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Abstract

In this paper, we introduce the notions of Belluce lattice
associated with a bounded BCK-algebra and reticula-
tion of a bounded BCK-algebra. To do this, first, we
define the operations A, Y and LI on BC' K-algebras and
we study some algebraic properties of them. Also, for
a bounded BCK-algebra A we define the Zariski topol-
ogy on Spec(A) and the induced topology 74 rrqz(4) O1
Maz(A). We prove (Max(A), 7 nmaz(4)) 1S @ compact
topological space if A has Glivenko property. Using the
open and the closed sets of Max(A), we define a congru-
ence relation on a bounded BC K-algebra A and we show
L4, the quotient set, is a bounded distributive lattice.
We call this lattice the Belluce lattice associated with A.
Finally, we show (L4,pa) is a reticulation of A (in the
sense of Definition and the lattices L4 and Sy are
isomorphic.
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1 Introduction

In [4], Belluce defined the reticulation for non-commutative rings (for commutative rings see [17]).
Using this model, the reticulation was defined for others classes of universal algebras: MV -algebras
(B]), BL-algebras ([13]), residuated lattices ([14], [I5]), Hilbert algebras ([5]) and quantales ([g]).
Generally speaking, the reticulation for an algebra A of types mentioned above is a pair (L4, A)
consisting of a bounded distributive lattice L4 and a surjection A : A — L 4 such that the function
given by the inverse image of A induces (by reticulation) a homeomorphism of topological spaces
between the prime spectrum of L 4 and that of A. Using this construction many properties can be
transferred between L4 and A.

In this paper, we construct the Belluce lattice associated with a bounded BC K-algebra and
we define the reticulation of a bounded BCK-algebra (in the sense of Definition [5.1)). Also we
prove several properties of it.
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The paper is organized as follows: In Section 2, we review some relevant concepts relative to
BCK-algebras. Also, we define the new operations A, Y and U on BCK-algebras and we study
the algebraic properties of them.

For a bounded BCK-algebra A, in Section 3, we study the topological spaces Spec(A), the
prime spectrum of A, and Max(A), the maximal spectrum of A, using a standard method ([I]).
The family 74 = {D(S) : § C A} is a topology on Spec(A) having {D(z) : = € A} as basis.
The topology 74 is called the Zariski topology on Spec(A) and the topological space (Spec(A), T4)
is called the prime spectrum of A. Since Maxz(A) C Spec(A) we can consider on Maz(A) the
topology induced by Zariski topology. So, we obtain a topological space (Max(A), T4 raz(4))
called the mazimal spectrum of A.

If BC'K-algebra A has Glivenko property, then Maxz(A) is a compact topological space (The-

orem |3.10)).

Using the open and the closed sets of Maxz(A), in Section 4, we construct and study the
Belluce lattice L4 associated with a bounded BCK -algebra A (Theorems and .

In Section 5, we introduce the notion of reticulation of a bounded BC K-algebra and prove that
the uniqueness of this reticulation (Theorem [5.2)). Finally, we show that (La,pa) and (Sa, Varaz)
are reticulations of A and L4 and S4 are isomorphic (Corollaries and .

2 Preliminaries

Definition 2.1. ([I1I], [I12]) A BCK -algebra is an algebra (A, —, 1) of type (2,0) such that the
following axioms are fulfilled for every x,y, z € A:

)
)
B) (z—y) = (y—=2) = (@—2)]=1
)
)

(K) 2 — (y—>x)=1.

For examples of BC K-algebras, see [I1] and [12].

If A is a BC'K-algebra, then the relation z < y iff x+ — y = 1 is a partial order on A; with
respect to this order 1 is the largest element of A. A bounded BCK-algebra is a BC K-algebra A
with the smallest element 0; in this case for £ € A we denote x* = x — 0.

A bounded BC K-algebra A has Glivenko property (see [7]) if it satisfies the following condition:

(GQ) (x = y)™* =z — y**, for every x,y € A.
For a BCK-algebra A and z1,...,z,,2 € A (n > 1) we define (z1,...,zn;2) = ©1 — (v2 —
From [6] and [12] we have the following rules of calculus:

() z—=1=1l1—-z=zzx<y—z,z<(x—y) =y

(c2) (x=y) =2y my=2—y;

(c3) ifz<y,thenz—oz<z—oyandy— 2z <z — z
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(1) z—=y<(z—2x)—=(z—=y) <z—(r—>vy), forevery z,y,z € A.

In a bounded BC'K-algebra A, for z,y,z € A we have the following rules of calculus (see [7],
[10], [11] and [12]):

(c5) 0*=1,1"=0,2 > y* =y — ", < ™ o™ = o™
(cg) o <a* > z,2 -y <y"— 2" and if z <y, then y* < z*.

Remark 2.2. Using (c5) we deduce that a bounded BCK -algebra A has Glivenko property iff
(x = y)*™* =™ — y**, for every x,y € A.

If A is a bounded BC'K-algebra, then for z,y € A we denote z Yy =2* - yand z Ay = (z —
o)
Proposition 2.3. Let A be a bounded BCK -algebra and x,y,z € A. Then:

(c7) zA0=0, z A1 =2 and x A x* =0

k3%

(cs) zAy=y Az <a™, y™;

(ci0) z,y<zYy, aY0=a" zYl=1 zYa" =1

Y (yYz)=yY(xYz)and (xYy)Yz<zxY (yY z);

)
)
(co) ifx <y, thenz A 2 <y A z;
)
(c11)
)

(c12) A (z—y) <y™, 2 Ay™ =z Ay
Proof. (¢7). 2 A0=(z = 0")"'=(z—=1)*=1"=0,zAl=(z = 1")* =2 andz L z* = (z —
x**)* — 1* — 0'

(cg). x Ay = (x — y*)* () (y = 2*)* = y Az and since 0 < y*, by (¢3), z* < x — y*, so
xz Ay <™. Similarly, z A y < y**.

(cg). Using (c3), from 2 < y we deduce y — z* <z — z*, so, (x — z*)* < (y — 2z*)*. Hence
TAhz<yAhz.

(c10). From (¢1) and (c3), z,y < xYy =2* = y. Also, Y0 =2* - 0=z, ayl=2*—>1=1
and x Y ¥ =2 — 2" = 1.

(c11). We have 2* < (2" — y) -y < y* = (" = y)* < ((z*¥ = v)" — 2) = (y* — 2).
Therefore,

l=2"=>[((z"=y) —2) =W —=2)]=0(z">y)" = 2) = (¥ > (¥ = 2)).

Thus, (z* = y)* — 2z < 2" — (y* — z). We deduce that

Y (yyz)=2" >y =2)>@" —-y) —-z=(Yy) Y=z

Also, z Y (y Y 2) =2* = (y* — 2) (g)y*—>(a;*—>z):yY(sz).

(c12). Since x — y < y* — z*, by (C), we have y* < (z — y) — z*. So by (¢5) and (cg),
v <z — (r—y) thus, z A (z = y) = [z = (z — y)*]* <y*™.

Also, z** Ay = (™ -y ) =@ >y ) =y a) ' =(y—- ") ' =yrez=xAry. O
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Proposition 2.4. Let A be a bounded BC K -algebra with Glivenko property and x,vy, z, 21, X2, ..., Tpn €
A, n>2. Then:

(x Ay)*=2* Yy* and (x Y y)* =z* Ly*;

ciy) T A(yAz)=(xAy) Az

C ok VK.
T AT A oo ATy = (21,22, oy Tp—1;T5) ™5

ife Az <y, then x <z — y**;

x Az <y*iff x<z—y™

)
)
)
)
)
) if (1,22, ., p;y) = 1, then x1 A 29 A oo A 2y < Y™

Proof. (¢13). We have z* Y y* = 2™ > y* =y > 2" =y = 2" and (z A y)* = (v — y*)
T — Y™ =z — y*, hence (x A y)* = z* Y y*.

G
Also, z* A y* = (2" — y*™)* @ (" = y)* ) =@ =y =Yy

(c14). Let x,y,z € A. Then
Ay Az =zA(zAy)=[z=(x Ay =" [z (" Yy
*k A () sy (©) N
—Ea @ oy L s o) Dy o)
Similarly, z A (y A 2) = [y — (x — 2*)]*. Using (c¢5) we deduce that z A (y A 2) = (x L y) A 2.
(c15). By induction on n, using the associativity of A we can write

TI ATy Ao ATy =21 A (T2 Ao Axy) = [21 = (T2 Ao A xp)*]" = [21 — (22, 0y Tp—1;2,) "]

(@)

= [r1 = (X2, ey Tp1; )| = [11 = (X2, ooy Tp—1; )] = (21, 22, ooy Tp—1;2,) "
(c16). f v A 2 < gy, then (v — 2*)* <y, so y* < (z — 2*)** D ¢ 5 o
<y —z2"=z—>y".
(c17). Suppose that z A z < y**. From (ci6) we deduce that x < z — (y™)** = 2z — y*™.

Conversely, if x < z — y*™, then x < y* — 2*. Thus, y* <z — 2" =z — 2™ © (x — 2*)*. We
deduce that (z — z*)* < y**, so x A z < y**.

(c18). Mathematical induction on n.

Consider n = 2 and (x1,x2;y) = 1, that is, 1 — (z2 — y) = 1. From y < y** we deduce that
1=z = (z2 = y) < x1 = (x2 = y**), hence 1 — (z2 — y**) = 1, that is, 1 < 29 — y™* =
y* — x5. Then y* < z1 — x4, hence (1 — z5)* < y**, that is, x1 A o < y**.

Suppose that the assertion is true for n—1 and let (x1, za, ..., xn;y) = 1. Since 1 = (21, x9, ..., Tp;y) =

G
(X1,@2, e, Tp—1;Tn, — y) then x1 A 22 A oo A 21 < (2, — y)™ © Ty — y**. From (c17), we
obtain x1 A z9 A ... A x,, < y**. L]

= x — z*, hence

Definition 2.5. [6] Let A be a BCK -algebra. A subset D of A is called a deductive system (or
filter) of A if 1 € D and for every z,y € A if x,x -y € D , theny € D.

A deductive system D is called proper if D # A. We denote by Ds(A) the set of all deductive
systems of A. If A is bounded, then a deductive system D is proper iff 0 ¢ D.
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Lemma 2.6. Let A be a bounded BCK -algebra and D € Ds(A). If z,y € D, then x Ay € D.

Proof. We have y — (z Ly) =y — (x — y*)* = (v — y*) — y* € D, since by (¢1), z < (z —
y*) — y*. Because y € D, we deduce that z A y € D. O

If Ais a BCK-algebra and S C A is a nonempty subset of A, we denote by (S) the lowest
deductive system of A (relative to inclusion) which contains S; (S) is called the deductive system
of A generated by S.

For two elements x,y € A and a natural number n > 1 we define x —, y =2z — (z — ...(v —
Y)...), where n indicates the number of occurrences of x.

Theorem 2.7. [6], [12] Let A be a BCK -algebra and S C A be a nonempty subset of A, D € Ds(A)
and a € A. Then:

(i) (S) = {x € A: there are n > 1 and ay,ay,...,a, € S such that (a1,az,...,an;x) = 1}; In
particular, (a) = ({a}) ={zx € A: a —, x =1, for somen > 1};

(i7) (Ds(A), Q) is a complete distributive lattice, where for Dy, Dy € Ds(A), D1 A Dy = D1 N Dy
and D1V Dy = <D1 @] D2>.

A proper deductive system P of a BC K-algebra A is called irreducible (prime) if it is a meet-
irreducible (meet-prime) element of the lattice Ds(A). Since (Ds(A), C) is distributive, then the
notions of irreducible and prime coincide. We denote by Spec(A) the set of all prime deductive
systems of A.

Theorem 2.8. [6], [I12] Let A be a BCK-algebra and P € Ds(A) such that P # A. Then the
following statements are equivalent:

(1) P € Spec(A);
(ii) if D1 N Dy C P with Dy, Dy € Ds(A), then D1 C P or Dy C P,
(ii1) for every x,y € A, if U(x,y) ={2€A:z2>x and z >y} C P, thenxz € P ory € P.
For a BC'K-algebra A, a subset I C A is called an ideal of A (see [6]) if:
(11) y € I and = < y imply z € [;
(1) for every x,y € I there exists z € I such that z,y < z.
Theorem 2.9. ([6]) Let A be a BCK-algebra and D € Ds(A).

(2) If I is an ideal of A such that D NI = 0, then there exists P € Spec(A) such that D C P
and INP =10 ;

(13) For each a ¢ D there exists P € Spec(A) such that a ¢ P and D C P;
(13i) D =nN{P € Spec(A) : D C P}.

A proper deductive system M of a BC K-algebra A is called mazimal if it is a maximal element
in the lattice (Ds(A),C). We denote by Maxz(A) the set of all maximal deductive systems of A.
Obviously, Max(A) C Spec(A).

In a BCK-algebra A, for z,y € A we denote z Uy = (xr — y) — y. Using (¢1) and (c2), we
deduce that z,y <z Uy and (zUy) > y=x — y.
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Theorem 2.10. ([9]) Let M be a proper deductive system of a bounded BCK -algebra A. Then the
following are equivalent:

(1) M € Max(A);
(13) if x ¢ M, then there exists n > 1 such that x —, 0 € M.

Theorem 2.11. ([9], Corollary 6.7) Let A be a BCK -algebra and M € Maz(A). For x,y € A, if
zUye M, thenx e M orye M.

Lemma 2.12. Let A be a bounded BCK-algebra, x € A and M € Max(A). Then x € M iff
e M .

Proof. If x € M, then since z < z** we deduce that z** € M.

Conversely, suppose that «** € M. If x ¢ M, then by Theorem (7i), we deduce that
x —, 0 € M, for some n > 1.

If n =1, then z*, 2™ € M imply that 0 € M, which is a contradiction.

If n > 2, then x —, 0 € M and 2™ = (x — 0) — 0 € M implies  —,—1 0 € M, hence
xr — 0 € M. Since z** € M we obtain 0 € M, a contradiction. We conclude that x € M. O

3 The topological spaces Spec(A) and Max(A)

Let A be a bounded BC'K-algebra, S C A and z € A. We denote D(S) = {P € Spec(A): S ¢ P}

and D(x) = {P € Spec(A) : x ¢ P}.

Proposition 3.1. Let A be a bounded BCK -algebra and S, S1, 52 C A. Then the following hold:
(1) D) =10 and D(A) = Spec(A);

)

(7i) if S1 C Sa, then D(S1) C D(S2);

(iii) D(S) = D((S));
) D(S1) = D(S2) iff (S1) = (S2);
)
)

if F,G € Ds(A), then F' =G iff D(F) = D(G);

(tv

(v

(vi) if S; C A, i €1, then D(US;) = U D(S;);

i€l el

(vii) if F; € Ds(A), i €I, then D('VIE) = 'UID(Fi);
1€ 1€

(viit) D({S1)) N D((S2)) = D((51) N (S2)).

Proof. (i), (i7). Obviously.

(7i1). A deductive system of A that includes S also includes (S), s (S) = D((S)).

(iv). First, we suppose that (S1) = (S2). From (iii) we have D(Sl) D((S1)) = D(< 2)) =
D(S3). Conversely, we suppose that D(S1) = D(S2). If (S1) = A, then D(S1) = D((S1)) = D(A) =
Spec(A) and D(S2) = Spec(A) so, (S2) = A. If we suppose that (S;) and (S2) are proper filters of
A, then applying Theorem (7i1), we obtain

(S1) =N{P € Spec(A) : (S1) C P} =n{P € Spec(A) : P ¢ D({51))}
= N{P € Spec(A) : P ¢ D((S2))} = N{P € Spec(A) : (S5) € P} = (Sh).
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(v). Follows from (iv) since F,G € Ds(A) implies F' = (F) and G = (G).
(vi). Using (i7), we deduce that U D(S-) - ( U S-) Conversely, let P € D( UISi). Then there
i€
exists ¢ € I such that S; ¢ P. ThlS is equivalent Wlth P e D(S;) C U D(S) Thus D('U[Si) =
1€
U D(S;).
icl
(vii). Follows from (7ii) and (vi).
(viii). Using (4i) we deduce that D((S1)N(S2)) C D((S1))ND((S2)). Let P € D((S1))ND((S2)).
From Theorem (ii), (S1) N (S2) € P, so P € D({S1) N (S2)). O

Theorem 3.2. For a BCK-algebra A, the family T4 = {D(S) : S C A} is a topology on Spec(A)
having {D(x) : x € A} as basis.
Proof. Using Proposition |3.1{we deduce that 74 is a topology on Spec(A). For S C A, S = US{a?},
xe
D =D = D(x). ]
0 D(S) = D( U ) = TD()

Definition 3.3. The topology T4 is called the Zariski topology on Spec(A) and the topological
space (Spec(A),T4) is called the prime spectrum of A.

For S C A and z € A we define V(S) = Spec(A)\D(S) = {P € Spec(A) : S C P} and
V(z) = Spec(A)\D(z) = {P € Spec(A) : x € P}.

Proposition 3.4. Let A be a bounded BCK -algebra and S, S1,S3 C A. Then the following asser-
tions hold:

(i) V(0) =0 and V(0) = V(1) = Spec(A);

(i7) if Sy C Sy, then V(S2) C V(S1);

(#11) V(S) =0 iff (S)

(iv) V(S) = Spec(A) iff S =0 or S = {1};

(v) V(S) = V((S));

(vi) V(S1) = V(S2) iff (S1) = (S2);

(vii) for F,G € Ds(A), V(F) = V(G) iff F = G;
(viii) V(S1) UV (S2) = V({S1) N (52)).

(iz) if S CAi € I, then V(US;) = OV(S)).

Proof. (1), (ii), (v). Obviously.

(iii). Suppose that V(S) = 0 and (S) # A. By Theorem [2.9(i), there exists P € Spec(A)
such that S C (S) C P. We deduce that P € V(S), a contradiction. Conversely, we suppose that
(S) = A. Tt V(S) # 0, then there is some P € Spec(A) such that S C P. Thus (S) C P # A, a
contradiction.

(iv). For S =0 or S = {1}, by (i), we deduce that V(S) = Spec(A).

Conversely, we suppose that V(S) = Spec(A) but S # () and S # {1}. Then thereis s € S, s #
1. By Theorem (ii), there exists P € Spec(A) such that s ¢ P. Thus, S € P, so P ¢ V(S). We
conclude that V' (S) # Spec(A), a contradiction.
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(vi). Let S7,S2 C A such that (S1) = (S2). Using (v), V(S1) = V({S1)) = V({S2)) = V(S2).
Conversely, let 51,52 C A such that V(S;) = V(Sz). Thus D(S1) = D(S2), so by Proposition
B-1(iv), (51) = (S2).

(vii). Follows from (vi), since F' = (F) and G = (G).

(viii). From (i7) and (v), since (S1) N (S2) C (S1), (S2) we deduce that V(S1) = V((S1)) C
V((S1) N (S2)) and V(S2) C V((S1) N (S2)). Thus, V(S1) UV (S2) C V((S1) N (S2)).

If PeV((S1)N{(S2)), then P € Spec(A) and (S1) N (S3) C P.

Using Theorem [2.8](ii), we deduce that (S;) C P or (Ss) C P. Hence P € V({S1)) UV ({S2)) =
V(S1) UV (S2). We conclude that, V({S1) N (S2)) = V(S1) UV (S2).

(iz). By duality from Proposition vi). O

Proposition 3.5. Let A be a bounded BCK -algebra and x,y € A. Then the following hold:

(i) if x <y, then D(y) C D(x);
(it) D(z) =0 iff v =1;
(iii) D(z) = Spec(A) iff (x) = A iff & —, 0 =1, for some n > 1;
(iv) D(z**) UD(y™) = D(x A y);

(v) D(z)N D(y) = D(U(x,y));

(vi) D(z) = D(y) iff () = (y)-

Proof. (i). If P € D(y), then y ¢ P. Clearly, x ¢ P, since if z € P, from z < y we deduce that
y € P, a contradiction. So, P € D(x), that is, D(y) C D(x).

(i3). D(z) = 0 iff V(z) = Spec(A) iff z = 1, by Proposition [3.4]iv).

(iii). D(z) = Spec(A) iff V(z) = 0 iff (x) = A, by Proposition [3.4(iii), iff 0 € (z) iff z —, 0 =1,
for some n > 1.

(tv). Since z A y < ™, y**, by (i), we deduce that D(z**), D(y**) C D(z A y), so, D(z**) U
D(y*™*) € D(z L y). Let P € D(x A y). Hence x Ay ¢ P. Then z** ¢ P or y** ¢ P since if
we suppose by contrary that z** € P and y** € P, using Lemma and (c12) we deduce that
r* Ay™ = x Ay € P, a contradiction. Thus, P € D(z**)UD(y**) and D(z Ay) C D(z**)UD(y**).
We conclude that D(z**) U D(y**) = D(z A ).

(v). Let P € D(z) N D(y). Thus, x ¢ P and y ¢ P. If we suppose that P ¢ D(U(z,y)), thus,
U(z,y) C P, so by Theorem (iii), r € P ory € P, a contradiction. Conversely, we suppose that
P e D(U(z,y)). Thus, U(z,y) € P, so there exists z € U(x,y) such that z >z, 2 > y and z ¢ P.
If by contrary, P ¢ D(x) N D(y), then x € P or y € P. Since z > z, y we deduce that z € P, a
contradiction. Hence D(z) N D(y) = D(U(z,y)).

(vi). Using Proposition [B.1{iv), D(z) = D(y) iff (z) = (y). O
Proposition 3.6. Let A be a bounded BCK -algebra and x,y € A. Then the following hold:
(i) if x <y, then V(x) C V(y);
(i7) V(z) =0 iff (x) = A iff £ =, 0=1, for some n > 1;
(791) V(z) = Spec(A) iff x = 1;
(i) V(@) NV(y™) =V(z L y);
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(v) V(2) UV (y) = V({U(z,9));
(vi) V(x) C D(z*).

Proof. (i) — (v). Follows from Proposition (1) — (vi).
(vi). If P € V(x), then « € P. If by contrary, 2* € P, then 0 € P, so, P = A, a contradiction.
So, z* ¢ P, that is, P € D(x*). Hence V(z) C D(x*). O

For a bounded BCK-algebra A, Max(A) C Spec(A), so we can consider on Max(A) the
topology induced by the Zariski topology and we obtain a topological space called the mazimal
spectrum of A.

For S C A and z € A, we define Dyq,(S) = D(S) N Max(A) = {M € Max(A) : S ¢ M},
Dirax(z) = D(z) N Max(A) ={M € Mazx(A):x ¢ M} and Vijar(z) = V(x) N Maz(A) ={M €
Max(A) : x € M}. Obviously, Dyjaq(x) = Mazx(A)\Viaz ().

Theorem 3.7. The set 74 pjap(a) = {Dmax(S) : S C A} is the family of open sets of the mazimal
spectrum of A and the family { Dpyrax () : @ € A} is a basis for the topology T nraz(a) of Mazx(A).

Proposition 3.8. Let A be a bounded BCK-algebra and x,y,z € A. Then the following hold:

(1) Varaw(0) = 0, Viagaz(1) = Maz(A), Dprag(0) = Maz(A), Daras(1) = 0;
) if ¥ <y, then Viraz(2) € Varaz(y) and Daaa(y) € Daraz(2);

(131) Vtax (2**) = Vagaz(2) and Dprar (™) = Dajas(x);
)
)
)

(

(10) Viaz(@ A (yU 2)) = Vigae((z A y) U (z A 2));
(
(

(ii

(U VMtaz .CI?) N VMax(y) = VMaac(x A y) and DMaz(x) U DMam(y) = DM&.I(x A y);

(Ui Virazx x) U VMa:L‘(y) = VMax(x U y) and DMax(x) N DMax(y) = -DMaa:(~r U y)

Proof. (i) and (i7). Follows from Propositions and

(i4i). For M € Max(A), using Lemma [2.12] z € M iff z** € M. Thus, Vasee(2**) = Vitaz(2)
and Dpjaq (™) = Dpas ().

(iv). Let M € Vijae(z A (yU 2)). Then 2 A (yU z) € M. Since z A (y U z) < 2™, (y U 2)*,
from Lemma z,yUz € M. But M € Max(A), so, from Theorem yeMorze M. If
z,y € M, by Lemma x Ay € M, so, (x Ay)U(x A z) € M. Analogous if z, z € M. We deduce
that M € Varaa((z L y) U (z A 2)), 50 Vigaz(z A (y U 2)) € Vagaz((x A y) U (z X 2)).

Conversely, let M € Ve ((x A y) U (x A 2)). We deduce that (x A y) U (x A z) € M. Using
Theorem 2.11, z Ay € M or x A z € M. Thus, z** € M and y** or z** € M. By Lemma [2.12
we have x € M and y or z € M. Since y,z < y U z we obtain y Ll z € M and from Lemma [2.6]
xA(yUz) € M,so M € Vg (xA(yUz)). We deduce that Viga. ((z Ay)U(zA2)) C Vigez(z A (yUz)).

(v). From Proposition we deduce that

VMaa:(x) N VMaz(y) = VMax(x**) N VMax(y**) - VMax(x A y)

Then, Dyraz() U Dpraz(y) = Dafaz(z A y).

(vi). Since z,y < x Uy, by (ii), we deduce that Visae (%), Varar (y) € Vagae (U y) so, Vasae(x) U
Viaz (Y) € Viraz(z U y). Conversely, let M € Vi (x Uy). Using Theorem we deduce that
x € M ory € M. Hence M € Virar() U Varaz(y), s0, Varaz () U Viraz(y) = Vigae(x Uy). We
conclude that Dpsaq(2) N Dafaz(y) = Dasas(xz Uy). d
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Proposition 3.9. Let A be a bounded BCK -algebra with Glivenko property. Then Dy, () is a
compact set in Max(A), for every x € A.

Proof. We prove that any cover of Dy, () with basic open sets contains a finite cover of D4, ().
Let Dyjar(z) = 'UIDMaI(xi). Using Proposition (vi), Dpfaz(z) = DMax('UI{xi}). From Propo-
1€ 1€

sition [3.1)iv), we deduce that (z) = ({z; : i € I}), so, x € ({x; : i € I}). Using Theorem [2.7] there
are n > 1 and iy, ...,4, € I such that (z;,, %y, ..., T, ;) = 1.

We prove that Dy () = Darar(2i;) U ... U Daraa(2,).

From (x;,, iy, ..., T4, ; ) = 1, using (c18) we deduce that z;; A ... Ax;, < x**, so, by Proposition
3.8} we obtain

DMax(fB) = DMa:c(x**) - DMa:z:(wii Ao A .%'Zn) = DMax(xii) U...u DMaa:(xin)-
Since Dpjag(zi,) U ... U Dajag(24,) C 'UIDMax(.TZ‘) = Djjaz(x), the other inclusion is obvious. [
1€

Theorem 3.10. If A is a bounded BC K -algebra with Glivenko property, then Max(A) is a com-
pact topological space.

Proof. Since Max(A) = Dprqaz(0), by Proposition [3.9] we deduce that Maxz(A) is compact. O

4 The Belluce lattice associated with a bounded BC K-algebra

Let L be a bounded lattice. A nonempty subset F' of L is called a filter of L ([2]) if it satisfies:

(f1) 1€ F;
(f2) if z,y € F, then x Ay € F;

(fs) ifz e Fyye L,and x <y, then y € F.

The set of all filters of L is denoted by F'(L); if L is a distributive lattice, then (F'(L),C) is
also a distributive lattice, see [2]. A filter F' of L is called proper if F # L.

For a distributive lattice L and P € F(L), P # L, the following are equivalent: [P is a
meet-prime element in F(L)] iff [P is a meet-irreducible element in F(L)] iff [for every x,y € L if
xVy€ P, thenx € Poryé€ P

A proper filter P of a distributive lattice L is called prime if it verifies one of the above
equivalent conditions, see [2]. The set of all prime filters of L is denoted by Spec(L) and it is
called the prime spectrum of L. For S C L,z € L we denote D(S) = {P € Spec(L) : S ¢ P} and
D(z) = {P € Spec(L) : x ¢ P}. It is known that the family {D(S) : S C L} is a topology on
Spec(L) and the family {D(z) : z € L} is a basis for this topology.

Also, we recall that a proper filter M of a lattice L is called mazimal (see [2]) if it is a maximal
element of the set of all proper filters of L. The set of all maximal filters of L is called the mazimal
spectrum of L and it is denoted by Maxz(L).

In a lattice L for S C L and € L we denote Dpqz(S) = {M € Max(L) : S ¢ M} and
Dyjaz(xz) = {M € Max(L) : « ¢ M}. If L is distributive, since Max(L) C Spec(L), the family
{Dnraz(S) : S C L} is a topology on Max(L) having {Dprez(z) : © € L} as a basis.

Now let A be a bounded BC K-algebra. We define a binary relation = on A as follows: for
z,y € A, x =y iff for any M € Max(A), (x ¢ M iff y ¢ M) iff for any M € Max(A), (x € M iff
yeM).
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Remark 4.1. From Pmposz’tz’on forz,y € A, x =y iff Vivaz(®) = Varaz(y) iff Darax(z) =
Djaz(y) iff () = (y)-

Proposition 4.2. = is a congruence relation on A with respect to A and L.

Proof. 1t is obvious that = is an equivalence relation on A. Let x,y, z,t € A such that x = y and
z=t. Weprovethat r A z=y AtandazlUz=yUt.

Let M € Max(A). If z A z € M, since by (cg), x A z < &**, 2** then ™, 2** € M. From Lemma
we deduce that x, z € M. Since x = y and z =t we have y,t € M. By Lemma [2.6] we obtain
yAte M.

If 21Uz € M, by Theorem [2.11 2 € M or z € M. Since = y and z = ¢ we deduce that y or
t € M, hence y LIt € M, since y,t <y Ut O

For x € A we denote by [z] the congruence class of x and by L4 the quotient set Lo = A/ =
= {[z] : v € A}. Also, let ps : A — L4 be the canonical surjection defined by pa(x) = [z], for
every x € A.

Obviously, on Ly the relation [z] C [y] iff for every M € Max(A), x € M implies y € M is an
order relation on A.

Proposition 4.3. Let A be a bounded BCK -algebra and x,y € A. The following assertions hold:

Proof. (i). Follows from Lemma

(73). Let M € Max(L) such that x € M. Since z < y we deduce that y € M, so, [z] C [y].

(797). Suppose that [z] C [y]. Since x Ay < x**, by (¢) and (¢7) we deduce that [z Ay] T [x**] = [z].
Now, let M € Maz(L) such that = € M. Since [z] C [y] we deduce that y € M. Using Lemma
x Ay € M, so, [z] C [z A y]. We conclude that [z A y] = [z]. Conversely, we suppose that
[ A y] = [z]. Since z A y < y**, using (ii), we have [z A y] C [y**] = [y]. Thus, [z] C [y].

(). If [x] C [y], since y < z Uy, from (i7) we deduce that [y] C [z Uy]. Now, let M € Max(L)
such that x Uy € M. From Theorem x € Morye M. If y e M, then [x Uy|] C [y], so,
[xUy] = [y]. If z € M, since [z] C [y], we deduce that y € M, so, [z Uy| = [y]. Conversely, suppose
that [xUy] = [y] and let M € Maxz(L) such that z € M. Since z < xlly we obtain that xUy € M,
soy € M. Thus, [z] C [y]. O

Theorem 4.4. (La, A, V,[0],[1]) is a bounded distributive lattice, relative to the above order, in
which [x] A ly] =[x A y] and [z] V [y] = [z U y], for every z,y € A.

Proof. Obviously, [z A y] C [z], [y], for every z,y € A. Let z € A such that [z] C [z], [y]. To prove
that [z] C [z A y] we consider M € Max(A) such that z € M. By definition we deduce that
z,y € M, hence, using Lemma 2.6, A y € M. Thus, [z] A [y] = [z A y].

Clearly, [z],[y] C [z Uy|. Let z € A such that [z],[y] C [z]. To prove that [x Uy] C [2] we
consider M € Maz(A) such that LIy € M. By Theorem we deduce that z € M or y € M.
In both cases, z € M, hence [z] V [y] = [z U y] .
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Since [0] A [z] = [0 A 2] = [0] and [z] A [1] = [z A 1] = [2**] = [z] we deduce that [0] C [z] C [1],
for every x € A, so (L, A, V,[0],[1]) is a bounded lattice.

To prove the distributivity of Ly, let x,y,z € A. We show that [z] A ([y] V [2]) = ([z] A [y]) V
([z] A [z]). This is equivalent to show that [z A (yUz)] = [(z Ly)U (x A 2)]. First, let M € Max(A)
such that A (yU z) € M. Thus, M € Virge(z A (yU 2)) = Varae () N Varax(y U 2). Hence x € M
and (y € M or z € M). If z,y € M, then z Ay € M, so, (x A y)U (z A z) € M. Similarly if
x,z € M. We conclude that [z A (yU z)] C [(z A y) U (x A z)]. Conversely, let M € Max(A) such
that (x Ay)U(x A 2z) € M. Thus, z Ay € M orx Az € M. Sincez Ay,z Az <z A (yUz) we
deduce that z A (yUz) € M. Thus, [(x A y) U (x A 2)] C [z A (y U z)]. We conclude that Ly is a
distributive lattice. O

Definition 4.5. For a bounded BC K-algebra A, the bounded distributive lattice L 4 is called the
Belluce lattice associated with A.

Proposition 4.6. Let A be a bounded BCK -algebra and x,y € A. Then the following assertions

hold:

(Z) [x] E [y] Zﬁ DMax(y) g DMax(x);

(@) [2] = [y] iff (x) = (v);
(ti1) [z] =1[0] iff © —n 0 =1 for some n > 1;
() [x]=[1] iff z = 1.

Proof. (i). We have [z] C [y] iff [x A y] = [z] iff Darar(x) = Daraz(z A y) = Darar(x) U Dpfag(y) iff
DMaa:(y) - DMax(x)-

(7i). Follows from Remark

(2i). By (i1), [x] = [0] iff (x) = (0) = A iff + —,, 0 =1, for some n > 1.

(iv). By (1), [z] = [1] iff (z) = (1) iff (x) = {1} iff x = 1. O

We recall that if A and B are two BC K-algebras, then f : A — B is a morphism of BCK-
algebras if f(z — y) = f(x) — f(y), for every z,y € A. If A and B are bounded BCK-algebras,
we ask that f(0) =0, see [12].

We denote by BCK the category of bounded BC K-algebras and by Ld(0,1) the category of
bounded distributive lattices.

Remark 4.7. If f : A — B is a morphism in BCK, then for every x,y € A, f(z*) = (f(x))*, f(z A
y) = f(z) A f(y) and f(zUy) = f(z)U f(y).

Proposition 4.8. Let f : A — B be a morphism in BCK.
(i) If D € Ds(B), then f~Y(D) € Ds(A) and if D is proper, then f~*(D) is also proper;
(ii) If M € Max(B), then f~(M) € Max(A);

(#i7) If x,y € A such that Dyraz(x) = Daraz(y), then Darar(f(2)) = Darax(f(y))-

Proof. (i). For D € Ds(B), since f(1) = 1 we deduce that 1 € f~1(D). Let z,y € A such that
v,z —y € f~YD). Then f(z), f(x — y) = f(x) — f(y) € D. Since D € Ds(B) we deduce that
f(y) € D, hence y € f~1(D), that is, f~1(D) € Ds(A). If D is proper, then D # B, so 0 ¢ D. If
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YD) = A, then 0 € f~1(D), hence 0 = f(0) € D, a contradiction. We deduce that f~1(D) is a
proper filter of A.

(ii). For M € Max(B), using (i), f (M) # A. To prove that f~1(M) € Maz(A), let z € A
such that z ¢ f~!(M). By Theorem there exists n > 1 such that f(x —, 0) = f(z) =, 0 €
M. Thus x —, 0 € f~Y(M), so, f~1(M) € Max(A).

(iii). For M € Maz(B), using (ii), f~1(M) € Maz(A). We have M € DMax(f( ) iff f(x) ¢ M
iff 2 ¢ [~ (M) iff f~1(M) € Dagae(a) iff (M) € Dagauly) il y ¢ f1(M) iff f(y) & M iff
M € Doz (f(y)). We deduce that Dasaz(f(2)) = Daraz(f(y))- O

Theorem 4.9. Let f : A — B be a morphism in BCK. Then R(f) : La — Lp defined by
R()([z]) = [f(x)], for every x € A, is a morphism in Ld(0,1) with the property that pgo f =
R(f) o pa.

Proof. By Proposition [4.8] (iii), we deduce that R(f) is well-defined. Clearly, R(f)([0]) = [f(0)] =
[0] and R(f)([1]) = [f(1)] = [1]. Let z,y € A. We have

RUN(2IA]) = RNz ry]) = [f(@Ay)] = [f (@) A f(W)] = [f(@)IALFW)] = R (2D ARG (D),

and

R(N([z]VIy]) = R(NH(x0y) = [f(zUy)] = [f )V f )] = [f @)V (y)] = RUH[DVRE)([Y)-

We deduce that R(f) is a morphism in Ld(0,1).

Since pa(x) = [z] and pp(f(2)) = [f(2)] we deduce that R(f)(pa(z)) = pp(f(z)), so (R(f)
pa)(z) = (pp o f)(x), for every x € A. Thus, pgo f = R(f) opa. O

For every A € Ob(BCK) we denote R(A) = L4. In this way, we define a functor R : BCK —
Ld(0,1) and we called R the reticulation functor.

Lemma 4.10. Let f : A — B be an injective morphism in BCK and x,y € A such that (f(x)) =
(f(y)). Then (z) = (y)-

Proof. Let z € (x). Then  —, z =1 for some n > 1 and f(x) —, f(z) = f(1) = 1. Thus, f(z) €
(f(x)) = (f(y)), so there exists m > 1 such that f(y) —, f(z) = 1. Hence, f(y —m 2) = f(1).
Since f is injective we deduce that y —,, z = 1, so, z € (y). Hence (x) C (y). Similarly, (y) C (x),
so (z) = (y). O

Theorem 4.11. The reticulation functor R preserves injective and surjective morphisms.

Proof. Let f : A — B be an injective morphism in BCK and z,y € A such that R(f)([z]) =
R(f)([y])- Then [f(x)] = [f(y)] and using Proposition [4.6]ii), we obtain (f(z)) = (f(y)). Since f
is injective, by Lemma [4.10] (z) = (y), hence [z] = [y]. We deduce that R(f) is injective.

Now, let f : A — B be a surjective morphism in BCK and we consider y € B. Then there exists
x € A such that y = f(z). We obtain R(f)([z]) = [f(x)] = [y], that is, R(f) is surjective. O

We recall that for a set 7" we denote P(T) ={X : X C T}.
Using this notation, for a bounded BC K-algebra A, we consider the map p* : P(La) — P(A),
P (S) = p,'(S) = {z € A:pa(z) = [x] € S}, for every S C La.

Remark 4.12. Since pa is a surjective map, we get p’ is one-to-one and pa(p%(S)) = S, for
every S C Ly.
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Theorem 4.13. Let A be a bounded BCK -algebra.
(1) If F € F(La), then p%(F) € Ds(A) and if F' is proper, then p%(F') is also proper;
(13) If M € Max(A), then pa(M) € Max(Ly).

Proof. (i). Obviously, 1 € p% (F') since pa(1) = [1] € F. Let x,y € A such that z,x — y € p%(F).
Then [z], [z — y] € F, hence [z] A [z — y] = [z A (x — y)] € F. Using (c12), z A (z = y) < y**, so,
by Proposition [4.3] [z A (z — y)] C [y*™*] = [y]. We deduce that [y] € F, so y € p’ (F) and p’ (F) €
Ds(A). If F is proper, then F' # Ly. Since pY is one-to-one we deduce that p* (F') # p*(La) = A,
so p* (F') is proper.

(73). Since M € Max(A) we have M # A, so, there exists x € A\M. If pa(M) = Ly, then
Pi(pa(M)) = p%(La) = A. Thus z € p¥(pa(M)), hence pa(xz) = [z] € pa(M), so there exists
y € M such that [z] = [y]. Since x = y and y € M we deduce that z € M, a contradiction. Thus
M # A implies pa(M) # L. To prove pa(M) € F(Ly), obviously [1] = pa(1) € pa(M) and let
o, € pa(M), that is, a = [z], f = [y| with z,y € M. We have a A 8 = [z] A [y] = [z A y]. Using
Lemma x Ay € M,soaNpP e pa(M). Now, let a € pa(M) and B € Ly such that a C S.
Then o = [z], z € M and 5 = [y], y € A. Since o C 3, we have a = a A S = [z] Ay] = [z A y],
hence x = (x Ay). But 2 € M sox Ay € M and M € Viar(z A y) = Vigaz(z) N Varaz(y).
Thus, M € Vaaz(y), so, y € M. Hence 8 = [y] € pa(M) and pa(M) € F(La). To prove that
pa(M) € Max(La), let F € F(Lya) such that pa(M) C F. Then p’(pa(M)) C p%(F). Since
M C p(pa(M)) we have M C p%(F). Since p%(F) € Ds(A) and M € Max(A) we obtain
M = p(F) or p%(F) = A. If py(F)) = A, then pa(p’(F)) = pa(A) = La, hence by Remark
F =1Ly If M =p*(F), then pa(M) = pa(p’y(F)) = F. So, pa(M) € Max(Ly). O

5 The reticulation of a bounded BC K-algebra

Definition 5.1. A reticulation of a bounded BCK -algebra A is a pair (L, \), where (L, A, V,0,1)
is a bounded distributive lattice and A\ : A — L s a surjective map that satisfies the following
conditions for every x,y € A:

(r1) A0) =0, A(1) =1, Az L y) = Ax) A Ay) and Mz Uy) = Az) V A(y);
(r2) Az) = Ay) iff (x) = (y).

Theorem 5.2. Let A be a bounded BCK -algebra. If (L1, A1) and (Lo, \2) are two reticulations of
A, then there exists a unique isomorphism of bounded lattices f : L1 — Lo such that f o A1 = Xo.

Proof. Let z € Ly and x € A such that z = A\ (z). We define f(z) = \a(z). Obviously, fo A1 = Aa.
If 21,290 € A such that z; = Ai(x1) and 2z = A(22), using (r2) we have A\j(x1) = Ai(z2) iff
<£L’1> = <l‘2> iff )\2({[}1) = )\2(!1)2).

These implications prove that f is well-defined and injective. The surjectivity of Ay implies
that f is surjective. We conclude that f is bijective. Also, we have f(0) = f(A1(0)) = X2(0) =0
and (1) = f(n (1)) = da(1) = 1.

Let x,y € Lj. Since A\ is surjective, there are a,b € A such that z = A\j(a) and y = A1 (b).
Applying (1) we obtain the following equalities:

fl@Ay) = f(Ai(a) A (b)) = f(M(a A D)) = Aa(a A b)
= A2(a) A A2(D) = f(Ai(a)) A fF(A(D)) = fz) A f(y),
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and analogous f(xVy) = f(x)V f(y). We conclude that f is an isomorphism in Ld(0, 1) such that
fodl =M.

If we have two isomorphisms of bounded lattices f,g: L1 — Lo such that foA] = goA; = Ao,
then for y € L; there exists x € A such that y = A\i(z). We have f(y) = f(Ai(z)) = Aa(z) and
9(y) = g(A1(x)) = Ma(z) = f(y), hence f(y) = g(y) for every y € L. We conclude that f =g¢g. O

From Theorem [£.4] and Proposition [4.6) we deduce that:
Corollary 5.3. If A is a bounded BCK -algebra, then the pair (La,pa) is a reticulation of A.

We recall that in Section 4, for z € A we defined Viyor(z) = {M € Max(A):x € M}.

Now, we consider Sa = {Varaz(z) : v € A} C P(Maz(A)).

Following Proposition and Remark we deduce that S4 is a distributive sublattice of the
lattice (P(Maz(A)),C) and

Corollary 5.4. If A is a bounded BCK -algebra, then the pair (Sa, Viraz) is a reticulation of A.
From Theorem Corollaries [5.3] and [5.4] we obtain:

Corollary 5.5. The lattices Ly and S4 are isomorphic.

6 Conclusion

We have introduced the concept of Belluce lattice L4 associated with a bounded BCK algebra A,

that enables us to transfer many properties between L4 and A. Moreover, we gave a description

of the reticulation for a bounded BCK algebra and we proved the uniqueness of this reticulation.
For future work, we could generalize these results to the non-commutative case.
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