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Abstract

In this paper, by considering the concepts of hypersemi-
lattice and superlattice, we prove that any commutative
and positive implicative hyper K-algebra, is a hypersemi-
lattice. Moreover, we prove that any bounded commuta-
tive hyper K-algebra with some conditions, is a superlat-
tice.
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A Title

  

1 Introduction
The theory of hyperstructures was introduced in 1934 by Marty [6] at the 8th congress of Scandina-
vian Mathematicians. This theory has been subsequently developed by the contribution of various
authors. Hyperstructures have many applications to several sectors of both pure and applied sci-
ences. In [5], Jun et al, applied the hyperstructures to BCK-algebras and introduced the notion
of a hyper BCK-algebra which is a generalization of BCK-algebra and investigated some related
properties. In [3], Borzooei et al, defined the notions of hyper I-algebras and hyper K-algebras.
Then they stated and proved some related theorems. Some basic definitions and propositions are
found in [2], [10], [9] and [8].
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Some researchers applied the hyperstructure to some accepts of lattice theory and the notion
of hypersemilattice was introduced by Z. Bin et al. in [1] and the notion of superlattice was
introduced by Mittas and Konstantinidou in [7].

In this paper, we provide some conditions for a hyper K-algebra to be a hypersemilattice. In
follow, we introduce the notions ∧ and ∨ on hyper K-algebras and we prove that every hyper
K-algebra of order 3 by some conditions is a superlattice.

2 Preliminaries
In this section, we give some definitions and theorems that we need in the next sections.

Let H be a non-empty set and ◦ a function from H ×H to P(H)− {∅}, where P(H) denotes
the power set of H. For two subsets A and B of H, denote by A ◦B the set

∪
a∈A,b∈B

a ◦ b. We shall

use x ◦ y instead of x ◦ {y}, {x} ◦ y, or {x} ◦ {y}.
Definition 2.1. [4] Let L be a non-empty set endowed with hyperoperations ∧ and ∨. Then
(L,∧,∨) is called a hyperlattice if for any x, y, z ∈ L, the following conditions hold:
(HL1) x ∈ x ∧ x, x ∈ x ∨ x,
(HL2) x ∧ y = y ∧ x, x ∨ y = y ∨ x,
(HL3) (x ∧ y) ∧ z = x ∧ (y ∧ z),
(HL4) x ∈ x ∧ (x ∨ y), x ∈ x ∨ (x ∧ y).
Definition 2.2. [1] Let L be a non-empty set with a binary hyperoperation ◦ on L such that for
all x, y, z ∈ L, the following conditions hold:
(i) x ∈ x ◦ x,
(ii) x ◦ y = y ◦ x,
(iii) (x ◦ y) ◦ z = x ◦ (y ◦ z).
Then (L, ◦) is called a hypersemilattice.
Definition 2.3. [7] A superlattice is a partially ordered set (S,<) with two hyperoperations ∨ and
∧ such that for all x, y, z ∈ S, the following properties hold:
(S1) x ∈ x ∨ x and x ∈ x ∧ x,
(S2) x ∨ y = y ∨ x and x ∧ y = y ∧ x,
(S3) (x ∨ y) ∨ z = x ∨ (y ∨ z) and (x ∧ y) ∧ z = x ∧ (y ∧ z),
(S4) x ∈ x ∨ (x ∧ y) and x ∈ x ∧ (x ∨ y),
(S5) if x < y, then y ∈ x ∨ y and x ∈ x ∧ y,
(S6) y ∈ x ∨ y or x ∈ x ∧ y implies x < y.
Definition 2.4. [3] By a hyper K-algebra we mean a non-empty set H endowed with a hyperop-
eration ”◦” and a constant 0 that for all x, y, z ∈ H, it satisfies in the following axioms:
(HK1) (x ◦ z) ◦ (y ◦ z) < x ◦ y,
(HK2) (x ◦ y) ◦ z = (x ◦ z) ◦ y,
(HK3) x < x,
(HK4) x < y and y < x imply x = y,
(HK5) 0 < x,
where x < y is defined by 0 ∈ x ◦ y and for every A,B ⊆ H, A < B is defined by ∃a ∈ A,∃b ∈ B
such that a < b.
Definition 2.5. [3] Let (H, ◦, 0) be a hyper K-algebra. Then (H, ◦, 0) is said to be a commutative
hyper K-algebra, if for all x, y ∈ H,

x ◦ (x ◦ y) = y ◦ (y ◦ x).
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Definition 2.6. [3] Let (H, ◦, 0) be a hyper K-algebra. Then (H, ◦, 0) is said to be a positive
implicative hyper K-algebra, if for all x, y, z ∈ H,

(x ◦ y) ◦ z = (x ◦ z) ◦ (y ◦ z).

Definition 2.7. [3] Let (H, ◦, 0) be a hyper K-algebra. Then (H, ◦, 0) is said to be a bounded
hyper K-algebra, if there exists an element 1 such that x < 1, for all x ∈ H.

Theorem 2.8. [3] Let H be a hyper K-algebra. Then for all x, y, z ∈ H and A,B ⊆ H, the
following statements hold:
(i) x ∈ x ◦ 0,
(ii) x ◦ y < z ⇔ x ◦ z < y,
(iii) (x ◦ z) ◦ (x ◦ y) < y ◦ z,
(iv) x ◦ (x ◦ y) < y,
(v) x ◦ y < x,
(vi) A ◦B < A,
(vii) A ⊆ B ⇒ A < B,
(viii) (A ◦ C) ◦ (A ◦B) < B ◦ C,
(ix) A ◦B < C ⇔ A ◦ C < B.

3 Relation between hyper K-algebras and hypersemilattices
In this section, we prove that every commutative and positive implicative hyper K-algebra is a
hypersemilattice.

Definition 3.1. In any commutative hyper K-algebra, for all x, y ∈ H, we denote

x ∩ y = {z | z ∈ y ◦ (y ◦ x)}.

Proposition 3.2. Let H be a commutative hyper K-algebra. Then for all x, y ∈ H, the following
properties hold:
(i) x ∩ y < x and x ∩ y < y,
(ii) x ∩ y = y ∩ x,
(iii) x ∈ x ∩ x,
(iv) If x < y, then x ∈ x ∩ y.

Proof. (i) Let x, y ∈ H. By Theorem 2.8(iii) and (v), x ◦ (x ◦ y) < x and x ◦ (x ◦ y) < y. Hence
x ∩ y < x and x ∩ y < y.

(ii) The proof is straightforward.
(iii) Since 0 ∈ x ◦ x, we get x ◦ 0 ⊆ x ◦ (x ◦ x). Then by Theorem 2.8(i), x ∈ x ◦ 0. Hence,

x ∈ x ◦ (x ◦ x), and so x ∈ x ∩ x.
(iv) Let x < y, for x, y ∈ H. Then 0 ∈ x ◦ y and so x ◦ 0 ⊆ x ◦ (x ◦ y). Thus by Theorem 2.8(i),

x ∈ x ◦ 0, and so x ∈ x ◦ (x ◦ y). Hence, x ∈ y ∩ x = x ∩ y.

Theorem 3.3. Let H be a commutative and positive implicative hyper K-algebra. Then for all
x, y, z ∈ H,

(x ∩ y) ∩ z = x ∩ (y ∩ z).
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Proof. Let x, y, z ∈ H. Then

(x ∩ y) ∩ z =
∪

{u ∩ z | u ∈ x ∩ y}

=
∪

{u ◦ (u ◦ z) | u ∈ y ◦ (y ◦ x)}
= (y ◦ (y ◦ x)) ◦ ((y ◦ (y ◦ x)) ◦ z)
= (y ◦ (y ◦ x)) ◦ ((y ◦ z) ◦ (y ◦ x)) (by (HK2))

= (y ◦ (y ◦ z)) ◦ (y ◦ x) (by Definition 2.6)
= (y ◦ (y ◦ x)) ◦ (y ◦ z) (by (HK2))
= (y ◦ (y ◦ z)) ◦ ((y ◦ x) ◦ (y ◦ z)) (by Definition 2.6)
= (y ◦ (y ◦ z)) ◦ ((y ◦ (y ◦ z)) ◦ x) (by (HK2))
=

∪
{t ◦ (t ◦ x) | t ∈ y ◦ (y ◦ z)}

=
∪

{x ∩ t | t ∈ y ∩ z}
= x ∩ (y ∩ z).

Corollary 3.4. Let (H, ◦) be a commutative and positive implicative hyper K-algebra. Then (H,∩)
is a hypersemilattice.

Proof. By Definition 2.2, Proposition 3.2 and Theorem 3.3, the proof is obvious.

Example 3.5. Let H = {0, a, b} and the hyperoperation ” ◦ ” on H defined as follows:

◦ 0 a b

0 {0} {0, a} {0, a, b}
a {a} {0, a} {0, a, b}
b {b} {b} {0, a, b}

Then (H, ◦, 0) is a commutative positive implicative hyper K-algebra. Hence by Corollary 3.4,
(H,∩) is a hypersemilattice.

4 Relation between hyper K-algebras and superlattices
In this section, we introduce some operations such as ∧ and ∨ on hyper K-algebra and investigate
some properties and relation between them. Then we prove that any bounded commutative hyper
K-algebra with some conditions L is a superlattice.

Definition 4.1. Let (H, ◦, 0) be a hyper K-algebra. Then (H, ◦, 0) is said to be a complemented
hyper K-algebra, if H is bounded and 1 ◦ x has a least element with respect to <, for all x ∈ H.

We note that if H is bounded, then by (HK4) we can easily get that 1 is unique. Also, if H
is complemented, then we use x′ to denote min(1 ◦ x).
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Example 4.2. Let H = {0, a, b, 1} and hyperoperations ” ◦1 ” and ” ◦2 ” on H defined as follows:

◦1 0 a b 1

0 H H H H
a {a} H {a, b, 1} H
b {b} {a, b, 1} H H
1 {1} {a, b} {a} H

◦2 0 a b 1

0 H H H H
a {a} H {a, b, 1} H
b {b} {a, b, 1} H H
1 {1} {a, b, 1} {a, 1} H

Then (H, ◦2) is a bounded commutative hyper K-algebra. But (H, ◦1) is not commutative,
because

H = a ◦2 H = a ◦1 (a ◦1 1) ̸= 1 ◦1 (1 ◦1 a) = 1 ◦1 {a, b} = {a, b}.

We can see (H, ◦) in Example 3.5 is complemented but (H, ◦1) and (H, ◦2) are not complemented,
since min(1 ◦ a) does not exist in both of them.

Definition 4.3. In any commutative hyper K-algebra, for all x, y ∈ H, we define

x ∧ y = {z | z ∈ y ◦ (y ◦ x) such that z < x and z < y}.

By A ∧B we mean
∪

a∈A,b∈B
a ∧ b.

Proposition 4.4. Let H be a bounded commutative hyper K-algebra. Then for all x, y ∈ H, the
following properties hold:
(i) x ∈ x ∧ x, x ∈ x ∧ 1, 1 ∈ 1 ∧ 1 and 0 ∧ 1 = 0,
(ii) x ∧ y < x, x ∧ y < y and x ∧ y = y ∧ x,
(iii) x ∧ 0 = 0 ∧ x = {0},
(iv) If x < y, then x ∈ x ∧ y,
(v) If x ̸= 1, then 1 /∈ x ∧ 1 and 1 /∈ x ∧ x,
(vi) If x ∧ 1 = {x}, then y ∈ x ◦ 1 implies x ≮ y,
(vii) If x ∧ 1 = {x}, then x, 1 /∈ x ◦ 1,
(viii) If x ∧ 1 = {x}, then 0, 1 /∈ 1 ◦ x,
(ix) If H is a chain respect to <, then x ∧ y ̸= ∅,
(x) If H is of order less than 5, then x ∧ y ̸= ∅.

Proof. (i) By (HK3), 0 ∈ x ◦ x. Hence x ◦ 0 ⊆ x ◦ (x ◦ x). By Theorem 2.8(i), x ∈ x ◦ 0 and so
x ∈ x ◦ (x ◦x). Since x < x, we get x ∈ x∧x. By the similar way we can prove x ∈ x∧ 1, 1 ∈ 1∧ 1
and 0 ∈ 0 ∧ 1.

(ii) By definition of ∧, the proof is obvious.
(iii) By (HK3), 0 ∈ x ◦ x and by Theorem 2.8(i), 0 ∈ x ◦ x ⊆ x ◦ (x ◦ 0). Thus 0 ∈ x ∧ 0. If

y ∈ x∧0, then y < 0. By (HK5), 0 < y and by (HK4), we have y = 0. Hence x∧0 = 0∧x = {0}.
(iv) Let x < y for x, y ∈ H. Then 0 ∈ x ◦ y and so x ◦ 0 ⊆ x ◦ (x ◦ y). By Theorem 2.8(i),

x ∈ x ◦ 0 and so x ∈ x ◦ (x ◦ y). Since x < y, we get x ∈ y ∧ x = x ∧ y.
(v) If x ̸= 1, then x < 1, for all x ∈ H. By (HK4), 1 ̸< x. By Definition 2.7, 1 /∈ x∧ 1. By the

similar way, we have 1 /∈ x ∧ x.
(vi) Let x ∧ 1 = {x}. Suppose x < y. If y ∈ x ◦ 1, then 0 ∈ x ◦ y ⊆ x ◦ (x ◦ 1). Since 0 < 1 and

0 < x, we get 0 ∈ x ∧ 1 = {x}, which is a contradiction. Hence, if y ∈ x ◦ 1, then x ≮ y.
(vii) Since x < x and x < 1, by (vi), we obtain x, 1 /∈ x ◦ 1.
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(viii) Let x ∧ 1 = {x}. If 1 ∈ 1 ◦ x, then 0 ∈ 1 ◦ 1 ⊆ 1 ◦ (1 ◦ x). Since 0 < 1 and 0 < x, we
consequence 0 ∈ x ∧ 1 = {x}, which is a contradiction. Hence 1 /∈ 1 ◦ x. Also, since 1 ≮ x, we get
0 /∈ 1 ◦ x. Therefore, 0, 1 /∈ 1 ◦ x.

(ix) By (iv) the proof is clear.
(x) Every bounded hyper K-algebra of order 2 and 3 is a chain and so by (ix) we imply x∧y ̸= ∅

, for any x, y ∈ H. Now, let H = {0, a, b, 1} be a bounded commutative hyper K-algebra. Then
by (i), (ii) and (iii), it is sufficient to prove a ∧ b ̸= ∅. If a < b or b < a, then by (iv) we get
a ∧ b ̸= ∅. Now, suppose a ≮ b and b ≮ a. Then 0 ̸∈ (a ◦ b) ∩ (b ◦ a). Since a ◦ b < a, there exists
u ∈ a ◦ b such that u < a. We note 0 ̸∈ a ◦ b, 1 ≮ a and b ≮ a. Thus u ̸= 0, 1, b and so u = a.
Hence a ∈ a ◦ b. Thus 0 ∈ a ◦ a ⊆ a ◦ (a ◦ b) and so 0 ∈ a ∧ b. Therefore, a ∧ b ̸= ∅.

Proposition 4.5. Let H be a commutative hyper K-algebra. If (x ∧ y) ∧ z = x ∧ (y ∧ z), for all
x, y, z ∈ X, then x ∧ y is the greatest lower bound of x and y.

Proof. By Proposition 4.4(ii), x∧ y < x and x∧ y < y for all x, y ∈ H. Now, let z < x and z < y,
for some x, y, z ∈ H. By Proposition 4.4(iv), z ∈ z ∧ x and z ∈ z ∧ y. By assumption,

z ∈ z ∧ x ⊆ (z ∧ y) ∧ x = z ∧ (y ∧ x) = z ∧ (x ∧ y).

Thus there exists t ∈ x ∧ y such that z ∈ z ∧ t and so z < t. Therefore, z < x ∧ y.

Example 4.6. In Examples 3.5 and 4.2, we can see (H, ◦) and (H, ◦2) are bounded commutative
hyper K-algebras. By easy calculations we get

∧ 0 a b

0 {0} {0} {0}
a {0} {0, a} {0, a}
b {0} {0, a} {0, a, b}

∧2 0 a b 1

0 {0} {0} {0} {0}
a {0} {0, a} {0} {0, a}
b {0} {0} {0, b} {0, b}
1 {0} {0, a} {0, b} {0, a, b, 1}

We can see that, above hyperoperations are associative.

The following example shows that the converse of Proposition 4.5 is not correct, in general.

Example 4.7. Let H = {0, a, b, 1} and the hyperoperation ” ◦ ” on H defined as follows:

◦ 0 a b 1

0 {0, a, b, 1} {0, a, b, 1} {0} {0}
a {a, b, 1} {0, a, b, 1} {0, a} {0}
b {b} {b} {0, a, b, 1} {0, a, b, 1}
1 {1} {b} {a, b, 1} {0, a, b, 1}

Then (H, ◦, 0) is a commutative hyper K-algebra. By routine calculations we get

∧ 0 a b 1

0 {0} {0} {0} {0}
a {0} {0, a} {0, a, b} {a}
b {0} {0, a, b} {0, a, b} {0, a, b}
1 {0} {a} {0, a, b} {0, a, b, 1}
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We can see that for all x, y ∈ H, x∧y is the greatest lower bound of x and y but ∧ is not associative
operator. Because

a ∧ (1 ∧ 1) = a ∧ {0, a, b, 1} = {0, a, b} ̸= {a} = {a} ∧ 1 = (a ∧ 1) ∧ 1.

Proposition 4.8. Let H be a bounded commutative hyper K-algebra. Then the following proper-
ties hold:
(i) If x, y or z equal to 0, then (x ∧ y) ∧ z = x ∧ (y ∧ z),
(ii) (x ∧ x) ∧ x = x ∧ (x ∧ x),
(iii) If x ∧ x = {x} or {0, x} and x ∧ y = {x} or {0, x}, then (x ∧ x) ∧ y = x ∧ (x ∧ y),
(iv) If x ∧ 1 = {0, x} and 1 ∧ 1 = {1} or {0, 1}, then (x ∧ 1) ∧ 1 = x ∧ (1 ∧ 1),
(v) If x∧1 = {0, x}, 1∧1 = {1, x} or {0, x, 1} and x∧x = {x} or {0, x}, then (x∧1)∧1 = x∧(1∧1).

Proof. The proof of (i) and (ii), by Proposition 4.4 (iii) and (ii), is clear.
(iii) We have four cases:
Case 1. Let x∧x = x∧y = {x}. Then (x∧x)∧y = {x}∧y = {x} and x∧(x∧y) = x∧{x} = {x}.

Hence (x ∧ x) ∧ y = x ∧ (x ∧ y).
Case 2. Let x ∧ x = {0, x} and x ∧ y = {x}. Then (x ∧ x) ∧ y = {0, x} ∧ y = {0, x} and

x ∧ (x ∧ y) = x ∧ {x} = {0, x}. Hence (x ∧ x) ∧ y = x ∧ (x ∧ y).
Case 3. Let x ∧ x = {x} and x ∧ y = {0, x}. Then (x ∧ x) ∧ y = {x} ∧ y = {0, x} and

x ∧ (x ∧ y) = x ∧ {0, x} = {0, x}. Hence (x ∧ x) ∧ y = x ∧ (x ∧ y).
Case 4. Let x ∧ x = x ∧ y = {0, x}. Then (x ∧ x) ∧ y = {0, x} ∧ y = {0, x} and x ∧ (x ∧ y) =

x ∧ {0, x} = {0, x}. Hence (x ∧ x) ∧ y = x ∧ (x ∧ y).
(iv) Let x ∧ 1 = {0, x}. Then (x ∧ 1) ∧ 1 = {0, x} ∧ 1 = {0, x}. Thus by assumption, we have

two cases:
Case 1. If 1 ∧ 1 = {1}, then x ∧ (1 ∧ 1) = x ∧ {1} = {0, x}. Hence (x ∧ 1) ∧ 1 = x ∧ (1 ∧ 1).
Case 2. If 1∧ 1 = {0, 1}, then x∧ (1∧ 1) = x∧{0, 1} = {0, x}. Hence (x∧ 1)∧ 1 = x∧ (1∧ 1).
(v) If x ∧ 1 = {0, x}, then (x ∧ 1) ∧ 1 = {0, x} ∧ 1 = {0, x}.
If 1∧1 = {1, x}, then x∧(1∧1) = x∧{1, x} = x∧1∪x∧x = {0, x}. Hence (x∧1)∧1 = x∧(1∧1).
If 1∧ 1 = {0, x, 1}, then x∧ (1∧ 1) = x∧{0, x, 1} = {0, x}. Hence (x∧ 1)∧ 1 = x∧ (1∧ 1).

Definition 4.9. Let H be a bounded commutative complemented hyper K-algebra. We say H
satisfies in conditions (L), if for all x, y ∈ H, the following conditions hold:
(L1) x ∧ y ̸= ∅,
(L2) x

′ ◦ y = y′ ◦ x,
(L3) (x

′)′ = x.

In the next example, we show that there exists a bounded commutative complemented hyper
K-algebra with condition (L). Also, we show that the conditions (L2) and (L3) are independent.

Example 4.10. (i) Let H = {0, a, 1} and the hyperoperation ” ◦ ” on H defined as follows:

◦ 0 a 1

0 {0} {0, a, 1} {0}
a {a, 1} {0, a} {0, a, 1}
1 {1} {a, 1} {0}

Then (H, ◦, 0) is a bounded commutative hyper K-algebra and satisfies in condition (L).
(ii) Let H = {0, a, 1} and the hyperoperation ” ◦ ” on H defined as follows:
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◦ 0 a 1

0 {0, a} {0, a, 1} {0, 1}
a {a, 1} {0, a, 1} {0, a}
1 {1} {1} {0, a, 1}

Then (H, ◦, 0) is a bounded commutative hyper K-algebra and min(1 ◦ x) exist, for all x ∈ H.
Since a′ = min(1 ◦ a) = min{1} = 1 and (a′)′ = min(1 ◦ 1) = min{0, a, 1} = 0 ̸= a, then H does
not satisfy in condition (L3). Also, H does not satisfiy in condition (L2). Because

1′ ◦ 0 = 0 ◦ 0 = {0, a} ̸= {0, a, 1} = 1 ◦ 1 = 0′ ◦ 1.

(iii) Let H = {0, a, 1} and the hyperoperation ” ◦ ” on H defined as follows:

◦ 0 a 1

0 {0, 1} {0, a} {0, 1}
a {a, 1} {0, a, 1} {0, a, 1}
1 {1} {a, 1} {0, 1}

Then (H, ◦, 0) is a bounded commutative hyper K-algebra and min{1 ◦ x} exist, for all x ∈ H.
Also, H satisfies in condition (L3). Since 1′ ◦ a = 0 ◦ a = {0, a} and a′ ◦ 1 = a ◦ 1 = {0, a, 1}, we
get (L2) does not hold.

(iv) Let H = {0, a, 1} and the hyperoperation ” ◦ ” on H defined as follows:

◦ 0 a 1

0 {0, a, 1} {0, a, 1} {0, a, 1}
a {a, 1} {0, a, 1} {0, a, 1}
1 {1} {1} {0, a, 1}

Then (H, ◦, 0) is a bounded commutative hyper K-algebra and min(1◦x) exist, for all x ∈ H. Also,
H satisfies in condition (L2). Since a′ = min(1 ◦ a) = min{1} = 1 and (a′)′ = 1′ = min(1 ◦ 1) =
min{0, a, 1} = 0, we obtain (L3) does not hold.

Lemma 4.11. Let H satisfies in condition (L). Then the following statements hold:
(i) 0′ = 1 and 1′ = 0,
(ii) 1 ◦ 0 = {1},
(iii) 0 ◦ 0 = 1 ◦ 1,
(iv) If x′ = x, for some x ∈ H, then 0 ◦ x = x ◦ 1, x ◦ 0 = 1 ◦ x.

Proof. (i) Since 0 ∈ 1 ◦ 1, we get 1′ = min(1 ◦ 1) = 0. Then by (L3), we have 0′ = (1′)′ = 1.
(ii) By (i), we get 0′ = 1 and so min(1 ◦ 0) = 1. Since x ≤ 1, for all x ∈ H, it is clear that

1 ◦ 0 = {1}.
(iii), (iv) By (i) and (L2), the proof is clear.

Notation. In any hyper K-algebras with condition (L), for all x, y ∈ H, we define

x ∨ y = {z | z ∈ (x′ ∧ y′)′}.

By A ∨B we mean
∪

a∈A,b∈B
a ∨ b.
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Proposition 4.12. Let H be a hyper K-algebra with condition (L). Then for all x, y ∈ H the
following statements hold:
(i) x < x ∨ y and y < x ∨ y,
(ii) x ∈ x ∨ x,
(iii) x ∨ y = y ∨ x,
(iv) If x < y, then y ∈ x ∨ y,
(v) If x ∈ x ∧ y or y ∈ x ∨ y, then x < y.

Proof. (i) By Proposition 4.4(ii), x′ ∧ y′ < x′, for all x, y ∈ H. Hence, there exists u ∈ x′ ∧ y′ such
that u < x′. Then by (L2), (x′)′ ◦ u′ = (u′)′ ◦ x′ = u ◦ x′. Since 0 ∈ (x′)′ ◦ u′, we get (x′)′ < u′, and
so x < u′ ∈ (x′ ∧ y′)′. Hence, x < x ∨ y. By the similar way, we can prove y < x ∨ y.

(ii) By Proposition 4.4(i), x′ ∈ x′ ∧ x′. Thus (x′)′ ⊆ (x′ ∧ x′)′, and so x ∈ x ∨ x.
(iii) By definition of ∨ and since H is commutative, the proof is clear.
(iv) Let x < y, for some x, y ∈ H. Then by (L2), y′ ◦ x′ = (x′)′ ◦ y = x ◦ y. Since 0 ∈ x ◦ y,

we have 0 ∈ y′ ◦ x′, and so y′ < x′. By Proposition 4.4(iv), y′ ∈ x′ ∧ y′. Hence, (y′)′ ⊆ (x′ ∧ y′)′.
Therefore, y ∈ x ∨ y.

(v) Let x ∈ x ∧ y, for some x, y ∈ H. By Definition 4.3, x < y. Now, let y ∈ x ∨ y. Then
y ∈ (x′ ∧ y′)′ and so y′ ⊆ ((x′ ∧ y′)′)′ = x′ ∧ y′. By Definition 4.3, y′ < x′ and so (x′)′ < (y′)′.
Therefore, x < y.

Proposition 4.13. Let H be a hyper K-algebra with condition (L). For any x, y, z ∈ H, (x∨y)′ =
x′ ∧ y′.

Proof. Let u ∈ (x ∨ y)′, for some x, y ∈ H. Then u′ ⊆ x ∨ y, thus u′ ∈ (x′ ∧ y′)′, and so
u = (u′)′ ⊆ ((x′ ∧ y′)′)′. Hence u ∈ x′ ∧ y′. Therefore, (x ∨ y)′ ⊆ x′ ∧ y′. Now, suppose t ∈ x′ ∧ y′.
Then t′ ⊆ (x′ ∧ y′)′ and so t′ ∈ x ∨ y. Thus t = (t′)′ ⊆ (x ∨ y)′. Hence, x′ ∧ y′ ⊆ (x ∨ y)′, and so
(x ∨ y)′ = x′ ∧ y′.

Theorem 4.14. Let H be a hyper K-algebra with condition (L). For any x, y, z ∈ H,

(x ∧ y) ∧ z = x ∧ (y ∧ z) if and only if (x ∨ y) ∨ z = x ∨ (y ∨ z).

Proof. Let (x ∧ y) ∧ z = x ∧ (y ∧ z) for all x, y, z ∈ H. Then

(x ∨ y) ∨ z =
∪

{u ∨ z | u ∈ x ∨ y}

=
∪

{(u′ ∧ z′)′ | u ∈ x ∨ y}

=
∪

{(u′ ∧ z′)′ | u′ ∈ (x ∨ y)′}

=
∪

{(u′ ∧ z′)′ | u′ ∈ x′ ∧ y′} (by Proposition 4.13)
= ((x′ ∧ y′) ∧ z′)′

= (x′ ∧ (y′ ∧ z′))′

= (x′ ∧ (y ∨ z)′)′(by Proposition 4.13)
=

∪
{(x′ ∧ t′)′ | t ∈ y ∨ z}

=
∪

{x ∨ t | t ∈ y ∨ z}
= x ∨ (y ∨ z)

Conversely, let (x ∨ y) ∨ z = x ∨ (y ∨ z) for all x, y, z ∈ H. By the similar way, we can prove that
(x ∧ y) ∧ z = x ∧ (y ∧ z).
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Theorem 4.15. Let H be a hyper K-algebra with condition (L) and ∧ be associative. Then x∨ y
is the lowest upper bound of x and y, for all x, y ∈ H.

Proof. Let x < z and y < z, for some x, y, z ∈ H. By Proposition 4.12(iv), z ∈ x∨ z and z ∈ y∨ z.
Hence z ∈ x∨ z ⊆ x∨ (y ∨ z) = (x∨ y)∨ z. Hence there exists t ∈ x∨ y, such that z ∈ t∨ z. Thus
by Proposition 4.12(v), t < z. Therefore, x ∨ y < z.

The following example shows that the converse of Theorem 4.15 is not correct, in general.

Example 4.16. In Example 4.7, we can see (H, ◦) is a bounded commutative hyper K-algebras.

∨ 0 a b 1

0 {0, a, b, 1} {a, b, 1} {b} {1}
a {a, b, 1} {a, b, 1} {a, b, 1} {1}
b {b} {a, b, 1} {b, 1} {1}
1 {1} {1} {1} {1}

By easy calculations we get (H, ◦, 0) is a hyper K-algebra with condition (L) and for all x, y ∈ H,
x ∨ y is the lowest upper bound of x and y but ∧ is not an associative operator.

Theorem 4.17. Let H be a hyper K-algebra with condition (L). Then for any x, y ∈ H, we have
x ∈ x ∧ (x ∨ y) and x ∈ x ∨ (x ∧ y).

Proof. Since x < x∨y, there exists t ∈ x∨y such that x < t. Hence x ∈ x∧t and so x ∈ x∧(x∨y).
Also, since x ∧ y < x, there exists u ∈ x ∧ y such that u < x and so x ∈ x ∨ u. Therefore,
x ∈ x ∨ (x ∧ y).

Corollary 4.18. Let H be a hyper K-algebra with condition (L) and ∧ be associative. Then
(H,∧,∨) is a superlattice.

Proof. By Propositions 4.4(i), (ii), (iv) and 4.12 and by Theorems 4.14 and 4.17, the proof is
obvious.

In the following, we prove that in any hyper K-algebra H of order 3 with condition (L), ∧ is
associative and so by Corollary 4.18, (H,∧,∨) is a superlattice.

Proposition 4.19. Let H = {0, a, 1} be a hyper K-algebra with condition (L). Then the following
hold:
(i) a′ = a,
(ii) a ∧ a = {a} or {0, a},
(iii) a ∧ 1 = 1 ∧ a = {a} or {0, a},
(iv) If a ∧ 1 = {a}, then 1 ∧ 1 = {1}.

Proof. (i) By Lemma 4.11(i), 0′ = 1 and 1′ = 0. If a′ = 1, then by (L3), a = (a′)′ = 1′ = 0, which
is a contradiction. By similar way a′ ̸= 0. Thus a′ = a.

(ii), (iii) By Proposition 4.4(iv), 1 /∈ a ∧ a and 1 /∈ a ∧ 1. Thus a ∧ a = {a} or {0, a}. Also,
a ∧ 1 = {a} or {0, a}.

(iv) If a ∧ 1 = {a}, then by Proposition 4.4(vi) and (vii), we consequence a ◦ 1 = {0} and
1 ◦ a = {a}.

By Lemma 4.11(iv), a ◦ 0 = 1 ◦ a = {a} and 0 ◦ a = a ◦ 1 = {0}.
By (HK2), we have (a ◦ 1) ◦ 0 = (a ◦ 0) ◦ 1 and so 0 ◦ 0 = a ◦ 1 = {0}. Therefore, by Lemma

4.11(iii), 1 ◦ 1 = {0}. Hence by Lemma 4.11(ii), 1 ◦ (1 ◦ 1) = 1 ◦ 0 = {1}. Also, 1 < 1 implies
1 ∧ 1 = {1}.
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Theorem 4.20. Let H = {0, a, 1} be a hyper K-algebra with condition (L). Then (x ∧ y) ∧ z =
x ∧ (y ∧ z), for all x, y, z ∈ H.

Proof. By Proposition 4.8(i), if at least one of x, y or z are equal to {0}, then (x∧y)∧z = x∧(y∧z).
Also, if x = y = z = a, then by Proposition 4.8(ii), (x ∧ y) ∧ z = x ∧ (y ∧ z). Hence we consider
the following cases:
Case 1. Assume x = y = a, z = 1. Then by Proposition 4.19(ii) and (iii), a ∧ a = {a} or {0, a}
and a ∧ 1 = {a} or {0, a}. By Proposition 4.8(iii), we obtain (a ∧ a) ∧ 1 = a ∧ (a ∧ 1).
Case 2. Let x = a, y = 1, z = a. Then by commutativity, (a ∧ 1) ∧ a = a ∧ (1 ∧ a).
Case 3. Consider x = a, y = z = 1. By Propositon 4.19(iii), a ∧ 1 = {a} or {0, a}.

Let a ∧ 1 = {a}. In this case by Proposition 4.19(iv), we have 1 ∧ 1 = {1}. Therefore,
(a ∧ 1) ∧ 1 = a ∧ (1 ∧ 1). Now, let a ∧ 1 = {0, a}. By Proposition 4.4(i), 1 ∈ 1 ∧ 1. Hence by
Proposition 4.8(ii) and (iii), (a ∧ 1) ∧ 1 = a ∧ (1 ∧ 1).
Case 4. If x = 1, y = z = a, then by commutativity and Case (1), (1 ∧ a) ∧ a = 1 ∧ (a ∧ a).
Case 5. Suppose x = 1, y = a, z = 1. Then by commutativity, (1 ∧ a) ∧ 1 = 1 ∧ (a ∧ 1).
Case 6. Consider x = y = 1, z = a. Then by commutativity and Case (3), (1∧1)∧a = 1∧ (1∧a).
Case 7. Assume x = y = z = 1. Then the proof is obvious.

Corollary 4.21. Let H = {0, a, 1} be a hyper K-algebra with condition (L). Then (H,∧,∨) is a
superlattice.

Proof. By Corollary 4.18 and Theorem 4.20, the proof is clear.

In the next example we show that Theorem 4.20, is not correct for a hyper K-algebra of order
more than 3, in general.

Example 4.22. Let H = {0, a, b, 1} and the hyperoperation ” ◦ ” on H defined as follows:

◦ 0 a b 1

0 {0, a, b, 1} {0, a, b, 1} {0} {0}
a {a, b, 1} {0, a, b, 1} {0, a} {0}
b {b} {b} {0, a, b, 1} {0, a, b, 1}
1 {1} {b} {a, b, 1} {0, a, b, 1}

Then (H, ◦, 0) is a hyper K-algebra with condition (L). We can see that ∧ is not an associative
operator. Because

a ∧ 0 = {0}, a ∧ a = {0, a}, a ∧ b = {0, a, b}, a ∧ 1 = {a}, 1 ∧ 1 = {0, a, b, 1},

and
a ∧ (1 ∧ 1) = a ∧ {0, a, b, 1} = {0, a, b} ̸= {a} = a ∧ 1 = (a ∧ 1) ∧ 1.

5 Conclusions
In this paper, by considering the concepts of hypersemilattice and superlattice, the relation be-
tween commutative and positive implicative hyper K-algebras with hypersemilattices are studied.
Moreover, by adding some conditions the relation between bounded commutative hyper K-algebras
with superlattices is investigated and it is proved that any hyper K-algebra H of order 3 with
condition (L) can be a superlattice.
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