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Abstract

Hyperstructures have applications in mathematics and
in other sciences. For this, the largest class of the hyper-
structures, the Hv-structures, is used. They satisfy the
weak axioms where the non-empty intersection replaces
equality. The fundamental relations connect, by quo-
tients, the Hv-structures with the classical ones. Since
the number of Hv-structures defined on the same set is
very big, it is important to study special elements. A lot
of those special elements are not appeared in the classical
theory therefore, one has to discover their properties from
the beginning. We continuous our study on Hv-structures
which have the so called strong inverse elements.
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A Title

1 Introduction

In the hyperstructures it is not necessary to exist a unit element and if there exist, they can be more
than one. Similarly, for a given element, the inverse element with respect to a unit element, there
exist or not, and if there exist they can be more than one. We introduced in 2016 [14], the concept
of strong inverse element which is defined to be an element if it is inverse, to a given element, with
respect to all units. In any Hv-group, or any h/v-group, one can enlarge some results and the new
hyperstructure remain Hv-group or h/v-group. In this paper we continue our study on Hv-groups
with strong inverse elements by presenting constructions, mainly on finite sets, using enlargement,
on special classes of Hv-groups. Notice that we remain on the same fundamental classes of the
original hyperstructure.
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2 Preliminaries

The hyperstructures called Hv-structures, introduced in 1990 [7], [8] by Vougiouklis, satisfy the
weak axioms where the non-empty intersection replaces equality.

Definition 2.1. Algebraic hyperstructure (H, ·) is a set H with a hyperoperation (abbreviated hope)
· : H ×H −→ P (H)− {∅}. We abbreviate by

WASS the weak associativity: (xy)z ∩ x(yz) 6= ∅, ∀x, y, z ∈ H and by
COW the weak commutativity: xy ∩ yx 6= ∅, ∀x, y ∈ H.

The algebraic hyperstructure (H, ·) is an Hv-semigroup if it is WASS, it is called Hv-group if
it is reproductive Hv-semigroup, i.e. xH = Hx = H,∀x ∈ H.

The (R,+, ·) is called Hv-ring if (+) and (·) are WASS, the reproduction axiom is valid for
(+) and (·) is weak distributive to (+):

x(y + z) ∩ (xy + xz) 6= ∅ and (x+ y)z ∩ (xz + yz) 6= ∅, ∀x, y, z ∈ R.

For more definitions and applications on Hv-structures one can see in books and papers as [1],
[3], [4], [8], [11], [12], [13].

Definition 2.2. Let (H, ·) and (H, ∗) be two Hv-semigroups. Then the hope (·) is smaller than
(∗), and (∗) is greater than (·), iff there exists an automorphism

f ∈ Aut(H, ∗) such that xy ⊂ f(x ∗ y), ∀x, y ∈ H.

We write · ≤ ∗ and say that (H, ∗) contains (H, ·). If (H, ·) is a structure, then it is basic
structure and (H, ∗) is an Hb-structure.

The Little Theorem. Greater hopes than the ones which are WASS or COW, are WASS or
COW, respectively.

The main tool in hyperstructures is the fundamental relation. M. Koskas in 1970 introduced
in hypergroups the relation β∗, which connects hypergroups with groups and it is defined in Hv-
groups as well. Vougiouklis [7], [8], [9], [11], introduced the γ∗ and ε∗ relations, which are defined,
in Hv-rings and Hv-vector spaces, respectively.

Definition 2.3. The fundamental relations β∗, γ∗ and ε∗ are defined in Hv-groups, Hv-rings
and Hv-vector spaces, respectively, as the smallest equivalences so that the quotient would be group,
ring and vector spaces, respectively.

Theorem 2.4. Let (H, ·) be an Hv-group and denote by U the set of all finite products of elements
of H. Define the relation β in H by: xβy iff {x, y} ⊂ u where u ∈ U . Then β∗ is the transitive
closure of β.

Analogous theorems are for Hv-rings, Hv-vector spaces and so on.
An element is called single if its fundamental class is singleton [8].

Definition 2.5. An Hv-ring (R,+, ·) is an Hv-field if R/γ∗ is a field.

Definition 2.6. [9] The Hv-semigroup (H, ·) is called an h/v-group if H/β∗ is a group.

The h/v-group is not reproductive, so it is generalization of Hv-group. Similarly, h/v-rings,
h/v-fields etc. are defined.

The uniting elements method, introduced by Corsini & Vougiouklis in 1989, is the following
[2], [8]: Let G be a structure and not valid property d, described by a set of equations. Take the
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partition in G for which put in the same class, all pairs of elements that causes the non-validity
of d. The quotient by this partition G/d is an Hv-structure. Then, quotient out G/d by β∗, is a
stricter structure (G/d)/β∗ for which d is valid.

We remark that in Hv-groups, or even in hypergroups in the sense of F. Marty, we do not have
necessarily any ’unit’ element, consequently neither ’inverses’. However, we may have, more than
one, unit elements and for each element of an Hv-group we may have one inverse element or more
than one.

Definition 2.7. Let (H, ·) be an Hv-semigroup. An element e, it is called left unit if x ∈ ex, ∀x ∈
H, it is called right unit if x ∈ xe, ∀x ∈ H and it is called unit element if it is both left and right
unit element. For given unit e, an element x ∈ H, has a left inverse with respect to e, any element
xle if e ∈ xle · x, it has a right inverse element xre if e ∈ x · xre, and it has an inverse xe with
respect to e, if e ∈ (xe · x) ∩ (x · xe). Denote by El the set of all left unit elements, by Er the set
of all right unit elements, and by E the set of unit elements.

Definition 2.8. [5, 14] Let (H, ·) be an Hv-semigroup. An element is called strong-inverse if it is
an inverse to x with respect to all unit elements. Thus, an element xs it is a strong-inverse to x,
if

E ⊂ (xs · x) ∩ (x · xs).

3 Some classes of hopes

A class of Hv-structures, introduced in [8], is the following:

Definition 3.1. An Hv-structure is called very thin if all hopes are operations except one, which
has all hyperproducts singletons except one, which is a subset of cardinality more than one. Thus,
in a very thin Hv-structure in H there exists a hope (·) and a pair (a, b) ∈ H2 for which ab = A,
with cardA > 1, and all the other products, are singletons.

Another large class is the one on which a new hope (∂) in a groupoid is defined.

Definition 3.2. [10, 11, 4]. Let (G, ·) be groupoid (resp., hypergroupoid) and f : G −→ G be a
map. We define a hope (∂), called theta-hope or simply ∂-hope, on G as follows,

x∂y = {f(x) · y, x · f(y)}, ∀x, y ∈ G. (resp. x∂y = (f(x) · y) ∪ (x · f(y)), ∀x, y ∈ G.)

If (·) is commutative, then (∂) is commutative. If (·) is COW, then (∂) is COW.
Let (G, ·) be a groupoid (resp. hypergroupoid) and f : G −→ P(G) − {∅} be a multivalued

map. We define the hope (∂) on G as follows,

x∂y = (f(x) · y) ∪ (x · f(y)), ∀x, y ∈ G.

Properties. If (G, ·) is a semigroup, then for any f , the hope (∂) is WASS. If f is homomor-
phism and projection, or idempotent: f2 = f , then (∂) is associative.

Let (G, ·) be a groupoid and fi : G −→ G, i ∈ I, be a set of maps on G. We consider the
map f∪ : G −→ P(G) such that f∪(x) = {fi(x)|i ∈ I}, called the union of the fi(x). We define
the union ∂-hope, on G if we consider as map the f∪(x). A special case is if we consider the map
f ≡ f ∪ (id), so f(x) = {x, f(x)}, ∀x ∈ G, which we call b-∂-hope. Then we have

x∂y = {xy, f(x) · y, x · f(y)}, ∀x, y ∈ G.
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Proposition 3.3. Let (G, ·) be a group and for any x ∈ G, f(x) = a. Then (G, ∂)/β∗ is a
singleton.

Proof. For all x ∈ G, we can take the hyperproduct of the elements, a−1 and a−1x

a−1∂(a−1 · x) = {f(a−1) · a−1 · x, a−1 · f(a−1 · x)} = {x, a}.

Thus xβa,∀x ∈ G, so β∗(x) = β∗(a) and (G, ∂)/β∗ is singleton.

Special case if (G, ·) is a group and f(x) = e, then xθy = {x, y}.
The application on the derivative: On the polynomials gi(x) = aix+ bi, take the hope

g1∂g2 = {a1a2x+ a1b2, a1a2x+ b1a2}.

All polynomials x+ c, where c a constant, are units.

Example 3.4. (a) In integers (Z,+, ·) fix n 6= 0, a natural number. Consider the map f such that
f(0) = n and f(x) = x,∀x ∈ Z− {0}. Then (Z, ∂+, ∂·), where ∂+ and ∂· are the ∂-hopes refereed
to the addition and the multiplication respectively, is an Hv-near-ring, with

(Z, ∂+, ∂·)/γ∗ ∼= Zn.

(b) In (Z,+, ·) with n 6= 0, take f such that f(n) = 0 and f(x) = x, ∀x ∈ Z − {n}. Then
(Z, ∂+, ∂·) is an Hv-ring, moreover, (Z, ∂+, ∂·)/γ∗ ∼= Zn.

Special case of the above is for n = p, prime, then (Z, ∂+, ∂·) is an Hv-field.

Theorem 3.5. In the ring (Zn,+, ·), with n = ms enlarge the multiplication only in the product
of the elements 0 ·m by setting 0⊗m = {0,m} and the rest results remain the same. Then

(Zn,+,⊗)/γ∗ ∼= (Zm,+, ·).

Remark that we can enlarge other products as well, for example 2·m by setting 2·m = {2,m+2},
then the result remains the same. In this case 0 and 1 are scalars.

Corollary 3.6. In the ring (Zn,+, ·), with n = ps, where p is prime, we enlarge only the product
0 · p by 0⊗ p = {0, p} and the rest remain the same. Then ( Zn,+,⊗) is very thin Hv-field.

Proof. The only one hyperproduct 0 ⊗ p = {0, p} in (Zn,+,⊗) give the following p fundamental
classes

{0, p, 2p, ..., (s− 1)p}, {1, p+ 1, 2p+ 1, ..., (s− 1)p+ 1}, ..., {p− 1, 2p− 1, 3p− 1, ..., sp− 1}.

Therefore, (Zn,+,⊗) is an Hv-field, with fundamental field the (Zp,+, ·).

The large class of P-hyperstructures was appeared in 80’s to represent hopes of constant length
[4], [6], [8], [14].

Definition 3.7. Let (G, ·) be a groupoid. Then for all P such that ∅ 6= P ⊂ G, we define the
following hopes called P-hopes: ∀x, y ∈ G

P : xPy = (xP )y ∪ x(Py),

P r : xP ry = (xy)P ∪ x(yP ),

P l : xP ly = (Px)y ∪ P (xy).

The (G,P ), (G,P r) and (G,P l) are called P-hyperstructures. The most usual case is when
(G, ·) is semigroup, then we have
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xPy = (xP )y ∪ x(Py) = xPy,

and (G,P ) is a semihypergroup.

It is immediate the following: Let (G, ·) be a group, then for all subsets P such that ∅ 6= P ⊂ G,
the hyperstructure (G,P ), where the P -hope is xPy = xPy, becomes a hypergoup in the sense
of Marty, i.e. the strong associativity is valid. The P -hope is of constant length, i.e. we have
|xPy| = |P |. We call the hyperstructure (G,P ), P-hypergroup.

A modified P -hope was introduced which is appropriate for the e-hyperstructures:

Construction 3.8. Let (G, ·) be an Abelian group and P any subset of G with more than one
elements. We define the hyperoperation ×P as follows:

x×P y =

{
x · P · y = {x · h · y|h ∈ P} if x 6= e and c 6= e

x · y if x = e or y = e
.

We call this hope Pe-hope. The hyperstructure (G,×P ) is an Abelian Hv-group.

4 Strong-inverse

We present some results and examples of hyperstructures with strong-inverse elements.

Properties 4.1. Let (G, ·) be a group, take P such that ∅ 6= P ⊂ G and the P -hypergroup (G,P ),
where xPy = xPy. We have the following:

Units: In order an element u to be right unit of the P -hypergroup (G,P ), we must have
xPu = xPu 3 x, ∀x ∈ G. In fact, the set Pu must contain the unit element e of the group (G, ·).
Thus, all the elements of the set P−1, are right units. The same is valid for the left units, therefore,
the set of all units is the P−1.

Inverses: Let u be a unit in (G,P ), then, for given x in order to have an inverse element x
with respect to u, we must have xPx′ = xPx′ 3 u, so taking xpx′ = u, we obtain that all the
elements of the form x′ = p−1x−1u are inverses to x with respect to the unit u.

Theorem 4.2. [14] Let (G, ·) be a group, then for all normal subgroups P of G, the hyperstructure
(G,P ), where xPy = xPy,∀x, y ∈ G, is a hypergoup with strong-inverses. Moreover, for any
inverse x′ of x ∈ G, with respect to any unit, we have xPx′ = P .

Proof. Let x ∈ G. Take an inverse x′ = p−1x−1u with respect to the unit u = p−1k , for any p.
Then we have xPx′ = xPx′. But, since P is normal subgroup, we have

xPx′ = xp−1x−1p−1k P = xp−1x−1P = xp−1Px−1 = xPx−1 = P .

Remark that in this case, P−1 = P , is the set of all units, thus all inverses are strong.

Proposition 4.3. Let (G, ·) be a groupoid, f : G −→ G be a map and (G, ∂) the corresponding
∂-structure, then we have the following:

Units: In order an element u to be right unit, we must have

x∂u = {f(x) · u, x · f(u)} 3 x.

The unit not depend on f(x), so f(u) = e, where e be unit in the monoid (G, ·). The same it
is obtained for the left units. So the elements of kernf = {u : f(u) = e}, are the units of (G, ∂).

Inverses: Let u be a unit in (G, ∂), then (G, ·) is a monoid with unit e and f(u) = e. For given
x in order to have an inverse element x′ with respect to u, we must have
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x∂x′ = {f(x) · x′, x · f(x′)} 3 u and x′∂x = {f(x′) · x, x′ · f(x)} 3 u.

So, the only cases, which do not depend on the image f(x′), are

x′ = (f(x))−1u and x′ = u(f(x))−1

the right and left inverses, respectively. We have two-sided inverses iff f(x)u = uf(x).

Remark [13]: Since the inverses are depending on the units, thus they are not strong.
The following constructions [14], are obtained from properties the strong-inverse elements have.

This is an enlargement in order all the elements to be strong-inverses.

Construction 4.4. Let (G, ·) be a group with unit e. Consider a finite set E = {ei|i ∈ I}. On
the set G = (G− {e}) ∪ E we define a hope (×) as follows:

ei × ej = {ei, ej},∀ei, ej ∈ E
ei × x = x× ei = x,∀ei ∈ E,∀x ∈ G− {e}
x× y = x · y if x · y ∈ G− {e} and x× y = E if x · y = e.

Then the hyperstructure (G,×) is a hypergroup. The set of unit elements is E and all the
elements are strong-inverse. Moreover we have (G,×)/β∗ ∼= (G, ·).

Proof. For the associativity we have the cases:

(ei × ej)× ek = ei × (ej × ek) = {ei, ej , ek},∀ei, ej , ek ∈ E

(x× y)× z = x× (y × z) = x · y · z or E, ∀x, y, z ∈ G and not all of them belong to E.

In the second case the product of two inverses can appear. The only difference is that the
result is singleton and in some cases the result is the set E. Thus, the strong associativity is valid.
The reproductivity is valid and E is the set of units in (G,×).

Two elements of G are β∗ equivalent if they belong to any finite ×-product of elements of G.
Therefore, all fundamental classes are singletons except the set of units E. That means that we
have (G,×)/β∗ ∼= (G, ·).

Construction 4.5. Let (G, ·) be an Hv-group with one unit e and every element has unique
inverse. Consider a finite set E = {ei|i ∈ I}. On the set G = (G− {e}) ∪ E we define a hope (×)
as follows: 

ei × ej = {ei, ej},∀ei, ej ∈ E
ei × x = x× ei = x,∀ei ∈ E,∀x ∈ G− {e}
x× y = x · y if x · y ∈ G− {e} and x× y = E if x · y = e

Then the hyperstructure (G,×) is an Hv-group. The set of unit elements is E and all the
elements are strong-inverse. Moreover, we have

(G,×)/β∗ ∼= (G, ·)/β∗.

Proof. For the associativity we have the cases:

(ei × ej)× ek = ei × (ej × ek) = {ei, ej , ek},∀ei, ej , ek ∈ E.

(x× y)× z = x× (y × z) = x · y · z or E, ∀x, y, z ∈ G and not all of them belong to E.
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Therefore, the WASS is valid. Moreover, the reproductivity is valid and the set E is the set of
units in (G,×).

Two elements of G are β∗ equivalent if they belong to any finite ×-product of elements of G.
So, all fundamental classes correspond to the fundamental classes of (G, ·), with an enlargement
of the class of e into E. Thus, we have (G,×)/β∗ ∼= (G, ·)/β∗.

We remark that the above constructions give a great number of hyperstructures with strong-
inverses because we can enlarge then in any result except if the result is E.

Now, we present a result on strong-inverses on a general finite case, see [5].

Theorem 4.6. A minimum non-degenerate, i.e. have non-degenerate fundamental field, h/v-field
with strong-inverses with respect to sum-hope, obtained by enlarging the ring (Zpq,+, ·), where p, q
is prime numbers, and which has fundamental field isomorphic to (Zq,+, ·), is defined as follows:

The sum-hope (⊕) is enlarged from (+) by setting
1. q ⊕ x = x⊕ q = {x, x+ q}, ∀x ∈ Zpq,
2. whenever, except for 0 ⊕ 0 = 0, the result is 0 and q we enlarge it by setting q and 0,

respectively.
Then, the set of zeros is E = {0, q}, the fundamental classes are

x = {x, x+ q, x+ 2q, . . . , x+ (p− 1)q},∀k ∈ Zpq

and

(Zpq,⊕, ·)/γ∗ ∼= (Zq,+, ·).

Proof. We have pq elements and we want to have the zero-set E = {0, q}. In order to have strong-
opposite, according to Definition 1.6, whenever the result is 0 and q we enlarge it by setting q and
0, respectively. Thus, we have

E ⊂ (xs ⊕ x) ∩ (x⊕ xs), ∀x ∈ Zpq, where xs is the strong-opposite of x.

From the above definition of the sum-hope it is easy to prove that the fundamental classes are
of the form

x = {x, x+ q, x+ 2q, . . . , x+ (p− 1)q}, ∀x ∈ Zpq.

Therefore, it is obtained that (Zpq,⊕, ·) it is an h/v-field and its fundamental field it is isomor-
phic to (Zq,+, ·).

Remark 4.7. We remark that if we take, for example, the triple 1, 2, q − 2, we have

(1⊕ 2)⊕ (q − 2) = 3⊕ (q − 2) = q + 1 and

1⊕ (2⊕ (q − 2)) = 1⊕ {q, 0} = {q + 1, 1}.

Therefore, ⊕ it is WASS, not strong associative.

As example of the above theorem we present the following case:

Example 4.8. In the case of the h/v-field (Z15,⊕, ·), where p = 3, q = 5, we have the table:
and moreover, it is easy to see that the fundamental field is isomorphic to (Z5,+, ·).
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 0 1 2 3 4 5,0 6 7 8 9 10 11 12 13 14

1 1 2 3 4 5,0 6.1 7 8 9 10 11 12 13 14 0,5

2 2 3 4 5,0 6 7.2 8 9 10 11 12 13 14 0,5 1

3 3 4 5,0 6 7 8,3 9 10 11 12 13 14 0,5 1 2

4 4 5,0 6 7 8 9,4 10 11 12 13 14 0,5 1 2 3

5 5,0 6,1 7,2 8,3 9,4 10,5 11,6 12,7 13,8 14,9 0,10 1,11 2,12 3,13 4,14

6 6 7 8 9 10 11,6 12 13 14 0,5 1 2 3 4 5,0

7 7 8 9 10 11 12,7 13 14 0,5 1 2 3 4 5,0 6

8 8 9 10 11 12 13,8 14 0,5 1 2 3 4 5,0 6 7

9 9 10 11 12 13 14,9 0,5 1 2 3 4 5,0 6 7 8

10 10 11 12 13 14 0,10 1 2 3 4 5,0 6 7 8 9

11 11 12 13 14 0,5 1,11 2 3 4 5,0 6 7 8 9 10

12 12 13 14 0,5 1 2,12 3 4 5,0 6 7 8 9 10 11

13 13 14 0,5 1 2 3,13 4 5,0 6 7 8 9 10 11 12

14 14 0,5 1 2 3 4,14 5,0 6 7 8 9 10 11 12 13

Remark 4.9. From the fact that (Zpq,+) is cyclic obtain that the Hv-group (Zpq, ·) is cyclic as
well. We obtain that generators are the elements 1, 2, 4, 7, 8, 11, 13 and 14 and all of them are
of period 14. Notice that the elements 0, 5 and 10, belong to the zero class, therefore the elements
3, 6, 9 and 12 are not generators.

Theorem 4.10. A minimum non-degenerate h/v-field with strong-inverses with respect to product-
hope, obtained by enlarging the ring (Zpq,+, ·), where p, q is prime numbers, and which has funda-
mental field isomorphic to (Zq,+, ·), is defined as follows:

The product-hope (⊗) is enlarged from (+) by setting,
1. (q + 1)⊗ x = x⊗ (q + 1) 3 {x, x+ xq}, ∀xZpq,
2. whenever, except for 1⊗ 1 = 1, the result is 1 and q + 1 we enlarge it by setting q + 1 and

1, respectively.
Then, the set of units is U = {1, q + 1}, the fundamental classes are

x = {x, x+ q, x+ 2q, . . . , x+ (p− 1)q}, ∀x ∈ Zpq

and

(Zpq,+,⊗)/γ∗ ∼= (Zq,+, ·).

Proof. We have pq elements and we want to have the unit-set U = {1, q + 1}. In order to have
strong-inverse elements, according to Definition 1.5, whenever the result is 1 or q + 1, we enlarge
it by setting q + 1 or 1, respectively. From this definition of the product-hope it is easy to prove,
by using the addition on the enlarged results, that the fundamental classes are of the form

x = {x, x+ q, x+ 2q, . . . , x+ (p− 1)q}, ∀xZpq.

On the product-hope of the sets of two classes x and y, since their elements are modq equivalent,
it is clear that we obtain that x⊗ y ⊂ xy .

Moreover, we have

U ⊂ (xs ⊗ x) ∩ (x⊗ xs), ∀x ∈ Zpq, where xs is the strong-inverse of x.
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Therefore, (Zpq,+,⊗) is an h/v-field and (Zpq,+,⊗)/γ∗ ∼= (Zq,+, ·). This h/v-field in the
product-hope has strong inverses.

Remark 4.11. In the above theorem, if we exclude the zero class x = {0, q, 2q, . . . , (p− 1)q}, we
can write the multiplicative table to see that there is a reproductivity on classes and several other
properties that there are on h/v-groups and there are no in the Hv-groups.

Remark 4.12. Let us denote q′ = (q + 1)/2, then taking the elements 2, q′, q − 1, we have

(2⊗ q′)⊗ (q − 1) = {1, q + 1} ⊗ (q − 1) = {q − 1, qq − 1} and

2⊗ (q′ ⊗ (q − 1)) = 2⊗ ((qq − 1)/2) = qq − 1

Therefore, it is WASS, not strong associative.

Example 4.13. In the case of the h/v-field (Z15,+,⊗), where p = 3, q = 5, we have the following
table on the set Z15 − {0, 5, 10}:

1 2 3 4 6 7 8 9 11 12 13 14

1 1 2 3 4 6,1 7 8 9 11 12 13 14

2 2 4 6,1 8 12,2 14 1,6 3 7 9 11 13

3 3 6,1 9 12 3 6,1 9 12 3 6,1 9 12

4 4 8 12 1,6 9,4 13 2 6,1 14 3 7 11

6 6,1 12,2 3 9,4 6,1 12,7 3,8 9 6,11,1 12 3,13 9,14

7 7 14 6,1 13 12,7 4 11 3 2 9 1,6 8

8 8 1,6 9 2 3,8 11 4 12 13 6,1 14 7

9 9 3 12 6,1 9 3 12 6,1 9 3 12 6,1

11 11 7 3 14 6,11,1 2 13 9 1,6 12 8 4

12 12 9 6,1 3 12 9 6,1 3 12 9 6,1 3

13 13 11 9 7 3,13 1,6 14 12 8 6,1 4 2

14 14 13 12 11 9,14 8 7 6,1 4 3 2 1,6

Remark 4.14. We can see that h/v-group is not cyclic. However, if we consider the fundamental
classes instead of elements, we can consider the powers of these sets, by multiplying all the elements
of the set of a fundamental class, as in the following example,

{2, 7, 12}1 = {2, 7, 12} = [2]

{2, 7, 12}2 = {4, 14, 9} = [4]

{2, 7, 12}3 = {8, 13, 3} = [3]

{2, 7, 12}4 = {1, 11, 6} = [1].

Therefore, we obtain that in this sense, the set [2] = {2, 7, 12} is a generator of period 4.
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5 Conclusions

On the classes of the Hv-groups and h/v-groups we deal with the strong inverse elements which are
elements which are inverse, to given element, with respect to all units. We presented constructions,
mainly on finite sets, using enlargement, on special classes of Hv-groups and h/v-groups. These
hyperstructures contain strong inverse elements and remain on the same fundamental classes of
the original hyperstructure.
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