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Abstract

One and two-generated free MV -algebras are alge-
braically described in the variety generated by perfect
MV -algebras.
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1 Introduction

MV -algebras are the algebraic counterpart of the infinite valued  Lukasiewicz sentential calculus,
as Boolean algebras are with respect to the classical propositional logic. In contrast with what
happens for Boolean algebras, there are MV -algebras which are not semisimple, i.e. the intersec-
tion of their maximal ideals (the radical of A) is different from {0}. Non-zero elements from the
radical of A are called infinitesimals.

Subvarieties of MV -algebras have been studied in [17], [18], [19], [16], [23], [13], [14]. It is known
that any such subvariety is generated by finitely many algebras, and explicit axiomatizations have
been obtained. Notice that the free algebras over the subvarieties of MV -algebras have been
described functionally in [23, 13, 14] using McNaughton functions [21].

As it is well known, MV -algebras form a category that is equivalent to the category of Abelian
lattice ordered groups (`-groups, for short) with strong unit [22]. Let us denote by Γ the functor
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implementing this equivalence. If G is an `-group, then for any element u ∈ G, u > 0 we let
[0, u] = {x ∈ G : 0 ≤ x ≤ u} and for each x, y ∈ [0, u] x ⊕ y = u ∧ (x + y) and ¬x = u − x.
In particular each perfect MV -algebra is associated with an Abelian `-group with a strong unit.
Moreover, the category of perfect MV -algebras is equivalent to the category of Abelian `-groups,
see [15].

The class of perfect MV -algebras does not form a variety and contains non-simple subdirectly
irreducible MV -algebras [15]. It is worth stressing that the variety V(Sω

1 ), denoted by MV(C)
in [11], generated by all perfect MV -algebras is also generated by a single MV -chain C(∼= Sω

1 )
defined by Chang in [5]. We name by Sω

1 -algebras all the algebras from the variety generated by
Sω
1 (∼= C) [11]. Notice that the Lindenbaum algebra of the logic LP is an Sω

1 -algebra where LP is
the logic corresponding to the variety V(Sω

1 ). The perfect algebra C(∼= Sω
1 ) has relevant properties.

Indeed Sω
1 generates the smallest variety of MV -algebras containing non-boolean non-semisimple

algebras. It is also subalgebra of any non-boolean perfect MV -algebra. The variety V(Sω
1 ) is

selected from the variety MV of all MV -algebras by the identity 2(x2) = (2x)2 [15].
The importance of the class of Sω

1 -algebras and the logic LP can be perceived by looking further
at the role that infinitesimals play in MV-algebras and  Lukasiewicz logic. Indeed the pure first
order  Lukasiewicz predicate logic is not complete with respect to the canonical set of truth values
[0, 1], see [25], [2]. The Lindenbaum algebra of the first order  Lukasiewicz logic is not semisimple
and the valid but unprovable formulas are precisely the formulas whose negations determine the
radical of the Lindenbaum algebra, that is the co-infinitesimals of such algebra. Hence, the valid
but unprovable formulas generate the perfect skeleton of the Lindenbaum algebra. So, perfect
MV -algebras, the variety generated by them and their logic are intimately related with a crucial
phenomenon of the first order  Lukasiewicz logic [3].

In this paper we give an algebraic description of one and two-generated free MV -algebras in
the variety V(Sω

1 ) generated by the algebra Sω
1 that was introduced by Komori [19]. Moreover, we

give ordered spectral spaces of the free algebras. Notice, that the algebra Sω
1 was firstly defined

as algebra C by Chang in [5]. Not exact algebraic description of free m-generated Sω
1 -algebra

(or MV (C)-algebra) have been given in [11] where the free algebras are represented by subdirect
product of infinite family of chains. In this paper we represent free algebras by means of subdirect
product of finite family of chains according to Panti’s result in [24].

2 Preliminaries

We assume familiarity with MV -algebras; we refer to [5], [6],[22], [7] for all unexplained notions
and claims.

An MV -algebra A = (A, 0,¬,⊕) is an Abelian monoid (A, 0,⊕) equipped with a unary oper-
ation ¬ such that ¬¬x = x, x ⊕ ¬0 = ¬0, and y ⊕ ¬(y ⊕ ¬x) = x ⊕ ¬(x ⊕ y). We set 1 = ¬0
and x� y = ¬(¬x⊕¬y) [5]. We shall write ab for a� b and an for a� · · · � a︸ ︷︷ ︸

n times

, for given a, b ∈ A.

Every MV -algebra has an underlying ordered structure defined by

x ≤ y iff ¬x⊕ y = 1.

(A;≤, 0, 1) is a bounded distributive lattice. Moreover, the following property holds in any MV -
algebra:

xy ≤ x ∧ y ≤ x ∨ y ≤ x⊕ y.

The unit interval of real numbers [0, 1] endowed with the following operations: x ⊕ y =
min(1, x + y), x � y = max(0, x + y − 1),¬x = 1 − x, becomes an MV -algebra. It is well known
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that the MV -algebra S = ([0, 1],⊕,�,¬, 0, 1) generate the variety MV of all MV -algebras, i. e.
V(S) = MV.

The subvariety V(Sn) (= MVn) (also named by Grigolia’s subvariety [1]) of MV (= V(S)) is
generated by Sn = ({0, 1/n, ..., n − 1/n, n},⊕,�,¬, 0, 1) for n ≥ 2 have been axiomatized in [17].
Moreover, the free m-generated Sn-algebras FV(Sn)(m) was described in [17, 12]:

FV(Sn)(m) = S
v1(m)
1 × Svn2 (m)

n2 × ...× S
vnk−1

(m)
nk−1 × Svn(m)

n

where the function vm(x) is defined on Z+ as follows: vm(1) = 2m, vm(2) = 3m − 2m, ..., vm(n) =
(n+ 1)m− (vm(n1) + ...+ vm(nk−1)), where n1 = 1, nk = n and n1, n2, ..., nk−1 are all the divisors
of n except n. In particular,

FV(S1)(m) = S
v1(m)
1 = S2m

1 .

The algebra Sω
1 -algebra (or C in Chang’s notation), with generator (0, 1), is isomorphic to

Γ(Z×lexZ, (1, 0))(= S
ω

1 ). Let V(Sω
1 ) be the variety generated by perfect algebras. The intersection

of all maximal ideals of an MV -algebra A, the radical of A, will be denoted by Rad(A). Notice,
that MV(C) = V(C) = V(Sω

1 ) where Sω
1
∼= C and V(Sω

1 ) is the variety generated by S
ω

1 -algebras.
Let us introduce some notations.

S
ω(1)
1 = Γ(Z ×lex Z, (1, 0)) = C, S

ω(m)
1 = Γ(Z ×lex ...×lex Z︸ ︷︷ ︸

m+1 times

, (1, 0, ..., 0)),

where (1, 0, ..., 0) ∈ Zm+1 and Z ×lex ...×lex Z is the lexicographic product of Z m+ 1 times.
The class of MV -algebras forms a category where the objects of this category are MV -algebras

and morphisms between MV -algebras are homomorphisms.
A topological space X is said to be an MV -space iff there exists an MV -algebra A such

that Spec(A) (= the set of prime filters of the MV -algebra A equipped with spectral topology)
and X are homeomorphic. It is well known that Spec(A) with the specialization order R on
X (which coincides with the inclusion between prime filters) forms a root system. The class of
MV -spaces forms a category where the objects of this category are MV -spaces and morphisms
between MV -spaces are the strongly isotone maps, i. e. the continuous maps ϕ : X → Y such
that ϕ(R(x)) = R(ϕ(x)) for all x ∈ X(for details see [9, 10]).

Let FK(m) be a free algebra in the variety K with free generators g1, ..., gm, i. e. any function
f : {g1, ..., gm} → A ∈ K can be extended to the homomorphism h : FK(m) → A where h(gi) =
f(gi), i = 1, ...,m.

Adapting the Theorem V.1 from [20] for a varieties of algebras we have the following,

Proposition 2.1. If F is a free algebra in K with free generators g1, ..., gm ∈ F and satisfy the
identity

(1) P (g1, ..., gm) = Q(g1, ..., gm) on the generators g1, ..., gm, then the identity.

(2) P (x1, ..., xm) = Q(x1, ..., xm) is true in K.

Conversely, let g1, ..., gm generate the algebra F such that the identity (1) holds on the elements
g1, ..., gm ∈ F , the identity (2) is true in K. Then F is a free algebra in K with free generators
g1, ..., gm ∈ F .



4 A. Di Nola, R. Grigolia, R. Liparteliani

3 1-generated free Sω1 -algebra

In this section we give the descriptions of 1-generated free Sω
1 -algebras in the variety V(Sω

1 ). It is
easy to prove the following

Theorem 3.1. 1) S
ω(m)
1 is generated by m generators: (0, ..., 0, 1), ..., (0, 1, 0, ..., 0);

2) S
ω(k)
1 is a homomorphic image of S

ω(m)
1 for k ≤ m.

Theorem 3.2. [11] 1-generated free Sω
1 -algebra FV(Sω

1 )(1) is isomorphic to (Sω
1 )2 with free gener-

ator g = ((0, 1), (1,−1)).

Proof. Firstly, let us show that (Sω
1 )2 is generated by g = ((0, 1), (1,−1)). Indeed,

2(((0, 1), (1,−1))2) = ((0, 0), (1, 0)) and 2(¬((0, 1), (1,−1)))2 = ((1, 0), (0, 0)),

that are atoms of four-element Boolean subalgebra of (Sω
1 )2. Therefore, since (0, 1) ( and (1,−1),

as well) generates Sω
1 , we have that g generates (Sω

1 )2.
Observe that if we have chain perfect Sω

1 -algebra A, then 1-generated subalgebra of A is
isomorphic to either Sω

1 or two-element Boolean algebra S1. Now, suppose that one-variable
equation P = Q does not hold in the variety V(Sω

1 ). It means that this equation does not hold
in some 1-generated perfect Sω

1 -algebra A on some element a ∈ A. Then A is isomorphic to Sω
1 .

Identify isomorphic elements. Depending on the generator of A, the one belongs to either RadA or
¬RadA, we use the projection either π1 : (Sω

1 )2 → Sω
1 or π2 : (Sω

1 )2 → Sω
1 , sending the generator

((0, 1), (1,−1)) either to (0, 1) ∈ Sω
1 or to (1,−1) ∈ Sω

1 . From here we conclude that P = Q does
not hold in (Sω

1 )2. Hence, (Sω
1 )2 is 1-generated free Sω

1 -algebra.

Figure 1: The ordered MV -space of the Sω
1 -algebra (Sω

1 )2

4 2-generated free Sω1 -algebra

In this section we give the descriptions of 2-generated free Sω
1 -algebras in the variety V(Sω

1 ).
For the sake of simplicity let us introduce the following notations for the generating elements

of the algebra

S
ω(m)
1 (m ≥ 2) : c1 = (0, 0, ..., 0, 1), c2 = (0, 0, ..., 1, 0), ..., cm = (0, 1, ..., 0, 0).

Notice, that Sω
1 -algebra S

ω(2)
1 is generated by two generators c1 = (0, 0, 1) and c2 = (0, 1, 0).

Recall that the radical Rad(A) of an MV -algebra A is the intersection of all its maximal
ideals. The algebra A is perfect if A = Rad∗(A) = Rad(A) ∪ ¬Rad(A), where ¬Rad(A) = {¬x :
x ∈ Rad(A)} is the intersection of all maximal filters of A.

Theorem 4.1. 2-generated free Sω
1 -algebra FV(Sω

1 )(2) is isomorphic to (Rad∗((S
ω(2)
1 )2))2

2
with free

generators

g1 = ((c1, c2),¬(c1, c2), (c1, c2),¬(c1, c2)) and g2 = ((c2, c1), (c2, c1),¬(c2, c1),¬(c2, c1)).
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Proof. The radical Rad((S
ω(2)
1 )2) is the intersection of two maximal ideals I1, I2 of (S

ω(2)
1 )2: I1

is generated by (1, c2) and I2 is generated by (c2, 1). This intersection coincides with the ideal

generated by (c2, c2), i. e. with Rad((S
ω(2)
1 )2). So, Rad((S

ω(2)
1 )2) contains the elements (c2, c1)

and (c1, c2).

Notice, that the perfect algebra Rad∗((S
ω(2)
1 )2) is isomorphic to a subdirect product of two

copies of S
ω(2)
1 - S

ω(2)
11 and S

ω(2)
12 , i. e. it is a subalgebra Rad∗(S

ω(2)
11 × Sω(2)

12 ) of direct product

S
ω(2)
11 × Sω(2)

12 with projections πi : Rad∗(S
ω(2)
11 × Sω(2)

12 ) → S
ω(2)
1i (i = 1, 2). The kernel of π1 is

the ideal generated by (0, c2) and the kernel of π2 is the ideal generated by (c2, 0) that are both

linearly ordered and prime. It is obvious that π−11 (0) ∩ π−12 (0) = (0, 0) and, so, Rad∗((S
ω(2)
1 )2) is

a subdirect product of S
ω(2)
11 and S

ω(2)
12 . Moreover, the ideals π−11 (0), π−12 (0) generate the maximal

ideal M of Rad∗((S
ω(2)
1 )2) generated by (c2, c2). In turn, the prime ideals of Rad∗(S

ω(2)
11 ×S

ω(2)
12 ) are

generated by (c2, c1), (c2, 0), (0, c2), (c1, c2) and (c2, c2) respectively, that are ordered by inclusion,
the poset of which is isomorphic to the one component of the poset depicted on Fig. 2. At the

same time M is generated by (c1, c2) and (c2, c1). Therefore, the perfect algebra Rad∗((S
ω(2)
1 )2)

(∼= Rad∗(S
ω(2)
11 × Sω(2)

12 )) is generated by (c2, c1) and (c1, c2).

Now, we will show directly that the (c1, c2) and (c2, c1) generate Rad∗((S
ω(2)
1 )2). For this aim

it is sufficient to obtain the elements (c1, 0), (c2, 0) and (0, c1), (0, c2). Indeed,

(c2, c1) ∧ (c1, c2) = (c1, c1) and (c2, c1) ∨ (c1, c2) = (c2, c2).

(c1, c2)� ¬(c1, c1) = (0, c2 � ¬c1) and (c2, c1)� ¬(c1, c1) = (c2 � ¬c1, 0).

(0, c2 � ¬c1) ∧ (c1, c1) = (0, c1) and (c2 � ¬c1, 0) ∧ (c1, c1) = (c1, 0).

(0, c2 � ¬c1)⊕ (0, c1) = (0, c2 ∨ c1) = (0, c2) and (c2 � ¬c1, 0)⊕ (c1, 0) = (c1 ∨ c2, 0) = (c2, 0).

So, (c1, c2) and (c2, c1) generate Rad∗((S
ω(2)
1 )2). At the same time Rad∗((S

ω(2)
1 )2) are generated

by the following couples of generators:

{(c1, c2), (c2, c1)}, {¬(c1, c2), (c2, c1)}, {(c1, c2),¬(c2, c1)}, {¬(c1, c2),¬(c2, c1)}.

It is easy to check that

g1 = ((c1, c2),¬(c1, c2), (c1, c2),¬(c1, c2)) and g2 = ((c2, c1), (c2, c1),¬(c2, c1),¬(c2, c1))

generate (Rad∗((S
ω(2)
1 )2))2

2
(notice, that g1 contains as the first component c1 and as the second

component c2; and g2 contains as the first component c2 and as the second component c1). Indeed,
the elements 2(g21) = (0, 1, 0, 1) and 2(g22) = (0, 0, 1, 1) generate all (four-element) Boolean elements

of (Rad∗((S
ω(2)
1 ))2)2

2
. Therefore, (Rad∗((S

ω(2))
1 )2)2

2
is generated by g1, g2.

Observe that if we have chain perfect Sω
1 -algebra A, then 2-generated subalgebra of A is

isomorphic to either Sω
1 , S

ω(2)
1 or two-element Boolean algebra S1. Notice that all these algebras

are homomorphic image of the algebra Rad∗((S
ω(2)
1 )2) which is also 2-generated. Moreover, all

2-generated Sω
1 -algebra is a homomorphic image of Sω

1 -algebra Rad∗((S
ω(2)
1 )2). Now, suppose that

two-variable equation P (x1, x2) = Q(x1, x2) does not hold in the variety V(Sω
1 ). It means that

this equation does not hold in some 2-generated perfect chain Sω
1 -algebra S

ω(2)
1 on some elements

a1, a2 ∈ Sω(2)
1 . Then S

ω(2)
1 is a homomorphic image of Sω

1 -algebra (Rad∗(S
ω(2)
1 )2)2

2
such that the

generators g1, g2 send to the generators a1, a2 ∈ Sω(2)
1 , respectively. From here we conclude that

P (x1, x2) = Q(x1, x2) does not hold in (Rad∗(S
ω(2)
1 )2)2

2
.
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Now suppose that P (x1, x2) = Q(x1, x2) does not hold in Sω
1 on some two generators, say

a1, a2. But as we know Sω
1 is one-generated, say by a0, that is equal to either c1 or ¬c1. Then

there exist one-variable polinomials P1(x) and P2(x) such that P1(a0) = a1 and P2(a0) = a2.
Hence P (P1(x), P2(x)) = Q(P1(x), P2(x)) does not hold on the generator a0 of Sω

1 . There exists a

homomorphism from h : πi((Rad
∗(S

ω(2)
1 ×Sω(2)

1 ))2
2
)→ Sω

1 for corresponding i ∈ {1, 2, 3, 4}. Hence

P (x1, x2) = Q(x1, x2) does not hold in (Rad∗(S
ω(2)
1 × Sω(2)

1 ))2
2
.

By the same argument we can prove for two-element Boolean algebra S1.

Therefore, (Rad∗(S
ω(2)
1 )2)2

2
is 2-generated free Sω

1 -algebra.

Figure 2: The ordered MV -space of the Sω
1 -algebra (Rad∗((S

ω(2)
1 ))2)2

2

5 Conclusions

In this paper, one and two-generated free MV -algebras are algebraically described in the variety
generated by perfect MV -algebras.
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