follows from the preceding, since it is
enough to work with the transition frame (Q,4op).

Corollary 3.4. Let M = ([0, 1];≤, 0, 1) be a non-trivial complete lattice, F̃ = (Q,Σ, R̃, Z, δ̃, ω, F1,
F2) be a general fuzzy automaton and (Q,4) be a transition frame. Define mapping T̂δ, P̂δ, Ĥδ,
F̂δ : [0, 1]Q → ([0, 1]Q)Σ as follows:
for α ∈ [0, 1]Q, ak ∈ Σ,

T̂δak (α)(p) =
∧
{α(q)|q ∈ Qsucc(p, ak)},

P̂δak (α)(p) =
∨
{α(q)|q ∈ Qpred(p, ak)},

Ĥδak
(α)(p) =

∧
{α(q)|q ∈ Qpred(p, ak)},

F̂δak (α)(p) =
∨
{α(q)|q ∈ Qsucc(p, ak)}.

Then T̂δ, P̂δ, Ĥδ, F̂δ are dynamic operators on MQ such that

T̂δ ≤ F̂δ and Ĥδ ≤ P̂δ,

and both (MQ; T̂δ, P̂δ) and (MQ; Ĥδ, F̂δ) are dynamic algebras (modal algebras).
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4 Representation of dynamic algebras induced by GFA

We introduced a construction of natural dynamic operators in Section 3, when a bounded B
and a transition frame (Q,4) of F̃ are given. However, we can ask, for a given dynamic algebra
(B;Tδ, Pδ), whether there exists a transition frame (Q,4) and a bounded poset M = ([0, 1];≤, 0, 1)
such that the dynamic operators Tδ, Pδ can be derived by this construction, where B is embedded
into the power algebra MQ. Hence, we ask, if every element b of B is in the form (b(q))q∈Q in MQ,

Tδak (b)(q) =
∧
{b(p)|δ(q, ak, p) ∈ 4 or p ∈ Qsucc(q, ak)},

and
Pδak (b)(q) =

∨
{b(p)|δ(p, ak, q) ∈ 4 or p ∈ Qpred(q, ak)},

for ak ∈ Σ. If such a representation exists, then one can recognize the time variability of elements
of B expressed as time dependent functions b : Q→M .
From Corollary 3.4, we immediately see that (MQ; T̂δ, P̂δ) is automatically a dynamic algebra.

Proposition 4.1. Let B = (B;≤, 0, 1) be a bounded poset equipped with a full set SB of morphisms
into a complete lattice M,

SB = {hD : B → [0, 1];D ⊆ B},

such that for ak ∈ Σ, hDak (b) =

{
Tδak (b) if b /∈ D
0 if b ∈ D

. Then, the map iSBB : B → MSB given by

iSBB (α)(hD) = hD(α) for α ∈ B, hD ∈ SB is an order reflecting morphism of bounded posets such

that iSBB (B) is a subposet of MSB .

Proof. Since SB is a full set of morphisms, we have from Observation 2.5 that iSBB is an injective

order-reflecting morphism of bounded posets. It follows that iSBB (B) is a bounded subposet of
MSB .

We immediately obtain from Theorem 3.3 and from Proposition 4.1 the following:

Corollary 4.2. Let B = (B;≤, 0, 1) be a bounded poset equipped with a full set SB of morphisms
into a complete lattice M and let (Q,4) be a transition frame. Define partial mappings Tδ, Pδ :
B → (MQ)Σ as follows:

Tδak (α)(p) =
∧
{α(q)|q ∈ Qsucc(p, ak)},

and
Pδak (α)(p) =

∨
{α(q)|q ∈ Qpred(p, ak)},

for α ∈ B, ak ∈ Σ. Then Tδ, Pδ are dynamic operators on B, i.e., D = (B;Tδ, Pδ) is a partial
dynamic algebra and iSB ,QB : B → MQ defined by iSB ,QB ((α(p))p∈Q) = iSBB ((α(p))p∈Q) is an order

reflecting morphism of bounded posets into the dynamic complete lattice algebra (MQ; T̂δ, P̂δ) given
by Theorem 3.3.

The previous corollary allows us to introduce, for any poset B of proposition about the general
fuzzy automaton F̃ with the MacNeille completion MC(B) and for any transiton frame (Q,4), a
partial dynamic structure on B that can be fully reconstructed from (MC(B), T̂δ, P̂δ).
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Lemma 4.3. Let (B;Tδ, Pδ) be a dynamic algebra and let SB be a set of morphisms from B into
a bounded poset M. Let us put 4Tδ = {(s, t) ∈ SB × SB|∀α ∈ B, (s(Tδ(α))) ≤ t(α)}. Then:
(i) If Tδ is contractive, then 4Tδ is reflexive.
(ii) If Tδ is transitive, then 4Tδ is transitive.
(iii) Let s, soTδ ∈ SB. Then (s, soTδ) ∈ 4Tδ and for α ∈ B,

s(Tδ(α)) =
∧
{t(α)|(s, t) ∈ 4Tδ}.

(iv) Let s, soPδ ∈ SB. Then (soPδ, s) ∈ 4Tδ and for α ∈ B,

s(Pδ(α)) =
∨
{t(α)|(s, t) ∈ 4Tδ}.

Proof. (i): Tδ(α) ≤ α yields s(Tδ(α)) ≤ s(α) for α ∈ B and s ∈ SB. Hence (s, s) ∈ 4Tδ .
(ii): Let s, t, u ∈ SB, (s, t) ∈ 4Tδ and (t, u) ∈ 4Tδ . Suppose α ∈ B. Tδ(α) ≤ TδTδ(α) yields
s(Tδ(α)) ≤ s(TδTδ(α)) ≤ t(Tδ(α)) ≤ u(α). Hence (s, u) ∈ 4Tδ .
(iii): Since for α ∈ B, s(Tδ(α)) = (soTδ)(α) we have (s, soTδ) ∈ 4Tδ and clearly, for α ∈ B,

(soTδ)(α) ≥
∧
{t(α)|(s, t) ∈ 4Tδ} ≥ s(Tδ(α)).

(iv): From the definition of a dynamic algebra, we get s(PδTδ(α)) ≤ s(α) for α ∈ B. Hence
(soPδ, s) ∈ 4Tδ .
Evidently, for α ∈ B, (s, t) ∈ 4Tδ yields t(α) ≤ t(TδPδ(α)) ≤ s(Pδ(α)). It follows that (soPδ)(α) ≤∨
{t(α)|(s, t) ∈ 4Tδ} ≤ s(Pδ(α)).

The relation 4Tδ introduced in Lemma 4.3 will be called the Tδ-induced relation.

Theorem 4.4. Let (B;Tδ, Pδ) be a dynamic algebra and SB be a set of morphisms from B into a
complete lattic M such that
(1) for all α ∈ B and for all s ∈ SB, s(Tδ(α)) =

∧
{t(α)|(s, t) ∈ 4Tδ},

(2) for all α ∈ B and for all s ∈ SB, s(Pδ(α)) =
∨
{t(α)|(s, t) ∈ 4Tδ}.

Then the map iSBB is an order reflecting morphism of dynamic algebras into the complete lat-

tice dynamic algebra (MSB ; T̂δ, P̂δ) given by the transition frame (SB,4Tδ). The dynamic algebra
(B;Tδ, Pδ) is said to be representable in M with respect to SB. Moreover, if Tδ is contractive (tran-
sitive), then T̂δ is contractive (transitive) and if (B;Tδ, Pδ) is a modal algebra, then (MSB ; T̂δ, P̂δ)
is a complete lattice modal algebra.

Proof. Recall first that since M is a complete lattice we have from Corollary 4.2 that (MSB ; T̂δ,
P̂δ) is a complete dynamic algebra. Here T̂δ(α)(s) =

∧
{(α)(t)|(s, t) ∈ 4Tδ} and P̂δ(α)(s) =∨

{(α)(t)|(s, t) ∈ 4Tδ} for all α ∈M and for all s ∈ SB. Therefore by Proposition 4.1, iSBB is an or-

der reflecting morphisms into MSB . Since s(Tδ(α)) =
∧
{t(α)|(s, t) ∈ 4Tδ} we get iSBB (Tδ(α))(s) =∧

{t(α)|(s, t) ∈ 4Tδ}. Then iSBB (Tδ(α)) = T̂δ(i
SB
B (α)). Similary iSBB (Pδ(α)) = P̂δ(i

SB
B (α)). Now,

let Tδ is contractive (transitive). Then by Lemma 4.3 4Tδ is reflexive and transitive. Therefore,
by Theorem 3.3 T̂δ is contractive (transitive). Also, let (B;Tδ, Pδ) is a modal algebra. Then by
Corollary 3.4 (MSB ; T̂δ, P̂δ) is a complete lattice modal algebra.

Now, let us prove a representation theorem for dynamic algebras with a full set of morphisms.

Theorem 4.5. (Representation theorem for dynamic algebras) For any dynamic algebra (B;Tδ,
Pδ) with a full set SB of morphisms into a complete lattice M, there exists a full set T of morphisms
into M containing SB such that (B;Tδ, Pδ) is representable in M with respect to T . In particular,
iTB is an order reflecting morphism of dynamic algebras.
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Proof. Let T be the smallest set of morphisms into M containing SB such that s ∈ T implies
soTδ, soPδ ∈ T . Since T contains SB, it is again a full set of morphisms.
It is enough to verify that for all α ∈ B and for all s ∈ T , s(Tδ(α)) =

∧
{t(α)|(s, t) ∈ 4Tδ} and

s(Pδ(α)) =
∨
{t(α)|(s, t) ∈ 4Tδ} where 4Tδ is the Tδ-induced relation. But this is immediate

since, for any s ∈ T , we have a morphism ts = soTδ ∈ T such that s(Tδ(α)) = ts(α) for all α ∈ B.
Therefore, s(Tδ(α)) = ts(α) ≥

∧
{t(α)|(s, t) ∈ 4Tδ} ≥ s(Tδ(α)). Similarly, we obtain from Lemma

4.3 the remaining case.

Corollary 4.6. Let (B;Tδ, Pδ) be a dynamic algebra and MC(B) be the MacNeille comple-
tion of B. Then there is a countable frame (Q,4) such that Tδ = T̂δ|B and Pδ = P̂δ|B with
(MC(B), T̂δ, P̂δ) given as in Theorem 3.3.

Proof. Let iB : B → MC(B) be the corresponding embedding of bounded poset. Let T be the
smallest set of morphisms containing iB that is closed under composition with Tδ and Pδ.
Evidently, T = {iBoTn1

δ oPm1
δ o . . . oTnkδ oPmkδ ; k, n1,m1, . . . , nk,mk ∈ N} is countable and we have

an order reflecting morphism iTB : B → (MC(B))T of bounded posets. By 4 can be taken the
Tδ-induced relation.

5 Representation of tense algebras induced by GFA

Definition 5.1. Let F̃ be a general fuzzy automaton, (B;Tδ, Pδ) and (B;Hδ, Fδ) be a partial
dynamic algebras such that, for all α ∈ B, Tδ(α) ≤ Fδ(α) and Hδ(α) ≤ Pδ(α), whenever the
respective sides of the relation ≤ are defined. The quintuple τ(B) = (B;Tδ, Pδ, Hδ, Fδ) is called a
partial tense algebra. If all Tδ, Pδ, Hδ, Fδ are total maps, then we speak about a tense algebra.

If (B;Tδ, Pδ) and (B;Hδ, Fδ) are partial modal algebras, then τ(B) is called a partial tense modal
algebra. If (B1;Tδ1 , Pδ1 , Hδ1 , Fδ1) and (B2;Tδ2 , Pδ2 , Hδ2 , Fδ2) are partial modal algebras and f :
B1 → B2 a map such that
(i) f : (B1;Tδ1 , Pδ1)→ (B2;Tδ2 , Pδ2) is a morphism of partial dynamic algebras,
(ii) f : (B1;Hδ1 , Fδ1)→ (B2;Hδ2 , Fδ2) is a morphism of partial dynamic algebras,
then we say that f : (B1;Tδ1 , Pδ1 , Hδ1 , Fδ1)→ (B2;Tδ2 , Pδ2 , Hδ2 , Fδ2) is a morphism of partial tense
algebras.

Lemma 5.2. Let F̃ be a general fuzzy automaton, (B;Tδ , Pδ , Hδ , Fδ) be a tense algebra on B and
let SB be a set of morphisms from B into a bounded poset M. Let us put

4Tδ,Hδ = 4Tδ ∩4
op
Hδ

= {(s, t) ∈ SB × SB|∀α ∈ B s(Tδ(α)) ≤ t(α) and t(Hδ(α)) ≤ s(α)},

and

4Hδ,Tδ = 4Hδ ∩4
op
Tδ

= {(s, t) ∈ SB × SB|∀α ∈ B s(Hδ(α)) ≤ t(α) and t(Tδ(α)) ≤ s(α)},

where 4Tδ is the Tδ-induced relation and 4Hδ is the Hδ-induced relation.
Then 4Tδ,Hδ = 4op

Hδ,Tδ
and

(i) If Tδ is contractive, then 4Tδ,Hδ and 4Hδ,Tδ are reflexive.
(ii) If Tδ is transitive, then 4Tδ,Hδ and 4Hδ,Tδ are transitive.
(iii) Let s, soTδ ∈ SB. Then (s, soTδ) ∈ 4Tδ,Hδ and for all α ∈ B,

s(Tδ(α)) =
∧
{t(α)|(s, t) ∈ 4Tδ,Hδ}.
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(iv) Let s, soPδ ∈ SB. Then (soPδ, s) ∈ 4Tδ,Hδ and for all α ∈ B,

s(Pδ(α)) =
∨
{t(α)|(s, t) ∈ 4Tδ,Hδ}.

(v) Let s, soHδ ∈ SB. Then (s, soHδ) ∈ 4Tδ,Hδ and for all α ∈ B,

s(Hδ(α)) =
∧
{t(α)|(s, t) ∈ 4Hδ,Tδ}.

(vi) Let s, soFδ ∈ SB. Then (soFδ, s) ∈ 4Tδ,Hδ and for all α ∈ B,

s(Fδ(α)) =
∨
{t(α)|(s, t) ∈ 4Hδ,Tδ}.

Proof. (i): From Lemma 4.3(i), we know that 4Tδ and 4Hδ are reflexive. It follows that 4Hδ,Tδ

and 4Tδ,Hδ are reflexive.
(ii): From Lemma 4.3(ii), we know that 4Tδ and 4Hδ are transitive. It follows that 4Hδ,Tδ and
4Tδ,Hδ are transitive.
(iii): Since, for all α ∈ B, (soTδ)(Hδ(α)) ≤ s(FδHδ(α)) ≤ s(α) we have that (s, soTδ) ∈ 4op

Hδ
. From

Lemma 4.3(iii), we obtain that (s, soTδ) ∈ 4Tδ
, i.e., (s, soTδ) ∈ 4Tδ,Hδ . Cleary for all α ∈ B,

(soTδ)(α) ≥
∧
{t(α)|(s, t) ∈ 4Tδ,Hδ} ≥ s(Tδ(α)).

(iv): From the definition of a tense algebra, we get that s(Hδ(α)) ≤ s(Pδ(α)) for all α ∈ B.
Hence (soPδ, s) ∈ 4op

Hδ
. From Lemma 4.3(iv), we know that (soPδ, s) ∈ 4Tδ

. It follows that
(soPδ, s) ∈ 4Tδ,Hδ

and for all α ∈ B,

(soPδ)(α) ≤
∨
{t(α)|(t, s) ∈ 4Tδ,Hδ} ≤ s(Pδ(α)).

(v),(vi): By interchanging the role of Tδ with Hδ and of Pδ with Fδ, by (iii) and (iv) the proof is
clear.

Theorem 5.3. Let F̃ be a general fuzzy automaton, (B;Tδ, Pδ, Hδ, Fδ) be a tense algebra with a
full set SB of morphisms from B into a complete lattice M such that
(1) for all α ∈ B and for all s ∈ SB, s(Tδ(α)) =

∧
{t(α)|(s, t) ∈ 4Tδ,Hδ},

(2) for all α ∈ B and for all s ∈ SB, s(Pδ(α)) =
∨
{t(α)|(t, s) ∈ 4Tδ,Hδ},

(3) for all α ∈ B and for all s ∈ SB, s(Hδ(α)) =
∧
{t(α)|(t, s) ∈ 4Tδ,Hδ},

(4) for all α ∈ B and for all s ∈ SB, s(Fδ(α)) =
∨
{t(α)|(s, t) ∈ 4Tδ,Hδ}.

Then the map iSBB is an order reflecting morphism of tense algebra into the complete lattice tense

algebra (MSB ; T̂δ , P̂δ , Ĥδ , F̂δ) given by the transition frame (SB,4Tδ,Hδ). (B;Tδ , Pδ , Hδ , Fδ) is then
said to be representable in M with respect to SB.
Moreover, if Tδ and Hδ are contractive (transitive), then T̂δ and Ĥδ are contractive (transitive)
and if (B;Tδ , Pδ , Hδ , Fδ) is a tense model algebra, then (MSB ; T̂δ , P̂δ , Ĥδ , F̂δ) is a complete lattice
tense modal algebra.

Proof. It follows by the same arguments as in Theorem 4.4.

Theorem 5.4. (Representation theorem for tense algebra) Let F̃ be a general fuzzy automaton, for
any tense (tense modal) algebra (B;Tδ , Pδ , Hδ , Fδ) with a full set SB of morphisms into a complete
lattice M, there exists a full set T of morphism into M containing SB such that (B;Tδ , Pδ , Hδ , Fδ)
is reflecting morphism of tense (tense modal) algebras.
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Proof. Let T be the smallest set of morphisms into M containing SB such that s ∈ T implies that
soTδ, soPδ, soHδ, soFδ ∈ T . Since T contains SB, it is again a full set of morphisms.
The remaining conditions on T from Theorem 5.3 are satisfied by the same arguments as in the
proof of Theorem 4.5, using Lemma 5.2.

Corollary 5.5. Let F̃ be a general fuzzy automaton, (B;Tδ , Pδ , Hδ , Fδ) be a tense (tense modal)
algebra and MC(B) be the MacNeille completion of B. Then, there is a countable transition frame
(T,4Tδ,Hδ) such that Tδ = T̂δ|B, Pδ = P̂δ|B, Hδ = Ĥδ|B and Fδ = F̂δ|B with ((MC(B))T ; T̂δ , P̂δ , Ĥδ ,

F̂δ) given as in Theorem 3.3.

Proof. Let iB : B → MC(B) be the corresponding embedding of bounded posets. Let T be
the smallest of morphisms containing iB that is closed under composition with Tδ, Pδ, Hδ and Fδ.
Evidently,

T = {iBoTn1
δ oPm1

δ oHp1
δ oF

q1
δ o . . . oT

nk
δ oPmkδ oHpk

δ oF
qk
δ , k, n1,m1, p1, q1, . . . , nk,mk, pk, qk ∈ N},

is countable and we have an order reflecting morphism iTB : B → (MC(B))T of bounded posets.

6 Conclusion

This study was an endeavor to suggest and examine tense operators in the dynamic logic B which
has been regarded as a set of propositions about the general fuzzy automaton regardless of what
propositional connectives the logic comprised. It also demonstrated a simple construction of tense
operators which makes use of lattice theoretical properties of the underlying ordered set B. The
study further proved that when the underlying ordered set was not a complete lattice, the lattice
completion for this construction could be used. Further, the axiomatization of universal quantifiers
was applied and the related axioms were modified. In this study, it was also shown that the oper-
ators could be identified as modal operators and the pairs (Tδ, Pδ) were examined as the so-called
dynamic pairs. The constructions of these operators were attained in the corresponding algebra
and then a transition frame was proposed. In addition, the problem of finding a transition frame
was solved in the case when the tense operators were given. In particular, this study demonstrated
that the tense algebra B was representable in its Dedekind-MacNeille completion. Representation
theorems for dynamic and tense algebra were explicated in details through examples. In our fu-
ture work, LB-valued general fuzzy automata will be defined and examined in details based on
topologies and topological characteristics.
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