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1 Introduction

The theory of hyperstructures was introduced by Marty [10] at the 8" congress of Scandinavian
Mathematicians in 1934. Some review of the hyperstructure theory can be found in [3| 4. 5 6, [15].
Mittas [11] introduced the notion of canonical hypergroups. Hyperrings and hyperfields were intro-
duced by Krasner [9] in connection with his work on valued fields. Davvaz and Leoreanu studied
hyperrings in more details in [6]. Several kinds of hyperrings are introduced and analyzed. Ameri
and Norouzi [1] studied homomorphisms of hyperring and extension (contraction) of hyperideals in
commutative hyperrings. In 2015, Jun [§] studied algebraic and geometric aspects of hyperrings.
He introduced the notion of an integral hyperring scheme (X, Ox) and proved that I'(X,Ox) ~ R
for any integral affine hyperring scheme X = Spec(R). In [12], some results concerning ordered
hyperstructures are proved. Some results on a derivation in hyperrings can be found in [2]. Re-
cently, Tekir et al. [I3] introduced the concept of n-ideals on commutative rings.

Let R be a commutative Krasner hyperring with nonzero identity. In this paper, we generalize
some concepts of the ring theory such as n-ideals and r-ideals on hyperrings. Also, we investigate
some properties of n-hyperideals analogous with prime hyperideals in commutative hyperrings.

https://doi.org/10.29252/HATEF.JAHLA.1.2.3
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2 Preliminaries

Let H be a non-empty set and P*(H) denotes the family of all non-empty subsets of H. A
mapping o : H x H — P*(H) is called a binary hyperoperation on H. The couple (H, o) is called
a hypergroupoid. In the above definition, if A and B are two non-empty subsets of H and =z € H,
then we define:

AoB= |J aob, Aoz =Ao{z} and x 0o B={z} o B.
acA
beB
A hypergroupoid (H, o) is said to be a semihypergroup if for all x,y,z € H, (xoy)oz =z0(yoz),
which means that

U woz= {J zouw.

uexroy veEYyoz

A non-empty subset K of a semihypergroup (H, o) is called a subsemihypergroup of H if KoK C K.
A semihypergroup (H, o) satisfying z o H = H oz = H for any € H is called a hypergroup. A
non-empty subset K of H is a subhypergroup of H ifao K = Koa =K, for all a € K.

Now, we introduce the notions of canonical hypergroups and Krasner hyperrings and we apply
them in the next section.

Definition 2.1. [I1] A non-empty set R along with the hyperoperation + is called a canonical
hypergroup if the following axioms hold:

(1) 2+ (y+2) = (xr +y) + z, for any z,y,z € R;
(2) x+y=y+=x, for any x,y € R;
(3) there exists 0 € R such that © + 0 = {x}, for any x € R;

(4) for any x € R, there exists a unique element ' € R, such that 0 € x + ' (we shall write —x
for &' and we call it the opposite of x);

(5) z € x +y implies that y € —x + z and x € z —y, that is (R,+) is reversible.

Definition 2.2. [9] A Krasner hyperring is an algebraic hypersructure (R, +,-) which satisfies the
following axioms:

(1) (R,+) is a canonical hypergroup;

(2) (R,-) is a semigroup having 0 as a bilaterally absorbing element, i.e., x-0=0-x =0, for
all x € R;

(3) (y+z2) 2=y -z)+(z-z)andz-(y+2)=(x-y)+ (z-2), forall z,y,z € R.

A Krasner hyperring R is called with identity if there exists an element, say 1 € R, such that
l-z=2x-1==x. An element x of a Krasner hyperring R is called a unit if there exists y € R
such that -y = y -2 = 1. A Krasner hyperring R is called commutative (with unit element) if
(R,-) is a commutative semigroup (with unit element). A Krasner hyperring R is called a Krasner
hyperfield, if (R \ {0},-) is a group. A Krasner hyperring R is called a hyperdomain, if R is a
commutative hyperring with unit element and a - b = 0 implies that a = 0 or b = 0, for all
a,b € R. A subhyperring of a Krasner hyperring (R,+,-) is a non-empty subset A of R which
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forms a Krasner hyperring containing 0 under the hyperoperation + and the operation - on R,
that is, A is a canonical subhypergroup of (R,+) and A- A C A. Then a non-empty subset A of
R is a subhyperring of (R, +,-) if and only if, forall z,y € A, 2 +y C A, —v € Aand z -y € A.
A non-empty subset I of (R,+,-) is called a left (resp. right) hyperideal of (R,+,-) if (I,+) is a
canonical subhypergroup of (R,+) and for any a € [ and r € R, r-a € I (resp. a-r € I). A
hyperideal I of (R,+,-) is one which is a left as well as a right hyperideal of R, that is, z +y C [
and —x € I, forall z,y € I and x-y,y-x € I, for all x € I and y € R. Throughout this paper,
unless otherwise stated, R is always a commutative Krasner hyperring with nonzero identity.

Lemma 2.3. [6] A non-empty subset A of a Krasner hyperring R is a left (resp. right) hyperideal
if and only if

(1) a,b € A implies a —b C A.
(2) ac Aandr e R implyr-a€ A (resp. a-r € A).

Definition 2.4. A homomorphism from a Krasner hyperring (R,+,-) into a Krasner hyperring
(S, ®,®) is a mapping ¢ : R — S such that we have:

(1) o(a+0b) C p(a) ® p(b);
(2) ¢la-b) = p(a) © p(b).

Also, ¢ is called a good homomorphism if in the previous condition (1), the equality is valid.

3 n-Hyperideals of commutative hyperrings

Recall that a proper hyperideal p of a commutative hyperring (R, +,-) is called prime if a-b € p

implies that either a € p or b € p. Let R be a commutative hyperring with identity. By Spec(R)

we mean the set of all the prime hyperideals of R. For hyperideal I of R we define V' (I) as follows:
V(I):={p e Spec(R) | I C p}.

For a € R, we set V(a) := {p € Spec(R) | a € p}. Then, V(I) = () V(a).
acl

Lemma 3.1. [§] Let I be a hyperideal of a hyperring R. Then

VI :={r € R|3n €N such that " € I}.
1s a hyperideal.
Lemma 3.2. [8] Let I be a hyperideal of a hyperring R. Then

Vi= 1 ».
peV(I)
Definition 3.3. A hyperideal I of a Krasner hyperring (R,+,-), such that I # R, is called an
n-hyperideal if for a,b of R, a-b € I and a ¢ /0 implies that b € I.

Example 3.4. Let R = {0,a,b} be a set with the hyperaddition + and the multiplication - defined
as follows:

+10 a b a b c
010 a b 00 0 O
ala R a al0 a b
b|b a {0,b} b0 b O

Then, (R,+,-) is a Krasner hyperring. It is easy to see that {0} and {0,b} are n-hyperideals of R.
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Lemma 3.5. Let (R, +,-) be a hyperring. Then,

(1) If {Ii | k € Q} is a family of n-hyperideals of R such that I; C I; or I; C I; for alli,j € €,
then |J Iy is an n-hyperideal of R.

keQ
(2) If {1, | k € Q} is a family of n-hyperideals of R, then () Ix is an n-hyperideal of R.
keQ
Proof. (1): Since 0 € |J Iy, it follows that |J I # 0. Let z,y € |J Ix. Then z,y € I} for some
ke ke kel
k € Q. Since I} is a hyperideal of R, we obtain = —y C Ij, for some k € Q. Thus z —y C | Ii.
keQ
Also, (U Ix) - R= U Ix-RC U Iyand R- (| Ix) = U R-Ixy C | Iy. So, foreachx € |J I
keQ keQ keQ keQ keQ keQ keQ
and s € R, z-s¢€ |J Ij. Similarly, s-x € |J Ij. Now,leta-bec (J Iy and a ¢ VO for a,b € R.
ke keQ keQ
Then, a - b € I; for some i € Q. Since I; is an n-hyperideal of R, it follows that b € I; C J Ii.
keQ
Therefore, |J Iy is an n-hyperideal of R.
keQ
(2): The proof is straightforward. O

The set ann(x) = {a € R | a-x = 0} is called the annihilator of x in R. A proper hyperideal
I of a hyperring (R, +, -) is said to be an r-hyperideal of R if x -y € I and ann(x) = 0 imply that
y € I for any x,y € R. Every n-hyperideal of a hyperring R is an r-hyperideal of R. The converse
is not true, in general, that is, an r-hyperideal may not be an n-hyperideal of R. The following
example denotes such a situation.

Example 3.6. Let R = {0,a,b,c} be a set with the hyperaddition + and the multiplication - defined
as follows:

+ 10 a b c 0 a b c
0|0 a b c 0/0 0 0 O
a|a {0,b} {a,c} b al0 a b ¢
b|b {a,c} {0,b} a b0 b b O
clc b a 0 c|l0 ¢ 0 ¢

Then, (R,+,-) is a Krasner hyperring [2]. Clearly, {0}, {0,b} and {0,c} are proper hyperideals of
R. It is easy to see that {0,b} is an r-hyperideal of R, but it is not an n-hyperideal of R. Indeed:

b-c=0€{0,b} and b ¢ /Og but ¢ ¢ {0,b}.

Theorem 3.7. Let p be a prime hyperideal of a hyperring (R,+,-). Then p is an n-hyperideal of
R if and only if p = /0.

Proof. By Lemma [3.2, v0 = N pCyp Letpd v/0. Then there exists a € p such that
peSpec(R)

a ¢ /0. Since p is an n-hyperideal of R and a-1 = a € p, we get 1 € p. Thus, I = R, a
contradiction. Hence, p C v/0 which implies that p = V0.

Conversely, let a-b € p and a ¢ v/0 = p for a,b € R. Since p is a prime hyperideal of R, we
have b € p. Therefore, p is a prime hyperideal of R. O

Example 3.8. In E:mmple {0,b} is a prime hyperideal of R, but it is not an n-hyperideal of
R.
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For a (multiplicative) submonoid S of a hyperring R, let us consider the following relation in
R x S:

(r,s) ~ (r',s') & 3z € S s.t. ars’ = ar's.

Clearly, ~ is an equivalence relation on R x S. Let [(r, s)] be the equivalence relation of (r,s) €
RxS. ST'Ris the set (R x S/ ~). Now, we define the following hyperoperation & and operation
® on S7IR,

[(r,9)] & [(, )] ={l(y,s- )] |yer-s'+r- s}

and

[(r, )] © [(r', )] = {[(r - ', s - )]}

Clearly, (S™'R,®,®) is a commutative hyperring [7]. The mapping ¢ : R — S™'R given by
©(r) =r/1is a homomorphism. If I is a hyperideal of R, then

o) =S T={ e S'R|\X=a/s,3ac,Isc S}
is a hyperideal of ST'R. S~!I is called the extension of I in S™'R.

Theorem 3.9. If I is an n-hyperideal of a hyperring (R,+,-), then S™'I is an n-hyperideal of
S7IR.

Proof. Let r/s ®r'/s' € S7'I and r/s ¢ \/O0g-1p for r,7’ € R and s,s' € S. Then there exists
u € S such that urr’ € I. Next, we show that r ¢ \/Og. If r € \/Og, then there exists n € N such
that ™ = Ogr. This means that (r/1)” = r"/1 = Og/1 = 0g-1g = Or/s, and so r/1 € /0g-15.
Since r/s =1/s©r/1, we get (r/s)” = (1/s)" ©0g-1p = 0g-15. Hence, r/s € /0g-15, which is a
contradiction. This implies that r ¢ \/Og. Now, since I is an n-hyperideal of R, we have ur’ € T
and so r’/s' = ur’ Jus' € ST1I. Therefore, S7'I is an n-hyperideal of S~!R. O

Theorem 3.10. Let I be an n-hyperideal of the hyperring (R,+,-) and ¢ : R — S a good epimor-
phism such that Kery C I. Then ¢(I) is an n-hyperideal of the hyperring (S, ®,®).

Proof. Clearly, ¢(I) is a hyperideal of S. Let s1 ® s2 € ¢(I) and s1 ¢ +/0g for s1,s92 € S. Then,
there exist 71,72 € R such that s; = p(r1) and sa = ¢(r2) (since ¢ is onto) which

510 82 = ¢(r1) © p(r2) = p(r1 - r2) = ¢(x) € ¢(I)
for some x € I. So, we have
0€@(r;-r2) ©p(x)=p(r -re—x).
Hence, there exists t € r1 - 73 — x such that ¢(¢) = 0. By hypothesis, we have
ri-ro€t+axC Kerp+1CIT+4+1C1.

So, 11 - 79 € I. Next, we show that r; ¢ \/Og. If r; € \/Og, then there exists n € N such that
r1"™ = Og. This means that ¢(r}") = ¢(0) = Og, and so (p(r1))™ = 0g. Hence, s1 = ¢(r1) € \/0g,
which is a contradiction. This implies that ¢ /Og. Now, since I is an n-hyperideal of R, we
get o € I and so s2 = ¢(r2) € ¢(I). This completes the proof. O

Let ¢ : R — S be a homomorrphism of hyperrings and I a hyperideal of R. The hyperideal
(p(I)) of S generated by the set ¢(I) is called the extension of I, and is denoted by I¢. We have
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(D)) = {z €S |ae S, s plag),s € Sai € In €N},

The mapping ¢ : R — S™'R given by ¢(r) = r/1 is a homomorphism. Consider A € S~'I. Then
A =i/s, where i € I and s € S. Hence, i/1 € ¢(I). This implies that i/1 € I¢ . Since I° is a
hyperideal of ST'R, we get i/s = 1/s ®i/1 € I°. So, A\ = i/s € I°. Thus, S~'I C I°. Now,
suppose that A\ € ¢(I). Then there exists a € I such that A = a/1. Hence, A € S~!I which implies
that o(I) C S~'I. Thus, I¢ = (p(I)) € S~I. Hence, S~1I = I°.

Theorem 3.11. Let I be an n-hyperideal of the hyperring (R,+,-) and ¢ : R — S a good epimor-
phism such that Kerp C I. Then I€ is an n-hyperideal of the hyperring (S, ®,®).

Proof. The proof is similar to the proof of Theorem [3.10 O

Theorem 3.12. Let J be an n-hyperideal of the hyperring (S,®,®) and ¢ : R — S a good
monomorphism. Then ¢~ 1(J) = {a € R | ¢(a) € J} is an n-hyperideal of the hyperring (R,+,).
0 Y(J) is called the contraction of J, and is denoted by J€.

Proof. Since 0 € ¢~ 1(J), it follows that p~1(.J) # ). Let x € R. Since ¢ is a homomorphism and
0€x—x, wehave 0 = p(0) € p(z — ) C ¢(z) ® p(—z). So 0 € p(x) ® p(—z). Thus, p(—x) is
the inverse of ¢p(z) in the canonical hypergroup (S,®). Since 0 € p(z) @& ¢(—=z), it follows that
o(—1) = —p(x). Now, let aj,az € ¢~ 1(J). Then p(ay),¢(as) € J. Since J is a hyperideal of T,
we have ¢(a; — az) C ¢(a1) © p(az) C J. Hence a; —az C ¢ 1(J). Let z € R and a € o~ (J).
Then ¢(a) € J. Since ¢ is a homomorphism, it follows that ¢(x - a) = ¢(x) ® p(a) € J. Thus
x-a € ¢ 1(J). Hence, p~1(J) is a hyperideal of R. Now, let a-b € p~!(J) and a ¢ v/Og. Then
p(a) ® p((b) = p(a-b) € J. Next, we show that p(a) ¢ \/0s. If p(a) € \/0g, then there exists
n € N such that (¢(a))” = 0g. This means that ¢(a") = 0g = ¢(0r), and so a™ = Or. Hence,
a € \/Og, which is a contradiction. This leads to ¢(a) ¢ v/0s. Now, since J is an n-hyperideal of
S, we get p(b) € J and so b € p~!(J). Therefore, ~1(.J) is an n-hyperideal of R. O

A relation o* is the transitive closure of a binary relation o if (1) o* is transitive; (2) o C o*
and (3) for any relation ¢/, if 0 C ¢/ and ¢’ is transitive, then o* C ¢’, that is, o* is the smallest
relation that satisfies (1) and (2). Let (R, +,-) be a hyperring. We define the relation « as follows:

zyy < In € N,3k; € N, Iz, -, x,) € RF,1 <0 <,

such that

{z,y} C zn:(lk_[%)

i=1 j=1
Theorem 3.13. [14] Let R be a hyperring and v* be the transitive closure of 7. Then, we have:
(1) v* is a strongly regular relation both on (R,+) and (R,-).
(2) The quotient R/v* is a ring.
(8) The relation v* is the smallest equivalence relation such that the quotient R/v* is a ring.

Clearly, ¢ : R — R/~* defined by ¢(x) = v*(z) for all x € R, is a homomorphism. The kernel
of ¢, kery, is defined by kerp = {z € R | v*(x ) =~*(0)}. We denote by OR/W* the zero element of
R/v*. If R is a Krasner hyperring, then v*(0) = Og/,+ and v*(—z) = —*(x) for all z € R.
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Theorem 3.14. Let (R,+,-) be a Krasner hyperring and v* a fundamental relation on R. If I
is an n-hyperideal of R such that Kerp C I, then v*(I) = {v*(a) | a € I} is an n-hyperideal of
R/~*.

Proof. Clearly, v*(I) is a hyperideal of R/v*. Let v*(a) ® v*(b) € v*(I) and v*( gé \ /OR/V for
v*(a),v*(b) € R/v*. Then, there exists x € I such that v*(a-b) = ~*(a) ® *(b) (x). So, we
have
74(0) = 77(a-b) ©77(z) = p(a-b) © p(x) = pla-b—x) =y (a-b—a).
Hence, a-b—x C Kerp C I. Since (R, +) is a canonical hypergroup, we have
a-bca-b+0Ca-b+x—axCI+xC1.
So, a-b € I. Next, we show that a §Z vOgr. By hypothesis we have
a) & \/Orj = V7

If a € /O, then there exists n € N such that ™ = 0. This means that v*(a™) = 7*(0), and

so (y*(a))" = Og/y~. Hence, v*(a) € |/0Og/,+, which is a contradiction. This leads to a ¢ +/Og.
Now, since I is an n-hyperideal of R, we get b € I and so v*(b) € v*(I). Therefore, v*(I) is an

n-hyperideal of R/~*. O

4 Conclusions

In this paper, we introduced and studied some properties of n-hyperideals of commutative hyper-
rings. Also, we proved that some results on extension (contraction) of n-hyperideals in commutative
hyperrings. Moreover, we described the behavior of n-hyperideals under fundamental relations.
We hope that this paper would offer foundation for further study of the theory on commutative
hyperrings.
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