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1 Introduction

The theory of hyperstructures was introduced in 1934 by Marty [6] at the 8th congress of Scandina-~
vian Mathematicians. This theory has been subsequently developed by the contribution of various
authors. Hyperstructures have many applications to several sectors of both pure and applied sci-
ences. In [p], Jun et al, applied the hyperstructures to BC'K-algebras and introduced the notion
of a hyper BC K-algebra which is a generalization of BC K-algebra and investigated some related
properties. In [3], Borzooei et al, defined the notions of hyper I-algebras and hyper K-algebras.
Then they stated and proved some related theorems. Some basic definitions and propositions are
found in [2], [L0], [9] and [§].
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Some researchers applied the hyperstructure to some accepts of lattice theory and the notion
of hypersemilattice was introduced by Z. Bin et al. in [l] and the notion of superlattice was
introduced by Mittas and Konstantinidou in [[].

In this paper, we provide some conditions for a hyper K-algebra to be a hypersemilattice. In
follow, we introduce the notions A and V on hyper K-algebras and we prove that every hyper
K-algebra of order 3 by some conditions is a superlattice.

2 Preliminaries

In this section, we give some definitions and theorems that we need in the next sections.
Let H be a non-empty set and o a function from H x H to P(H) — {0}, where P(H) denotes

the power set of H. For two subsets A and B of H, denote by Ao B theset |J aob. We shall
acAbeB
use z o y instead of x o {y}, {x} oy, or {z} o {y}.

Definition 2.1. [4] Let L be a non-empty set endowed with hyperoperations A and V. Then
(L,N\,V) is called a hyperlattice if for any x,y,z € L, the following conditions hold:

(HLl) z€ex ANz, z €V,

(HL2) xANy=yAz,zVy=yVz,

(HL3) (xAy)ANz=zA(yAz),

(HLA) zexN(zVy),z€xV(xAy).

Definition 2.2. [l] Let L be a non-empty set with a binary hyperoperation o on L such that for
all x,y,z € L, the following conditions hold:

(i) z € xox,

(ii) zoy=youx,

(iii) (xoy)oz=umo (yoz).

Then (L, o) is called a hypersemilattice.

Definition 2.3. [[]] A superlattice is a partially ordered set (S, <) with two hyperoperations V and
A such that for all z,y,z € S, the following properties hold:

(S1)zr€xVaoandzr € x N,

(S2) xNVy=yVaxandzxANy=yAx,

(S3) (xVy)Vz=aV(yVz) and (x Ay)Nz=xA(yAz),

(S4) z€xV(zrAy) andx € x A (xVy),

(S5) ifx <y, theny €xVy andx € x Ny,

(S6)y € xVy orxze€xAy implies x < y.

Definition 2.4. [B] By a hyper K-algebra we mean a non-empty set H endowed with a hyperop-
eration "0” and a constant O that for all x,y,z € H, it satisfies in the following axioms:

(HK1) (xoz)o(yoz) <zoy,

(HK2) (xoy)oz = (roz)oy,

(HK3) x < z,

(HK4) x <y and y < z imply x = vy,

(HK5) 0 < z,

where x < y is defined by 0 € x oy and for every A,B C H, A < B is defined by da € A,db € B
such that a < b.

Definition 2.5. [3] Let (H,0,0) be a hyper K-algebra. Then (H,o,0) is said to be a commutative
hyper K-algebra, if for all x,y € H,

zo(roy)=yo(yox).
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Definition 2.6. [3] Let (H,o,0) be a hyper K-algebra. Then (H,o,0) is said to be a positive
implicative hyper K -algebra, if for all x,y,z € H,

(zoy)oz=(zoz)o(yoz).

Definition 2.7. [3] Let (H,0,0) be a hyper K-algebra. Then (H,o,0) is said to be a bounded
hyper K -algebra, if there exists an element 1 such that x < 1, for all x € H.

Theorem 2.8. [3] Let H be a hyper K-algebra. Then for all xz,y,z € H and A,B C H, the
following statements hold:

(i) z€xo0,

(1i) xoy < zeo xoz <y,

(iii) (zoz)o(zoy) <yoz,
(iv) o (woy) <y,

(v) zoy < x,

(vi) Ao B < A,

(vii) AC B= A< B,

(viii) (AoC)o(AoB) < BoC(C,
(ixr) AoB< (C < AoC < B.

3 Relation between hyper K-algebras and hypersemilattices

In this section, we prove that every commutative and positive implicative hyper K-algebra is a
hypersemilattice.

Definition 3.1. In any commutative hyper K-algebra, for all x,y € H, we denote

zNy={z|z€yo(yox)}.

Proposition 3.2. Let H be a commutative hyper K-algebra. Then for all x,y € H, the following
properties hold:

() zxNy<zandzNy <y,

(1) zNy=yNux,

(i4i) z € z N,

() If z <y, then x € zNy.

Proof. (i) Let x,y € H. By Theorem Z8(ii7) and (v), x o (xoy) < z and z o (z oy) < y. Hence
zNy<zxzandxNy <y.

(73) The proof is straightforward.

(797) Since 0 € z oz, we get 00 C z o (zox). Then by Theorem P8(i), € x 0 0. Hence,
x€xo(rox), and sox € xNx.

(iv) Let <y, for z,y € H. Then 0 € xoy and so x00 C zo(zoy). Thus by Theorem I3(7),
x€xol,andsox €xo(roy). Hence, x €eyNe=xNy. O

Theorem 3.3. Let H be a commutative and positive implicative hyper K-algebra. Then for all
x,y,z € H,
(xNny)Nz=zNn(yNz).
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Proof. Let z,y,z € H. Then

(xNy)Nz = U{uﬂzluexﬂy}
= Jfuo(wos) |ueyo(yon)
= (yolyox))o((yo(yor))oz)
(yo(yowx))o((yoz)o(yox)) (by (HK2))

yox) (by Definition @)
yoz) (by (HK2))
(yoz)o(yoz)) (by Definition @)

= (Jentlteynz}
= zN(yNz).

O

Corollary 3.4. Let (H, o) be a commutative and positive implicative hyper K -algebra. Then (H,N)
s a hypersemilattice.

Proof. By Definition 2, Proposition B2 and Theorem BZ3, the proof is obvious. 0
Example 3.5. Let H = {0,a,b} and the hyperoperation” o” on H defined as follows:

o ‘ 0 a b

0({0} {0,a} {0,a,b}
a|{a} {0,a} {0,a,b}
b {6} {b} {0,a,b}

Then (H,o,0) is a commutative positive implicative hyper K-algebra. Hence by Corollary B4,
(H,N) is a hypersemilattice.

4 Relation between hyper K-algebras and superlattices

In this section, we introduce some operations such as A and V on hyper K-algebra and investigate
some properties and relation between them. Then we prove that any bounded commutative hyper
K-algebra with some conditions L is a superlattice.

Definition 4.1. Let (H,0,0) be a hyper K-algebra. Then (H,o,0) is said to be a complemented
hyper K-algebra, if H is bounded and 1 o x has a least element with respect to <, for all x € H.

We note that if H is bounded, then by (HK4) we can easily get that 1 is unique. Also, if H
is complemented, then we use z’ to denote min(1 o z).
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Example 4.2. Let H = {0,a,b, 1} and hyperoperations” o1” and” os” on H defined as follows:

1|0 a b 1 02[0 o« b 1

0 |H H H H 0 |H H H H
a |{a} H {a,b,1} H a |{a} H {a,b,1} H
b | {b} {a,b,1} H H b | {b} {a,b,1} H H
1 [ {1} {a, b} {a} H 1 | {1} {a,b,1} {a,1} H

Then (H,o3) is a bounded commutative hyper K-algebra. But (H,o1) is not commutative,
because
H=ao09sH=ao1(ao;1)# 101 (loja)=101{a,b} ={a,b}.

We can see (H,o) in Example is complemented but (H,o1) and (H,o2) are not complemented,
since min(1 o a) does not exist in both of them.

Definition 4.3. In any commutative hyper K-algebra, for all x,y € H, we define
xANy={z|z€yo(yox) such that z < x and z < y}.

By AN B we mean U aNb.
acAbeB

Proposition 4.4. Let H be a bounded commutative hyper K-algebra. Then for all x,y € H, the
following properties hold:
()rexAz,zexANl,1€1ANland0AN1=0,
(i) x Ny<z,xANy<yandxANy=yAx,

(i) A0 =0 Az = {0},

() If © <y, then x € x Ny,

(v) Ifx#1, then 1 ¢z ANl andl ¢ x A,

(vi) If et N1 = {a}, theny € x o1 implies © £ vy,
(vii) If e N1 = {x}, thenx,1 ¢ z o1,

(viii) If t N1 ={z}, then 0,1 ¢ 1oz,

(iz) If H is a chain respect to <, then x Ny # 0,
(x) If H is of order less than 5, then = ANy # 0.

Proof. (i) By (HK3),0 € xoxz. Hence 200 C z o (zox). By Theorem 2ZR(i), x € z 00 and so
x € xo(xox). Since x < x, we get € x Ax. By the similar way we can prove z € z A1, 1 € 1A1
and 0 € 0 A 1.

(i) By definition of A, the proof is obvious.

(791) By (HK3), 0 € z oz and by Theorem ER(i), 0 € xox C xo (z00). Thus 0 € z A 0. If
y € A0, then y < 0. By (HK5), 0 < y and by (HK4), we have y = 0. Hence 2 A0 = 0Az = {0}.

(tv) Let v < y for z,y € H. Then 0 € zoy and so x 00 C z o (z oy). By Theorem PZ3(i),
x€zxolandsox €xo(roy). Sincexz <y, weget x EyAxz=xAy.

(v) Ifx #1,thenz < 1, forall z € H. By (HK4), 1 £ x. By Definition 27, 1 ¢ = A 1. By the
similar way, we have 1 ¢ x A x.

(vi) Let x A1 ={z}. Suppose x < y. fyeczol, then0€xoy Cxo(xol). Since 0 <1 and
0 <z, we get 0 € xA1l={x}, which is a contradiction. Hence, if y € z 0 1, then = £ y.

(vii) Since x < x and x < 1, by (vi), we obtain z,1 ¢ z o 1.
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(viii) Let e A1 ={x}. f 1 €lox,then 0 € 1ol Clo(lox). Since 0 <1 and 0 < z, we
consequence 0 € x A 1 = {z}, which is a contradiction. Hence 1 ¢ 10 z. Also, since 1 £ x, we get
0 ¢ 1ox. Therefore, 0,1 ¢ 10 x.

(iz) By (iv) the proof is clear.

(z) Every bounded hyper K-algebra of order 2 and 3 is a chain and so by (iz) we imply zAy # 0
, for any x,y € H. Now, let H = {0,a,b,1} be a bounded commutative hyper K-algebra. Then
by (i), (ii) and (4¢i7), it is sufficient to prove a Ab # 0. If a < b or b < a, then by (iv) we get
aNb (). Now, suppose a £ b and b £ a. Then 0 ¢ (aob) N (boa). Since aob < a, there exists
u € aobsuch that u < a. Wenote 0 €aob, 1 £ aandb £ a. Thus u # 0,1,b and so u = a.
Hence a € aob. Thus 0 € aoa Cao(aob) and so 0 € a Ab. Therefore, a A b # (. O

Proposition 4.5. Let H be a commutative hyper K-algebra. If (x ANy) ANz =z A (y A z), for all
xz,y,z € X, then x Ay is the greatest lower bound of x and y.

Proof. By Proposition B4(ii), z Ay < x and x Ay < y for all z,y € H. Now, let z < z and z < y,
for some z,y,z € H. By Proposition B4(iv), z € z Az and z € z A y. By assumption,

zezANx C(zAyY)ANez=2AyANx)=2A(zAy).
Thus there exists t € x Ay such that z € 2 At and so z < t. Therefore, z < x A y. O

Example 4.6. In Ezamples BB and B2, we can see (H,o) and (H,o9) are bounded commutative
hyper K -algebras. By easy calculations we get

/\‘0 a b /\2‘0 - ' 1
0 ({0} {0} {0} {0}
0 {8} {8} {8} a |{0} {0,a} {0} {0,a}
Z {O} {O,a} {Oaa}b b | {0} {0}  {0,b} {0,b}
{0} {0,a} {0,a,b} 1 | {0} {0,a} {0,0} {0,a,b,1}

We can see that, above hyperoperations are associative.
The following example shows that the converse of Proposition B3 is not correct, in general.
Example 4.7. Let H = {0,a,b,1} and the hyperoperation” o” on H defined as follows:

0 a b 1
{0,a,b,1} {0,a,b,1} {0} {0}
{a,b,1}  {0,a,b,1} {0,a} {0}
{b} {b} {0,a,b,1} {0,a,b,1}
{1} {b} {a,b,1}  {0,a,b,1}

Then (H,o0,0) is a commutative hyper K-algebra. By routine calculations we get

_ o OO0

/\‘0 a b 1

0|{o} {0} {0} {0}
a|{0} {0,a} {0,a,b} {a}
b | {0} {0,a,b} {0,a,b} {0,a,b}
1{0}  {a} {0,a,b} {0,a,b,1}
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We can see that for all x,y € H, x Ay is the greatest lower bound of x and y but A is not associative
operator. Because

aN(IA1)=an{0,a,b,1} ={0,a,b} #{a} ={a} Al=(aAN1)AL.

Proposition 4.8. Let H be a bounded commutative hyper K -algebra. Then the following proper-
ties hold:

(i) If x, y or z equal to 0, then (x Ay) ANz=z A (yAz),

(i) (xANz) Nz =xA(xAx),

(iii) If e A& = {x} or {0,z} and x Ny = {z} or {0,z}, then (x Az) Ny =z A(xAy),

(iv) If t N1 ={0,2} and 1 N1 = {1} or{0,1}, then (x AN1)A1=xA(1A1),

(v) If tA1 ={0,2}, IN1 ={1,z} or{0,z,1} and xAx = {x} or {0,z}, then (xA1)A1l = xA(1A1).

Proof. The proof of (i) and (ii), by Proposition B4 (iii) and (¢7), is clear.

(737) We have four cases:

Case 1. Let zAz = zAy = {z}. Then (zAz)A\y = {z} Ay = {z} and zA(zAy) = 2 {z} = {z}.
Hence (z Az) Ny =z A (T Ay).

Case 2. Let x Az = {0,2} and z Ay = {z}. Then (x Ax) Ay = {0,2} Ay = {0,z2} and
A (zANy) =z AN{z} ={0,2}. Hence (x Ax) ANy =2x A (zAy).

Case 3. Let t Az = {z} and v Ay = {0,2}. Then (x Az) Ay = {z} Ay = {0,2} and
xA(xAy)=xzAN{0,2} ={0,2}. Hence (x Ax) Ay =z A (zAy).

Case 4. Let e ANz =2 Ay ={0,z2}. Then (z Ax) ANy={0,2} ANy ={0,2} and z A (x A y) =
x AN{0,2} = {0,z}. Hence (z ANz) ANy =z A (xAy).

(iv) Let 2 A1 ={0,z}. Then (x A1) A1={0,2} A1l ={0,z}. Thus by assumption, we have
two cases:

Case 1. f 1A1={1},then s A (1 A1) =2 A {1} ={0,z}. Hence (t A1)Al=aA(1A1).

Case 2. If IAN1={0,1}, then x A(1A1) =2 A{0,1} = {0,2}. Hence (xt A1)Al=aA(1A1).

(v) f e A1 ={0,2}, then (zA1)A1={0,z} A1 ={0,x}.

If 1Al ={1,z}, then zA(1A1) = xA{l,x2} = zA1lUzAz = {0,z}. Hence (zA1)A1l = zA(1A1).

If1A1={0,z,1}, then z A (1A1) =2 A{0,2,1} = {0,2}. Hence (x A1)A1=aA(1A1). O

Definition 4.9. Let H be a bounded commutative complemented hyper K-algebra. We say H
satisfies in conditions (L), if for all x,y € H, the following conditions hold:

(L) x Ay #0,
(L) 2’ oy =y o,
(L3) (2') = .

In the next example, we show that there exists a bounded commutative complemented hyper
K-algebra with condition (L). Also, we show that the conditions (L) and (Ls) are independent.

Example 4.10. (i) Let H = {0,a,1} and the hyperoperation” o” on H defined as follows:

‘ 0 a 1
{0}  {0,a,1} {0}
{a,1} {0,a} {0,a,1}
{1t {a 1} {0}

Then (H,0,0) is a bounded commutative hyper K -algebra and satisfies in condition (L).
(i) Let H = {0,a,1} and the hyperoperation” o” on H defined as follows:

— Q O|O0
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0 a 1

{0,a} {0,a,1} {0,1}
{a,1} {0,a,1} {0,a}
{1 {0ae1}

Then (H,0,0) is a bounded commutative hyper K-algebra and min(1l o ) exist, for all x € H.
Since o/ = min(1 0a) = min{1} = 1 and (a’)) = min(1 o 1) = min{0,a,1} = 0 # a, then H does
not satisfy in condition (Ls). Also, H does not satisfiy in condition (Ly). Because

— Q O| 0

'o0=000={0,a} # {0,a,1} =101=0"0o1.
(13i) Let H = {0,a,1} and the hyperoperation” o” on H defined as follows:

0 a 1

{0,1}  {0,a} {0,1}
{a,1} {0,a,1} {0,a,1}
{1} {e1} {01}

Then (H,o0,0) is a bounded commutative hyper K-algebra and min{l o x} exist, for all x € H.
Also, H satisfies in condition (L3). Since ’oa=00a = {0,a} anda’ ol =ao1l={0,a,1}, we
get (Lo) does not hold.

(iv) Let H = {0, a, 1} and the hyperoperation” o” on H defined as follows:

— Q O|O0

‘ 0 a 1

{0,a,1} {0,a,1} {0,a,1}
{a,1} {0,a,1} {0,a,1}
{1} {1 {0,a,1}

Then (H,o,0) is a bounded commutative hyper K-algebra and min(lox) exist, for allz € H. Also,
H satisfies in condition (Lg). Since ’ = min(l oa) = min{1} =1 and (/) =1 =min(lo1) =
min{0, a,1} = 0, we obtain (L3) does not hold.

—_ Q O| 0

Lemma 4.11. Let H satisfies in condition (L). Then the following statements hold:
(i) 0'=1and 1' =0,

(1i) 100 = {1},

(171) 000 =101,

(iv) If ' = x, for some x € H, then 0oz =xz01l, z00=10x.

Proof. (i) Since 0 € 101, we get 1’ = min(101) = 0. Then by (L3), we have 0/ = (1) = 1.

(#1) By (i), we get 0 = 1 and so min(1 00) = 1. Since z < 1, for all € H, it is clear that
100={1}.

(#i7), (iv) By (i) and (L2), the proof is clear. O

Notation. In any hyper K-algebras with condition (L), for all z,y € H, we define
xVy={z|z€e (@ ny)}.

By AV B we mean U aVb.
a€AbeB
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Proposition 4.12. Let H be a hyper K-algebra with condition (L). Then for all z,y € H the
following statements hold:

(i) x<xzVyandy <zVy,

(i1) x € x Vo,

(1ii) xVy =y Vuz,

() If x <y, theny € xVy,

(v) Ifr€x Ny ory € xVy, then x <y.

Proof. (i) By Proposition B4(ii), ' Ay’ < a, for all z,y € H. Hence, there exists u € ' Ay’ such
that u < a’. Then by (Ls), (2') ou' = (v/) o2’ =uoa’. Since 0 € (2') ou/, we get (z') </, and
sox <u € (2’ Ny'). Hence, x < x Vy. By the similar way, we can prove y < x V y.

(i4) By Proposition B4(3), 2’ € 2/ A 2/. Thus (2') C (' A2’), and so z € z V x.

(7i1) By definition of V and since H is commutative, the proof is clear.

(iv) Let x < y, for some x,y € H. Then by (Lg), ¥/ o2’ = (2') oy = x 0y. Since 0 € x oy,
we have 0 € ¥/ o 2/, and so 3/ < 2/. By Proposition B4(iv), y' € 2/ Ay'. Hence, (v') C (2 Ny')'.
Therefore, y € z V y.

(v) Let x € © Ay, for some z,y € H. By Definition B3, z < y. Now, let y € x V y. Then
y e (@ ANy) and so ¢ C ((2' Ay')) = a2’ ANy'. By Definition B3, v’ < 2’ and so (2/) < (v')".
Therefore, z < y. O

Proposition 4.13. Let H be a hyper K -algebra with condition (L). For any x,y,z € H, (xVy) =
ANy

Proof. Let uw € (x V y)', for some z,y € H. Then v/ C =V y, thus ' € (' Ay'), and so
u= () C((z’Ay)). Hence u € 2’ Ay'. Therefore, (zVy)' C 2’ Ay'. Now, suppose t € ' Ay/'.
Then t' C (2’ Ay') and sot' € xVy. Thust = (t') C (zVy)'. Hence, 2’ Ay C (zVy), and so
(xVy) =2 Ny O

Theorem 4.14. Let H be a hyper K-algebra with condition (L). For any z,y,z € H,
(xAy)ANz=xA(yAz)ifand only if (xVy)Vz=zV(yV 2).

Proof. Let (x Ay)ANz=xA(yAz) forall z,y,z € H. Then

(xVy)Vz = U{u\/z|u€x\/y}
= U{(u’/\z')'\uéx\/y}
= (HWA2) | d e(@vy)}
= U{(u’ N2 | €2’ Ay'} (by Proposition )
= (@AY AR
= @A@Y A
= (2’ A(yV 2)") (by Proposition )
= (J{@At) [teyvz}
= (Jzvilteyva)
= zV(yVz2)

Conversely, let (xVy)Vz=aV (yVz) for all z,y,z € H. By the similar way, we can prove that
(xANy)ANz=xA(YyA=z). O
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Theorem 4.15. Let H be a hyper K-algebra with condition (L) and A be associative. Then x V'y
is the lowest upper bound of x and y, for all x,y € H.

Proof. Let x < z and y < z, for some z,y, z € H. By Proposition B19(iv), z € xVz and z € yV 2.
Hence z € xVzCaV(yVz)=(xVy)Vz Hence there exists t € xV y, such that z € ¢tV z. Thus
by Proposition BTI2(v), t < z. Therefore, z Vy < z. O

The following example shows that the converse of Theorem B—T3 is not correct, in general.

Example 4.16. In Example B2, we can see (H,o) is a bounded commutative hyper K-algebras.

0 a b 1

{0,a,b,1} {a,b,1} {b} {1}
{a,0,1}  {a,b,1} {a,b,1} {1}
{o} {a,b,1}  {b,1} {1}
{1} {1} {1} {1}

By easy calculations we get (H,o0,0) is a hyper K-algebra with condition (L) and for all x,y € H,
x V y is the lowest upper bound of x and y but A is not an associative operator.

— o o<

Theorem 4.17. Let H be a hyper K-algebra with condition (L). Then for any x,y € H, we have
zexAN(xVy) andz €xV (zNy).

Proof. Since x < xVy, there exists t € xVy such that z < ¢t. Hence x € zAt and so z € x A (zVy).
Also, since x Ay < x, there exists u € x Ay such that v < = and so z € x V u. Therefore,
rexV(rAy). O

Corollary 4.18. Let H be a hyper K-algebra with condition (L) and A be associative. Then
(H,A,V) is a superlattice.

Proof. By Propositions B4(i), (i), (iv) and BI2 and by Theorems B14 and BT7, the proof is
obvious. ]

In the following, we prove that in any hyper K-algebra H of order 3 with condition (L), A is
associative and so by Corollary BI8, (H, A, V) is a superlattice.

Proposition 4.19. Let H = {0,a,1} be a hyper K-algebra with condition (L). Then the following
hold:

(i) a’ = a,

(17) a ANa = {a} or {0,a},

(1ii)) aN1=1ANa={a} or{0,a},

() Ifanl={a}, then 1 AN1={1}.

Proof. (i) By Lemma B11(¢), 0’ = 1 and 1’ = 0. If a’ = 1, then by (L3), a = (a/)) =1’ = 0, which
is a contradiction. By similar way a’ # 0. Thus a’ = a.

(1), (1ii) By Proposition B4(iv), 1 ¢ a Aa and 1 ¢ a A 1. Thus a Aa = {a} or {0,a}. Also,
aNl={a} or{0,a}.

(tv) If a A1 = {a}, then by Proposition @(vz) and (vii), we consequence a o1 = {0} and
loa=/{a}.

By Lemma B11(iv), ac0 =1oa = {a} and 0oa =ao 1 = {0}.

By (HK2), we have (ao1)o0 = (aoc0)ol and so 000 =aol={0}. Therefore, by Lemma
A1(4i7), 1 o 1 = {0}. Hence by Lemma BT(i7), 1o (lol) = 100 = {1}. Also, 1 < 1 implies
IA1={1}. O
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Theorem 4.20. Let H = {0,a,1} be a hyper K-algebra with condition (L). Then (z Ay) Az =
xA(YyAz), forall x,y,z € H.

Proof. By Proposition B8(7), if at least one of z, y or z are equal to {0}, then (zAy)Az = zA(yAz).
Also, if © = y = z = a, then by Proposition B3(ii), (x Ay) Az = x A (y A z). Hence we consider
the following cases:

Case 1. Assume x =y = a, z = 1. Then by Proposition B19(ii) and (iii), a A a = {a} or {0,a}
and a A1 ={a} or {0,a}. By Proposition B8(7ii), we obtain (a Aa) Al=aA (aA1l).

Case 2. Let x = a,y = 1,z = a. Then by commutativity, (a A1) Aa=a A (1 Aa).

Case 3. Consider z = a, y = z = 1. By Propositon B19(7i7), a A 1 = {a} or {0,a}.

Let a A1 = {a}. In this case by Proposition ET9(iv), we have 1 A1 = {1}. Therefore,
(aN1)A1=aA(1A1). Now, let a A1l = {0,a}. By Proposition B4(i), 1 € 1 A 1. Hence by
Proposition B8(i7) and (i7i), (a A1) Al=aA(1A1).

Case 4. If x = 1,y = z = a, then by commutativity and Case (1), (1Aa) Aa=1A (aAa).
Case 5. Suppose x = 1,y = a,z = 1. Then by commutativity, (1Aa) A1l =1A(aAl).

Case 6. Consider z = y = 1,z = a. Then by commutativity and Case (3), (LA1)Aa=1A(1Aa).
Case 7. Assume x =y = z = 1. Then the proof is obvious. O

Corollary 4.21. Let H = {0,a,1} be a hyper K-algebra with condition (L). Then (H,A,V) is a
superlattice.

Proof. By Corollary BT8 and Theorem B0, the proof is clear. O

In the next example we show that Theorem B=21, is not correct for a hyper K-algebra of order
more than 3, in general.

Example 4.22. Let H = {0,a,b,1} and the hyperoperation” o” on H defined as follows:

0 a b 1

{0,a,b,1} {0,a,b,1} {0} {0}

{a,b,1}  {0,a,b,1} {0,a} {0}
{b} {b} {0,a,b,1} {0,a,b,1}
{1} {b} {a,b,1} {0,a,b,1}

Then (H,o,0) is a hyper K-algebra with condition (L). We can see that A is not an associative
operator. Because

_ ot OO0

anN0={0}, ana={0,a}, aANb={0,a,b}, anl={a}, 1A1={0,a,b 1},

and
aN(IAN1)=an{0,a,b,1} ={0,a,b} #{a} =aAl=(aA1l)ALl

5 Conclusions

In this paper, by considering the concepts of hypersemilattice and superlattice, the relation be-
tween commutative and positive implicative hyper K-algebras with hypersemilattices are studied.
Moreover, by adding some conditions the relation between bounded commutative hyper K-algebras
with superlattices is investigated and it is proved that any hyper K-algebra H of order 3 with
condition (L) can be a superlattice.
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