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Abstract

The class of Hv-structures is the largest class of hyper-
structures defined on the same set. For this reason, they
have applications in mathematics and in other sciences,
which range from biology, hadronic physics, leptons, lin-
guistics, sociology, to mention but a few. They satisfy the
weak axioms where the non-empty intersection replaces
equality. The fundamental relations connect, by quo-
tients, the Hv-structures with the classical ones. In or-
der to specify the appropriate hyperstructure as a model
for an application which fulfill a number of properties,
the researcher can start from the basic ones. Thus, the
researcher must know the minimal hyperstructures. Hv-
numbers are elements of Hv-field, and they are used in
representation theory. In this presentation we focus on
minimal Hv-fields derived from rings.
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A Title

1 Introduction

The class of the Hv-structures, introduced by Vougiouklis in 1990 [13], is the largest class of hyper-
structures. In the classical hyperstructures, in any axiom where the equality is used, if we replace
the equality by the non-empty intersection, then we obtain a corresponding Hv-structures. The
new axioms are called weak and this replacement leads to a partial order on the Hv-structures
defined on the same set. A related generalization of Hv-structures are the h/v-structures. The
number of Hv-structures defined on a set is extremely greater than the number of the classical
hyperstructures defined on the same set. This fact leads the Hv-structures to admit more applica-
tions, because they can satisfy more weak properties. In applications in physics new Hv-fields are
needed, especially defined on finite small sets where, moreover, the results have small number of
elements. In this direction, we study small Hv-fields which are obtain from classical rings and have
more properties as the existence of one only unit element and each element has only one inverse
element.

https://doi.org/10.29252/HATEF.JAHLA.1.3.1
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2 Preliminaries

In classical algebra, the quotient of a group by an invariant subgroup, is a group. In 1934 F.
Marty introduced, for the first time, the hyperstructures defining the hypergroup which, in fact,
is the quotient of a group by any subgroup. The largest class of hyperstructures where introduced
by T. Vougiouklis in 1990 [13], [16] by defining the Hv-group. The motivation to introduce the
Hv-structures is that the quotient of a group by any partition (equivalence) is an Hv-group.

The object of this paper is the class of Hv-structures, satisfy the weak axioms where the
non-empty intersection replaces equality.

Definition 2.1. Algebraic hyperstructure (H, ·) is a set H equipped with a hyperoperation (ab-
breviated: hope) · : H × H → P (H) − {∅}. We abbreviate by WASS the weak associativity:
(xy)z ∩ x(yz) 6= ∅, ∀x, y, z ∈ H and by COW the weak commutativity: xy ∩ yx 6= ∅,∀x, y ∈ H.
The algebraic hyperstructure (H, ·) is an Hv-semigroup if it is WASS, it is called Hv-group if it is
reproductive Hv-semigroup, i.e., xH = Hx = H, ∀x ∈ H.

In an Hv-semigroup the powers are: h1 = {h}, h2 = h · h, ..., hn = h ◦ h ◦ ... ◦ h, where (◦) is
the n-ary circle hope, i.e. take the union of hyperproducts, n times, with all possible patterns of
parentheses put on them. An (H, ·) is called cyclic of period s, if there exists an element h, called
generator, and the minimum s such that H = h1 ∪ h2... ∪ hs. Analogously the cyclicity for the
infinite period is defined. If there are h and s, the minimum one such that H = hs, then (H, ·) is
a single-power cyclic of period s.

Definition 2.2. The hyperstructure (R,+, ·) is called Hv-ring if (+) and (·) are WASS, the re-
production axiom is valid for (+) and (·) is weak distributive to (+):

x(y + z) ∩ (xy + xz) 6= ∅, (x+ y)z ∩ (xz + yz) 6= ∅, ∀x, y, z ∈ R.

Let (R,+, ·) be an Hv-ring, a COW Hv-group (M,+) is called Hv-module over R, if there is
an external hope

· : R×M → P (M) : (a, x)→ ax

such that for all a, b ∈ R and for all x, y ∈M we have

a(x+ y) ∩ (ax+ ay) 6= ∅, (a+ b)x ∩ (ax+ bx) 6= ∅ and (ab)x ∩ a(bx) 6= ∅.

Definition 2.3. Let (H, ·) and (H, ∗) be two Hv-semigroups, the hope (·) is smaller than (∗), and
(∗) is greater than (·), iff there exists an automorphism

f ∈ Aut(H, ∗) such that xy ⊂ f(x ∗ y), ∀x, y ∈ H.

We write · ≤ ∗ and say that (H, ∗) contains (H, ·). If (H, ·) is a classical structure, then it is
basic structure and (H, ∗) is Hb − structure.

The Little Theorem. Greater hopes than the ones which are WASS or COW, are WASS or
COW, respectively. Thus, a partial order and posets on Hv-structures is defined.

Definition 2.4. Minimal is called an Hv-group if contains no other Hv-group defined on the same
set. We extend this definition to any Hv-structures with any more properties.

The partial order on Hv-structures and the Little Theorem states that the number of the Hv-
structures defined on a same finite set is extremely bigger comparing to the classical hyperstructures
where the equality is valid. That means that the Hv-structures admit more axioms, thus, more
applications [6], [7], [8], [16], [27].
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Definition 2.5. Let (H, ·) be a hypergroupoid. We remove h ∈ H, if we take the restriction of (·)
in H − {h}. h ∈ H absorbs h ∈ H if we replace h by h. h ∈ H merges with h ∈ H, if we take as
product of any x ∈ H by h, the union of the results of x with both h, h, and consider h and h a
class with representative h.

For more definitions and applications on Hv-structures one can see in books and papers as [1],
[2], [4], [5], [7], [17], [18], [24].

M. Koskas in 1970, introduced in hypergroups the relation β∗, which connects hypergroups
with groups and it is defined in Hv-groups as well. Vougiouklis [1], [12], [13], [16], [17], [19],
[24], [26] introduced the γ* and ε* relations, which are defined, in Hv-rings and Hv-vector spaces,
respectively. He also named all these relations, fundamental.

Definition 2.6. The fundamental relations β*, γ* and ε*, are defined, in Hv-groups, Hv-rings
and Hv-vector space, respectively, as the smallest equivalences so that the quotient would be group,
ring and vector spaces, respectively.

Let (G, ·) be a group and R any partition in G, then (G/R, ·) is Hv-group, therefore the quotient
(G/R, ·)/β* is a group, the fundamental one.

Theorem 2.7. In Hv-group (H, ·) denote by U the set of all finite products. Define the relation
β in H by: xβy iff {x, y} ⊂ u where u ∈ U . Then β* is the transitive closure of β.

Analogous theorems are for Hv-rings, Hv-vector spaces and so on [16].

Theorem 2.8. Let (R,+, ·) be an Hv-ring. Denote U all finite polynomials of elements of R.
Define the relation γ in R by:

xγy iff {x, y} ⊂ u where u ∈ U.

Then the relation γ* is the transitive closure of the relation γ.

Proof. Let γ be the transitive closure of γ, and denote by γ(a) the class of a. First, we prove that
the quotient set R/γ is a ring.

In R/γ the sum (⊕) and the product (⊗) are defined in the usual manner:

γ(a)⊕ γ(b) = {γ(c) : c ∈ γ(a) + γ(b)},

γ∗(a)⊗ γ(b) = {γ(d) : d ∈ γ∗(a) · γ(b)}, ∀a, b ∈ R.

Take a′ ∈ γ(a) and b′ ∈ γ(b). Then we have

a′γa iff ∃x1, ..., xm+1 with x1 = a′, xm+1 = a and u1, ..., um ∈ U,

such that {xi, xi+1} ⊂ ui, i = 1, ...,m, and

b′γb iff ∃y1, ..., yn+1 with y1 = b′, yn+1 = b and v1, ..., vn ∈ U,

such that {yj , yj+1} ⊂ vj , i = 1, ..., n.

From the above we obtain

{xi, xi+1}+ y1 ⊂ ui + v1, i = 1, ...,m− 1,

xm+1 + {yj , yj+1} ⊂ um + vj , j = 1, ..., n.
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The sums
ui + v1 = ti, i = 1, ...m− 1 and um + vj = tim+j−1, j = 1, ..., n,

are also polynomials, thus, tk ∈ U, ∀k ∈ {1, ...,m+ n− 1}.
Now, pick up z1, ..., zm+n such that zi ∈ xi + y1, i = 1, ..., n and zm+j ∈ xm+1 + yj+1, j =

1, ..., n, thus, using the above relations we obtain {zk, zk+1} ⊂ tk, k = 1, ...,m+ n− 1.
Thus, every z1 ∈ x1 + y1 = a′ + b′ is γ equivalent to every zm+n ∈ xm+1 + yn+1 = a + b. So

γ(a)⊕ γ(b) is a singleton so we can write

γ(a)⊕ γ(b) = γ(c), ∀c ∈ γ(a) + γ(b).

By the similar way, we prove that

γ(a)⊗ γ(b) = γ(d), ∀d ∈ γ(a) · γ(b).

The WASS and the weak distributivity on R guarantee that associativity and distributivity are
valid for R/γ*. Therefore, R/γ* is a ring.

Let σ be an equivalence relation in R such that R/σ is a ring and σ(a) the class of a. Then
σ(a)⊕ σ(b) and σ(a)⊗ σ(b) are singletons ∀a, b ∈ R, i.e.

σ(a)⊕ σ(b) = σ(c), ∀c ∈ σ(a) + σ(b) and σ(a)⊗ σ(b) = σ(d),∀d ∈ σ(a) · σ(b).

Therefore, we write, for every a, b ∈ R, A ⊂ σ(a) and B ⊂ σ(b), and so,

σ(a)⊕ σ(b) = σ(a+ b) = σ(A+B), σ(a)⊗ σ(b) = σ(ab) = σ(A ·B).

By induction, we extend these relations on finite sums and products. Thus, for all u ∈ U , we have
the relation σ(x) = σ(u), for all x ∈ u. Consequently, if x ∈ γ(a), then x ∈ σ(a),∀x ∈ R. But σ
is transitively closed, so we obtain: If x ∈ γ(x), then x ∈ σ(a). That γ is the smallest equivalence
relation in R such that R/γ is a ring, i.e. γ = γ*.

An element is called single if its fundamental class is singleton [16].
Several classes of general hyperstructures can be defined by using the fundamental structures.

From 1990 there is the following [13, 16]:

Definition 2.9. An Hv-ring (R,+, ·) is called Hv-field if R/γ* is a field. An Hv-module over an
Hv-field F, it is called Hv-vector space.

The analogous to Theorem 2.8, on Hv-vector spaces, can be proved as well:

Theorem 2.10. Let (V,+) be an Hv-vector space over the Hv-field F . Denote U the set of all
expressions of finite hopes either on F and V or the external hope applied on finite sets of elements
of F and V . Define the relation ε in V as follows: xεy iff {x, y} ⊂ u where u ∈ U. Then ε* is the
transitive closure of the relation ε.

Definition 2.11. Let (L,+) be an Hv-vector space over the Hv-field F , φ : F → F/γ* canonical;
ωF = {x ∈ F : φ(x) = 0}, the core, 0 is the zero of F/γ. Let ωL be the core of φ′ : L→ L/ε* and
denote by 0 the zero of L/ε*, as well. Take the bracket (commutator) hope:

[, ] : L× L→ P (L) : (x, y)→ [x, y]

then L is an Hv-Lie algebra over F if the following axioms are satisfied:
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(L1) The bracket hope is bilinear, i.e., ∀x, x1, x2, y, y1, y2 ∈ L, λ1, λ2 ∈ F ,

[λ1x1 + λ2x2, y] ∩ (λ1[x1, y] + λ2[x2, y]) 6= ∅
[x, λ1y1 + λ2y2] ∩ (λ1[x, y1] + λ2[x, y2]) 6= ∅,

(L2) [x, x] ∩ ωL 6= ∅, ∀x ∈ L

(L3) ([x, [y, z]] + [y, [z, x]] + [z, [x, y]]) ∩ ωL 6= ∅, ∀x, y, z ∈ L

Definition 2.12. The Hv-semigroup (H, ·) is an h/v-group if H/β* is a group [20].

The h/v-group is a generalization of an Hv-group where a reproductivity of classes is valid: if
σ(x), ∀x ∈ H are equivalence classes, then xσ(y) = σ(xy) = σ(x)y,∀x, y ∈ H. Similarly h/v-rings,
h/v-fields and h/v-vector spaces etc, are defined.

3 Hopes, representations and applications

An extreme class of Hv-structures and related constructions, introduced in [14], [16], [18], [20],
[23], [24], [25], are the following:

Definition 3.1. An Hv-structure is called very thin if there exists a pair (a, b) ∈ H2 for which
ab = A, with cardA > 1, and all the other products are singletons.

From the very thin hopes the Attach Construction is obtained: Let (H, ·) be an Hv-semigroup
and v /∈ H. We extend the hope (·) into H = H ∪ {v} by:

x · v = v · x = v,∀x ∈ H, and v · v = H.

The (H, ·) is an Hv-group, where (H, ·)/β∗ ∼= Z2 and v is a single. Denote [x] the fundamental
class of ∀x ∈ H, then the Unit class is the class [e] if

([e] · [x]) ∩ [x] 6= ∅ and ([x] · [e]) ∩ [x] 6= ∅,∀x ∈ H,

and ∀x ∈ H, we call inverse class of [x], the class [x]−1, if

([x] · [x]−1) ∩ [e] 6= ∅ and ([x]−1 · [x]) ∩ [e] 6= ∅.

Definition 3.2. Enlarged hopes is one if new elements appear in results. Let (H, ·) be an Hv-
semigroup, v /∈ H. We extend (·) into H = H ∪ {v} by: x · v = v · x = v,∀x ∈ H, and v · v = H.
The (H, ·) is an h/v-group, called attach, where (H, ·)/β∗ ∼= Z2 and v is single. If (H, ·) is COW
then (H, ·) is COW. Let (H, ·) be an Hv-semigroup, v /∈ H and (H, ·) its attached h/v-group. Take
0 /∈ H and define in H◦ = H ∪ {v, 0} a hypersum ∀x, y ∈ H,

(+) : 0 + 0 = x+ v = v + x = 0, 0 + v = v + 0 = x+ y = v, 0 + x = x+ 0 = v + v = H,

and a hyperproduct is the same in H and 0 · 0 = v · x = x · 0 = 0, ∀x ∈ H. Then (Ho,+, ·) is
an h/v-field with (Ho,+, ·)/γ*∼= Z3. The operations (+) is associative, (·) is WASS and weak
distributive to (+). 0 is zero absorbing in (+). Hence, (Ho,+, ·) is the attached h/v-field of (H, ·).
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Definition 3.3. [7, 18, 21, 23, 25] Let (G, ·) be a groupoid and f : G→ G be a map. We define a
hope (∂) called theta-hope, we write ∂-hope, on G as follows,

x∂y = {f(x) · y, x · f(y)}, ∀x, y ∈ G.

If (·) is commutative, then ∂ is commutative. If (·) is COW, then ∂ is COW. Property: If (G, ·)
is a groupoid and f : G→ P (G)− {∅} be a multivalued map, then we define the ∂-hope on G as
follows, x∂y = (f(x) · y) ∪ (x · f(y)), ∀x, y ∈ G. Motivation for ∂-hope is the derivative, where
only the product of functions is used.

Basic property: if (G, ·) is a semigroup, then ∀f , the ∂-hope is WASS.

Example 3.4. (a) In integers (Z,+, ·) fix n 6= 0, a natural number. Consider the map f such that
f(0) = n and f(x) = x,∀x ∈ Z − {0}. Then (Z, ∂+, ∂·), where ∂+ and ∂· are the ∂-hopes refereed
to the addition and the multiplication, respectively, is an Hv-near-ring, with

(Z, ∂+, ∂·)/γ
∗ ∼= Zn.

(b) In (Z,+, ·) with n 6= 0, take f such that f(n) = 0 and f(x) = x,∀x ∈ Z − {n}. Then
(Z, ∂+, ∂·) is an Hv-ring, moreover, (Z, ∂+, ∂·)/γ

∗ ∼= Zn.
Special case of the above is for n = p, prime, then (Z, ∂+, ∂·) is an Hv-field.
Combining uniting elements with the enlarging theory we obtain analogous results.

Theorem 3.5. In the ring (Zn,+, ·), with n = ms we enlarge the multiplication only in the product
of the elements 0 ·m by setting 0⊗m = {0,m} and the rest results remain the same. Then

(Zn,+,⊗)/γ* ∼= (Zm,+, ·).

Remark that we can enlarge other products as well, for example 2 · m by setting 2 ⊗ m =
{2,m+ 2}, then the result remains the same. In this case 0 and 1 are scalars.

Corollary 3.6. In the ring (Zn,+, ·), with n = ps, where p is prime, we enlarge only the product
0 ·p by 0⊕p = {0, p} and the rest results remain the same. Then (Zn,+,⊕) is a very thin Hv-field.

Hopes defined on classical structures are the following [7], [10], [11], [16]:

Definition 3.7. Let (G, ·) be a groupoid, then for every P ⊂ G, P 6= ∅, we define the following
hopes called P-hopes: ∀x, y ∈ G

P : xPy = (xP )y ∪ x(Py),

P r : xP ry = (xy)P ∪ x(yP ), P l : xP ly = (Px)y ∪ P (xy).

The (G,P ),(G,P r) and (G,P l) are called P-hyperstructures. If (G, ·) is a semigroup, then xPy =
(xP )y ∪ x(Py) = xPy and (G,P ) is a semihypergroup.

Hv-structures used in Representation (abbr. rep) Theory of Hv-groups can be achieved by
generalized permutations [15] or by Hv-matrices [7], [10], [16], [19], [23].

Hv-matrix is called a matrix if has entries from an Hv-ring. The hyperproduct of Hv-matrices
(aij) and (bij), of type m × n and n × r, respectively, is defined in the usual manner, and it is a
set of m× r Hv-matrices. The sum of products of elements of the Hv-ring is the n-ary circle hope
on the hyper-sum.

The problem of the Hv-matrix (orh/v-group) reps is the following:
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Definition 3.8. Let (H, ·) be an Hv-group. Find an Hv-ring (R,+, ·), a set MR={(aij)|aij∈R},
and a map T : H →MR : h 7→ T (h) such that

T (h1h2) ∩ T (h1)T (h2) 6= ∅, ∀h1, h2 ∈ H.

T is an Hv-matrix rep. If T (h1h2) ⊂ T (h1)T (h2),∀h1, h2 ∈ H, then T is an inclusion rep. If
T (h1h2) = T (h1)T (h2),∀h1, h2 ∈ H, then T is a good rep. If T is a good rep and one to one, then
it is a faithful rep.

The rep problem is simplified in cases such as if the h/v-rings have scalars 0 and 1.

Theorem 3.9. A necessary condition in order to have an inclusion rep T of an h/v-group (H, ·)
by n× n h/v-matrices over the h/v-ring (R,+, ·) is the following: ∀β*(x), x ∈ H there must exist
elements aij ∈ H, i, j ∈ {1, ..., n} such that

T (β*(a)) ⊂ {A = (a′ij)|a′ij ∈ γ*(aij), i, j ∈ {1, ..., n}},

The inclusion rep T : H →MR : a 7→ T (a) = (aij) induces an homomorphic T* of H/β* on R/γ*
by T*(β*(a)) = [γ*(aij)],∀β*(a) ∈ H/β*, where γ*(aij) ∈ R/γ* is the ij entry of T*(β*(a)).

An important hope on non-square matrices is defined [9], [28]:

Definition 3.10. Let A = (aij) ∈ Mm×n and s, t ∈ N such that 1 ≤ s ≤ m, 1 ≤ t ≤ n. Define
a mod-like map st from Mm×n to Ms×t by corresponding to A the matrix Ast = (aij) with entries
the sets

aij = {ai+κs,j+λt|1 ≤ i ≤ s, 1 ≤ j ≤ t and κ, λ ∈ N, i+ κs ≤ m, j + λt ≤ n}.

The map st : Mm×nMs×t : A → Ast(aij), is called helix-projection of type st. Ast is a set of
s× t-matrices X = (xij) such that xij ∈ aij , ∀i, j. Obviously Amn = A.

Let A = (aij) ∈Mm×n and s, t ∈ N , where 1 ≤ s ≤ m, 1 ≤ t ≤ n. We apply the helix-projection
first on the columns and then on the rows and the result is the same: (Asn)st = (Amt)st = Ast.

Let A = (aij) ∈ Mm×n and B = (bij) ∈ Mu×v be matrices. Denote s = min(m,u) and
t = min(n, u), then we define the helix-sum by

⊕ : Mm×n ×Mu×v → P (Ms×t) : (A,B)→ A⊕B = Ast+Bst = (aij) + (bij) ⊂Ms×t,

where (aij) + (bij) = {(cij) = (aij + bij)|aij ∈ aij and bij ∈ bij}. Denote s=min(n,u), then we
define the helix-product by

⊗ : Mm×n ×Mu×v → P (Ms×t) : (A,B)→ A⊗B = Ams ·Bsv = (aij) + (bij) ⊂Mm×v,

where (aij) · (bij) = {(cij) = (
∑
aijbij)|aij ∈ aij and bij ∈ bij}.

Last decades Hv-structures have applications in mathematics and in other sciences. Applica-
tions range from biology and hadronic physics or leptons to mention but a few. The hyperstructure
theory is related to fuzzy one; consequently, can be widely applicable in industry and production,
too [2], [5], [6], [7], [8], [22], [26].

An application, which combines ∂-hyperstructures and fuzzy theory, is to replace in question-
naires the scale of Likert by the bar of Vougiouklis & Vougiouklis (V&V bar) [27]. They suggest
the following:
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Definition 3.11. In every question substitute the Likert scale with ’the bar’ whose poles are defined
with ’0’ on the left end, and ’1’ on the right end:

0 1

The participants are asked instead of deciding and checking a specific grade on the scale, to cut the
bar at any point she/he feels expresses her/his answer to the specific question.

The use of V&V bar instead of a Likert scale has several advantages during both the filling-in
and the research processing. The final suggested length of the bar, according to the Golden Ratio,
is 6.2cm.

The Lie-Santilli theory on isotopies was born to solve Hadronic Mechanics problems. Santilli
proposed a ’lifting’ of the n-dimensional trivial unit matrix into an appropriate new matrix. The
original theory is reconstructed to admit the new matrix as left and right unit. The isofields needed
in this theory correspond into the hyperstructures called e-hyperfields, introduced by Santilli &
Vougiouklis in 1996 [6], [8].

Definition 3.12. The (H, ·) is called an e-hyperstructure if contains a unique scalar unit e and
for all x there exists an inverse x−1, i.e. e ∈ (x · x−1)∩ (x−1 · x). (F,+, ·), where (+) is operation
and (·) is hope, is an e-hyperfield: The (F,+) is an Abelian group with unit 0, (·) is WASS, (·) is
weak distributive to (+), 0 is absorbing: 0 · x = x · 0 = 0, ∀x ∈ F , there exists a scalar unit 1, i.e.
1 · x = x · 1 = x,∀x ∈ F , and ∀x ∈ F there is a unique inverse x−1.

The Main e-Construction. Given a group (G, ·), e unit, defines hopes (⊗) by:

x⊗ y = {xy, g1, g2, ...}, ∀x, y ∈ G− {e}, and g1, g2, ... ∈ G− {e},

(G,⊗) is an Hb-group which contains the (G, ·). (G,⊗) is an e-hypergroup. Moreover if for all
x, y such that xy = e, and so x⊗ y = xy, then (G,⊗) becomes a strong e-hypergroup.

Example 3.13. In quaternions Q = {1,−1, i,−i, j,−j, k,−k} with i2 = j2 = k2 = −1, ij =
k, jk = i, ki = j denote i = {i,−i}, j = {j,−j}, k = {k,−k}, define hopes (∗) by enlarging few
products. For example, (−1) ∗ k = k, k ∗ i = j and i ∗ j = k. Then (Q, ∗) is a strong e-hypergroup.

A generalization of P-hopes used in Santilli’s isotheory, is the following: Let (G, ·) be an Abelian
group, P a subset of G with #P > 1. Define the hope ×p as follows:

x×p y =

{
x · P · y = {x · h · y|h ∈ P} if x 6= e and y 6= e

x · y if x = e or y = e

we call this hope Pe-hope. The hyperstructure (G,×p) is an Abelian Hv-group.

4 Very thin minimal h/v-fields

The uniting elements method, introduced by Corsini & Vougiouklis in 1989, is the following [3]:
Let G be a structure and a not valid property d, described by a set of equations. Take the partition
in G for which put in the same class, all pairs of elements that causes the non-validity of d. The
quotient by this partition G/d is an Hv-structure. Then, quotient out G/d by β∗, is a stricter
structure (G/d)/β∗ for which d is valid.
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Theorem 4.1. Let (R,+, ·) be a ring, F = {f1, ..., fm, fm+1, ..., fm+n} be a system of equations
on R consisting of subsystems Fm = {f1, ..., fm} and Fn = fm+1, ..., fm+n}. Let σ and σm be the
equivalence relations defined by the uniting elements using the F and Fm respectively, and σn be
the equivalence defined using on Fn on the ring Rm = (Rm/σn)/γ∗. Then

(R/σ)/γ∗ ∼= (Rm/σn)/γ∗

Basic general results on the topic can be found in [3], [16]. In this paper, we need some
properties, so we focus on them.

Commutativity. Let (G, ·) be a groupoid. We unite any two elements a and b of G if there exist
a pair (x, y) ∈ G2 such that xy = a, yx = b, and we take the transitive closure. Then, the quotient
set is an h/v-commutative groupoid so, divided by β∗, a commutative groupoid is obtained.

Theorem 4.2. Let (S, ·) be a commutative semigroup with at least one element u ∈ S such that
the set uS is finite. Consider the transitive closure R∗ of the relation R defined as follows:

s1Rs2 iff there exists x ∈ S such that xs1 = xs2.

Then < S/R∗, ◦ > /β∗ is a finite commutative group, where (◦) is the induced operation on classes
of S/R∗.

Proof. Lets suppose that a and b are equivalent elements of S, i.e. aR∗b. That means that there
are elements x1, . . . , xn+1, µ1, . . . µn of S such that

x1a = x1µ1, x2µ1 = x2µ2, . . . xnµn−1 = xnµn, xn+1µn = xn+1b.

From these relations we obtain that

xn=1 . . . x2x1a = xn+1 . . . x2x1µ1 = xn+1 . . . x2x1µ2 = xn+1 . . . x2x1b,

so setting x = xn+1 . . . x2x1, we have xa = xb. Therefore, it is proved that R∗ ∼= R.
In the following, let’s denote by a the class of the element a and S = S/R = S/R∗. Consider

the mapping f : S → {z|z ∈ xS} : s→ xs, for which we have

s = s′ ⇒ xR′s⇒ ∃p : ps = ps′ ⇒ xps = xps′ ⇒ p(xs) = p(xs)′ ⇒ xs = xs′.

Vice versa let ys = ys′. Then there exists q such that

qys = qys′ ⇒ (qy)s = qys′ ⇒ s = s′.

Therefore, f is a bijection. From the above we have

|us| ≥ |{z : z ∈ xS}| = |S|.

Consider the subset xS = {xs : x ∈ S} of S. Then we have |xS| = S and since |S| is finite, it
follows that xS = S. So, for every y ∈ S, there exists an element z ∈ S such that y = xz but
xz ∈ x · z, so xz ∈ x ◦ z or y ∈ x ◦ z.

Therefore, the reproduction axiom is satisfied for < S, ◦ > and S/β∗ is a finite commutative
group.
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Algorithm 4.3. It is clear, that the uniting elements method can be applied to obtain several
properties in different order. Moreover, if we apply the method to obtain one property the result
covers more properties. On the other hand, some of the properties are easy to apply, for example
the commutativity, and maybe it is not necessary to apply the total relation, in all pairs of elements,
but we can apply in one only pair and we can reach the property or the properties. Therefore, we
suggest in applications to apply the uniting elements method according to the following algorithm:
We select the simplest, for the uniting elements, property and apply the method for one pair of
elements and then for the second pair and so on. In every step we check all properties which are
valid.

Now, we focus on Very Thin minimal Hv-fields obtained by a classical field.

Theorem 4.4. In a field (F,+, ·), we enlarge only in the product of the special elements a and b,
by setting a⊗ b = {ab, c}, where c 6= ab, and the rest results remain the same. Then we obtain the
degenerate, minimal very thin, Hv-field

(F,+,⊗)/γ∗ ∼= {0}.

Thus, there is no non-degenerate Hv-field obtained by a field by enlarging any product.

Proof. Take any x ∈ F − {0}, then from a⊗ b = {ab, c} we obtain

(a⊗ b)− ab = {0, c− ab} and then (x(c− ab)−1)⊗ ((a⊗ b)− ab) = {0, x},

thus, 0γx, x ∈ F − {0}. Which means that every x is in the same fundamental class with the
element 0. Thus, (F +⊗)/γ∗ ∼= {0}.

Theorem 4.5. In a field (F,+, ·), we enlarge only in the sum of the special elements a and b, by
setting a ⊕ b = {ab, c}, where c 6= a + b, and the rest results remain the same. Then we obtain
the degenerate, minimal very thin, Hv-field (F,⊕, ·)/γ∗ ∼= {0}. Thus, there is no non-degenerate
Hv-field obtained by a field by enlarging any sum.

Proof. Take any x ∈ F − {0}, then from a⊕ b = {a+ b, c} we obtain

(a⊕ b)− (a+ b) = {0, c− (a+ b)}

and then
[x(c− (a+ b))−1]⊕ [(a⊕ b)− (a+ b)] = {0, x},

thus, 0γx, x ∈ F − {0}. Which means that every x is in the same fundamental class with the
element 0. Thus,

(F⊕, cdot)/γ∗ ∼= {0}.

The above two theorems state that there is no non-degenerate Hv-field obtained by a field by
enlarging any sum or product.

The small non-degenerate h/v-fields on (Zn,+, ·) in iso-theory, satisfy the following:

1. Very thin minimal,

2. COW,
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3. They have the elements 0 and 1, scalars,

4. If an element has inverse element, this is unique.

Therefore, we cannot enlarge the result if it is 1 and we cannot put 1 in enlargement.

Theorem 4.6. [25] All multiplicative h/v-fields defined on (Z4,+, ·), with non-degenerate fun-
damental field, satisfying the above four conditions, are the following isomorphic cases: The only
product which is set is 2⊗3 = {0, 2} or 3⊗2 = {0, 2}. Fundamental classes: [0] = {0, 2}, [1] = {1, 3}
and we have

(Z4,+,⊗)/γ∗ ∼= (Z2,+, ·).

Example 4.7. Denote Eij the matrix with 1 in the ij-entry and zero in the rest entries. Take
the 2×2 upper triangular h/v-matrices on the above h/v-field (Z4,+,⊗) of the case that only
2⊗ 3 = {0, 2} is a hyperproduct:

I = E11 + E22, a = E11 + E12 + E22, b = E11 + 2E12 + E22, c = E11 + 3E12 + E22,

d = E11 + 3E22, e = E11 + E12 + 3E22, f = E11 + 2E12 + 3E22, g = E11 + 3E12 + 3E22,

then, we obtain for X = {I, a, b, c, d, e, f, g}, that (X,⊗) is non-COW, Hv-group where the funda-
mental classes are a = {a, c}, d = {d, f}, e = {e, g} and the fundamental group is isomorphic to
(Z2×Z2,+). There is only one unit and every element has unique double inverse. Only f has one
more right inverse element d, since f ⊗ d = {I, b}. (X,⊗) is not cyclic.

Theorem 4.8. All multiplicative h/v-fields on (Z6,+, ·), with non-degenerate fundamental field,
satisfying the above four conditions, are the following isomorphic cases: We have the only one
hyperproduct,

(I) 2⊗ 3 = {0, 3}, 2⊗ 4 = {2, 5}, 3⊗ 4 = {0, 3}, 3⊗ 5 = {0, 3}, 4⊗ 5 = {2, 5}. The fundamental
classes are [0] = {0, 3}, [1] = {1, 4}, [2] = {2, 5} and we have

(Z6,+,⊗)/γ∗ ∼= (Z3,+, ·).

(II) 2 ⊗ 3 = {0, 2} or 2 ⊗ 3 = {0, 4}, 2 ⊗ 4 = {0, 2} or {2, 4}, 2 ⊗ 5 = {0, 4} or 2 ⊗ 5 = {2, 4},
3 ⊗ 4 = {0, 2} or {0, 4}, 3 ⊗ 5 = {3, 5}, 4 ⊗ 5 = {0, 2} or {2, 4}. In all these cases the
fundamental classes are [0] = {0, 2, 4}, [1] = {1, 3, 5} and we have

(Z6,+,⊗)/γ∗ ∼= (Z2,+, ·).

Example 4.9. In the h/v-field (Z6,+,⊗) where only the hyperproduct is 5 ⊗ 4 = {2, 5} take the
h/v-matrices of type i = E11 + iE12 + 4E22, where i = 0, 1, ..., 5, then the multiplicative table of
the hyperproduct of those h/v-matrices is

⊗ 0 1 2 3 4 5

0 0 1 2 3 4 5

1 4 5 0 1 2 3

2 2 3 4 5 0 1

3 0 1 2 3 4 5

4 4 5 0 1 2 3

5 2, 5 0, 3 1, 4 2, 5 0, 3 1, 4
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The fundamental classes are [0] = {0, 3}, [1] = {1, 4}, [2] = {2, 5} and the fundamental group
is isomorphic to (Z3,+). The (Z6,⊗) is an h/v-group which is cyclic where 2 and 4 are generators
of period 4.

One can specify the analogous h/v-fields for other ’small cases’ as the following.

Theorem 4.10. All multiplicative h/v-fields defined on (Z9,+, ·), which have non-degenerate fun-
damental field, and satisfy the above 4 conditions, are the following isomorphic cases: We have
the only one hyperproduct,
2⊗ 3 = {0, 6} or {3, 6}, 2⊗ 4 = {2, 8} or {5, 8}, 2⊗ 6 = {0, 3} or {3, 6},
2⊗ 7 = {2, 5} or {5, 8}, 2⊗ 8 = {1, 7} or {4, 7}, 3⊗ 4 = {0, 3} or {3, 6},
3⊗ 5 = {0, 6} or {3, 6}, 3⊗ 6 = {0, 3} or {0, 6}, 3⊗ 7 = {0, 3} or {3, 6},
3⊗ 8 = {0, 6} or {3, 6}, 4⊗ 5 = {2, 5} or {2, 8}, 4⊗ 6 = {0, 6} or {3, 6},
4⊗ 8 = {2, 5} or {5, 8}, 5⊗ 6 = {0, 3} or {3, 6}, 5⊗ 7 = {2, 8} or {5, 8},
5⊗ 8 = {1, 4} or {4, 7}, 6⊗ 7 = {0, 6} or {3, 6}, 6⊗ 8 = {0, 3} or {3, 6},
7⊗ 8 = {2, 5} or {2, 8}.
In all the above cases the fundamental classes are

[0] = {0, 3, 6}, [1] = {1, 4, 7}, [2] = {2, 5, 8}, and we have

(Z9,+,⊗)/γ∗ ∼= (Z3,+, ·).

5 Conclusion

On the class of the Hv-structures, the largest class of hyperstructures, one can apply the uniting
elements procedure to obtain hyperstructures where more properties, are valid. Moreover, one
can add or take out elements in order to obtain hyperstructures with more new properties. In
applications on physics, mainly in Lie-Santilli theory on isotopies, new Hv-fields and h/v-fields,
are needed. We present some large classes of Hv-fields and h/v-fields by determining the minimal
Hv-fields, obtained from small finite classical rings. We present some examples on the topic which
lead to new classes of hyperstructures, as well.
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