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Abstract

In the paper, we present EMV-algebras as a common
generalization of MV-algebras and generalized Boolean
algebras where a top element is not assumed a priori. In
addition, we present a non-commutative generalization
of EMV-algebras, pseudo MV-algebras and of general-
ized Boolean algebras. We present main representation
results showing a very close connection of pseudo EMV-
algebra with pseudo MV-algebras, and we give a cate-
gorical representation of the category o pseudo EMV-
algebras without top element. We study also states as
analogs of finitely additive states, their topological prop-
erties, and we present an integral representation of states
by σ-additive probability measures. The paper is a sur-
vey over papers [13]–[19].
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A Title

1 Introduction

G. Boole presented in [2] the logical foundations of mathematics which were based on a two-
valued logic. In the twenties, J.  Lukasiewicz presented in his short two-page paper, [30], a three-
valued logic. Later in thirties this logic was generalized to an n-valued logic and as well as to
an infinite-valued one. An algebraic counter part, an MV-algebra, of a  Lukasiewicz many-valued
logic was presented by C.C. Chang [4] more than sixty years ago. During the last six decades,
MV-algebras entered deeply into mathematics and they have influenced it in many directions. A
fundamental algebraic result was presented by D. Mundici [31] in 1986 showing that there is a
categorical equivalence between the category of MV-algebras and the category of unital Abelian
`-groups consisting of couples (G, u), where G is an `-group with a fixed strong unit u ∈ G+. It is
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noteworthy of recalling that the class of MV-algebras forms a variety whereas the class of unital
`-groups is not a variety (it is not closed under direct products of unital `-groups). This result have
deeply influenced not only MV-algebras but it had impact to `-groups, some classes of C∗-algebras,
logic, states, observables, etc. as well as to their applications in probability theory, functional
analysis, topology, fuzzy set theory, etc. There appeared also a whole family of different algebraic
structures motivated by MV-algebras like BCK-algebras, BCI-algebras, Wajsberg algebras, bricks,
effect algebras, residuated lattices, hoops, etc.

Fuzzy sets gave a new impulse to a many-valued logic, so that a fuzzy logic was born in the
nineties together with its algebraic models, BL-algebras, [26], which generalize MV-algebras. Their
basic models are so-called the unit intervals [0, 1] with t-norms.

In the late nineties and published in the beginning of the 21st century, G. Georgescu and
A. Iorgulescu in [23] presented a non-commutative generalization of MV-algebras, called pseudo
MV-algebras. Practically in the same time also J. Rach̊unek, [34], presented independently an
equivalent generalization of MV-algebras called generalized MV-algebras. A. Dvurečenskij, [12],
presented a fundamental result on a representation of pseudo MV-algebras showing that the cat-
egory of pseudo MV-algebras is categorically equivalent to the category of unital `-groups, not
necessarily Abelian ones. This representation is a natural non-commutative generalization of the
Mundici’s result [31]. These papers inspired also an introduction of non-commutative general-
izations of BL-algebras, called pseudo BL-algebras, [8, 9], pseudo hoops [24], non-commutative
residuated lattices, etc.

A non-commutative generalization of reasoning can be found, for example, in psychological
processes, [12]: In clinical medicine, an experiment related with transplantation of human organs
was performed in which the following two questions were posed to two groups of people: (1) Do
you agree to dedicate your organs for medical transplantation after your death? (2) Do you agree
to accept organs of a donor if you needed one? When the order of the two questions was changed
for the second group, the number of positive answers to the first question was higher than that of
the first group. Today there exists a programming language [1] based on a non-commutative logic.

Recently in [13], the authors introduced EMV-algebras which generalize both MV-algebras as
well as generalized Boolean algebras. These algebras are distributive with a binary total operation
⊕, where top element is not guaranteed a priori. EMV-algebras locally resemble MV-algebras but
globally, if there is not a top element, they are not MV-algebras. This means that idempotent
elements play an important role, and every interval [0, a] with restriction of ⊕, where a is an
idempotent of an EMV-algebra M , can be naturally converted into an MV-algebras, so that
M =

⋃
a[0, a]. A basic representation result says that if an EMV-algebra has a top element,

then it is equivalent to an MV-algebra, otherwise, if it has no top element, it can be embedded
into an EMV-algebra with top element as its maximal ideal. This result generalizes an analogous
statement for generalized Boolean algebras, see [6, Thm 2.2]. A variant of the Loomis–Sikorski
theorem was establishes in [14], states on EMV-algebras as analogs of finitely additive measures
were described in [15], free objects of EMV-algebras were studied in [16], and EMV-pairs were
described in [21].

A non-commutative variant of EMV-algebras, pseudo EMV-algebras, was also introduced in
[17, 18] and some applications of them for generalized pseudo EMV-effect algebras were presented
in [20]. In this paper, we would like to present the basic properties of pseudo EMV-algebras and
to show some perspectives for them.

The paper is organized as follows. In Section 2, we present elements of MV-algebras and
their generalization, EMV-algebras, which is a commutative generalization of MV-algebras and
of generalized Boolean algebras. Section 3 describes pseudo EMV-algebras as a non-commutative
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generalization of MV-algebras as well as of EMV-algebras. The basic representation theorem of
pseudo EMV-algebras is presented in Section 4 together with its categorical equivalence. Section 5
is devoted to states as analogues of finitely additive measures on pseudo EMV-algebras. We show
their important subfamily, state-morphisms, which correspond to extremal states. In addition, we
present an integral representation of states by σ-additive probability measures on a Borel σ-algebra
of some Hausdorff topological space. All present results are based on papers [13]–[19].

2 MV-algebras and EMV-algebras

The original Chang axioms [4] were a very long list and during the decades, they have been
simplified and nowadays, we use a very short list of axioms. Let M = (M ;⊕,∗ , 0, 1) be an MV-
algebra, i.e. an algebra of type (2, 1, 0, 0) such that (M ;⊕, 0) is a commutative monoid with a
neutral element 0 and, for x, y ∈M , we have

(i) x∗∗ = x;

(ii) x⊕ 1 = 1;

(iii) x⊕ (x⊕ y∗)∗ = y ⊕ (y ⊕ x∗)∗.

When we define x�y = (x∗⊕y∗)∗, x∨y = x⊕(x⊕y∗)∗, and x∧y = x�(x∗⊕y), then (M ;∨,∧, 0, 1)
is a bounded distributive lattice.

MV-algebras are intimately connected with Abelian unital `-groups. We note that a group
(G; +,−, 0) with a lattice order ≤ is an `-group if, for each h1, h2 ∈ G, f ≤ g implies h1 +f +h2 ≤
h1 + g+h2. We denote by G+ = {g ∈ G : g ≥ 0} the positive cone. An element u ∈ G+ is a strong
unit of an `-group G if, given g ∈ G, there is an integer n such that g ≤ nu; the couple (G, u) is
said to be a unital `-group. For more information about `-groups, see the books [7, 22, 25].

First assume that G is an Abelian `-group and let [0, u] := {g ∈ G : 0 ≤ g ≤ u}. Then
Γ(G, u) := ([0, u];⊕,′ , 0, u), where x ⊕ y := min{x + y, u} and x′ := u − x for all x, y ∈ [0, u], is
a prototypical example of an MV-algebra, and Γ defines a categorical equivalence of the category
of MV-algebras and the category of Abelian unital `-groups, [31]. For more information about
MV-algebras we recommend to consult with the book [5].

An element a ∈ M is a Boolean element of M or an idempotent, if a ⊕ a = a or equivalently,
a∨ a∗ = 1; then the set B(M) of Boolean elements of M is a Boolean algebra that is also an MV-
subalgebra of M . If a is a Boolean element of M , then the interval Ma := [0, a] can be converted
into an MV-algebra ([0, a];⊕,∗a , 0, a), where x∗a := a� x∗ for each x ∈ [0, a]. Then we have

x∗a = min{z ∈ [0, a] : z ⊕ x = a}.

In the paper, we will write also λa(x) := x∗a , x ∈ [0, a], i.e.

λa(x) = min{z ∈ [0, a] : z ⊕ x = a}, (1)

and then (Ma;⊕, λa, 0, a) is an MV-algebra. Equation (1) is a starting point for our definition of
EMV-algebras.

Let (M ;⊕, 0) be a monoid (not necessarily commutative) with a neutral element 0. An element
a ∈M is said to be an idempotent if a⊕a = a. We denote by I(M) the set of idempotent elements
of M ; clearly 0 ∈ I(M), and if a, b ∈ I(M), then a⊕ b ∈ I(M). A monoid (M ;⊕, 0) endowed with
a partial order ≤ is ordered if x ≤ y implies z1 ⊕ x⊕ z2 ≤ z1 ⊕ y ⊕ z2 for all z1, z2 ∈M .

According to [13], we say that an EMV-algebra is an algebra (M ;∨,∧,⊕, 0) of type (2, 2, 2, 0)
such that
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(i) (M ;⊕, 0) is a commutative ordered monoid with a neutral element 0;

(ii) (M ;∨,∧, 0) is a distributive lattice with the bottom element 0;

(iii) for each idempotent a ∈ I(M), the element λa(x) = min{z ∈ [0, a] : z ⊕ x = a} exists in M
for each x ∈ [0, a], and the algebra ([0, a];⊕, λa, 0, a) is an MV-algebra;

(iv) for each x ∈M , there is an idempotent a of M such that x ≤ a.

We note that we do not assume that an EMV-algebra M has a top element. If it has no top
element, M is said to be proper.

2.1 MV-algebras

If (M ;⊕,′ , 0, 1) is an MV-algebra, then (M ;∨,∧,⊕, 0) is an EMV-algebra with top element 1,
and conversely, if (M ;∨,∧,⊕, 0) is an EMV-algebra with top element 1, then (M ;⊕, λ1, 0, 1) is
an EMV-algebra with top element. Moreover, every EMV-algebra with top element is termwise
equivalent to an MV-algebra and vice-versa.

2.2 Finite EMV-algebras

Every finite EMV-algebra or every EMV-algebra with a finite set of idempotents is termwise
equivalent to an MV-algebra.

2.3 Generalized Boolean algebras

If (M ;∨,∧, 0) is a generalized Boolean algebra, then (M ;∨,∧,⊕, 0) is an EMV-algebra, where
⊕ = ∨.

2.4 Rings of subsets

If S is a ring of subsets of a set Ω 6= ∅, i.e. S is closed under under ∪, ∩, \ (the set-theoretical
difference) and containing ∅, then (S;∪,∩,∪, ∅) is an EMV-algebra if we set ∨ = ∪, ∧ = ∩, ⊕ = ∪,
and 0 = ∅.

2.5 EMV-algebra N of integers

Let N be the system of all finite subsets of the set N of all natural numbers. Then (N ;∪,∩,∪, ∅)
is an EMV-algebra without top element; we put EMV-operation ∨ = ∪, ∧ = ∩, ⊕ = ∪, and 0 = ∅.

2.6 EMV-clan of fuzzy sets

A system T ⊆ [0, 1]Ω of fuzzy sets of a set Ω 6= ∅ is said to be an EMV-clan if

(i) 0Ω ∈ T where 0Ω(ω) = 0 for each ω ∈ Ω;

(ii) if a ∈ T is a characteristic function (i.e. a is a 0 − 1-valued function), then (a) a − f ∈ T
for each f ∈ T with f(ω) ≤ a(ω) for each ω ∈ Ω, (b) if f, g ∈ T with f(ω), g(ω) ≤ a(ω) for
each ω ∈ Ω, then f ⊕ g ∈ T , where (f ⊕ g)(ω) = min{f(ω) + g(ω), a(ω)}, ω ∈ Ω;

(iii) for each f, g ∈ T , there is a characteristic function a ∈ T such that f(ω), g(ω) ≤ a(ω) for
each ω ∈ Ω;
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(iv) given ω ∈ Ω, there is f ∈ T such that f(ω) = 1.

It is possible to show that the operation ⊕ is correctly defined and it does not depend on the choice
of a characteristic function a. Indeed, by (iii), we have that if f, g ∈ T , there is a characteristic
function a ∈ T such that f, g ≤ a. If b ∈ T is another characteristic function such that a ≤ b, we
have

(f ⊕a g)(ω) =

{
f(ω) + g(ω) if f(ω) + g(ω) ≤ a(ω)

a(ω) if f(ω) + g(ω) > a(ω),
ω ∈ Ω,

and

(f ⊕b g)(ω) =

{
f(ω) + g(ω) if f(ω) + g(ω) ≤ b(ω)

b(ω) if f(ω) + g(ω) > b(ω),
ω ∈ Ω.

If a(ω) = 0 or b(ω) = 0, then f(ω) = g(ω) = 0 and (f ⊕a g)(ω) = 0 = (f ⊕b g)(ω). Otherwise,
a(ω) = 1 = b(ω) = 0, then (f ⊕a g)(ω) = (f ⊕b g)(ω). Hence, if f, g ≤ u, v, where u, v are
characteristic functions from T , there is a characteristic function c ∈ T such that u, v ≤ c. Then
f ⊕u g = f ⊕c g = f ⊕v g, and the binary operation ⊕ does not depend on the chosen characteristic
functions a, b, u, v, c ∈ T dominating f, g, and ⊕ is a total binary operation such that (T ;⊕, 0Ω)
is a commutative ordered monoid. It is easy to see that, for f ∈ T , we have f ⊕ f = f iff f is
a characteristic function. Finally λa(f) = a − f whenever f ≤ a and a ∈ T is a characteristic
function. So that ([0, a];⊕, λa, 0, a) is an MV-algebra of fuzzy sets, and (T ;∨,∧,⊕, 0Ω), where
∨ = max and ∧ = min, is an EMV-algebra, where top element is not guaranteed.

2.7 Positive cone of an `-group

Let G+ be the positive cone of an `-group G 6= {0}, then G+ has only one Boolean element a = 0,
so that G+ cannot be transformed into an EMV-algebra.

2.8 Direct product of EMV-algebras

Let {Mt : t ∈ T} be a system of EMV-algebras. Then the direct product M =
∏
t∈T Mt, where

the operations in the product are defined by coordinates, is an EMV-algebra.

2.9 Sum of MV-algebras

Let {(Mi;⊕,′ , 0, 1)}i∈I be a family of MV-algebras and

S = {f ∈
∏
i∈I

Mi : supp(f) is finite},

where supp(f) = {i ∈ f(i) 6= 0}. Then S can be converted into an EMV-algebra, we denote it by∑
i∈IMi. In general, it is not more an MV-algebra if I is infinite.
The basic representation theorem, [13, Thm 5.21], says the following:

Theorem 2.1. [Basic Representation Theorem] Every EMV-algebra M is either an EMV-algebra
with top element or M can be embedded into an EMV-algebra N0 with top element as a maximal
ideal of N0. Moreover, N0 can be chosen in such a way that every element of N0 either belongs to
the image of M in N0 or it is a complement of an element from the image of M in N0.
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It is noteworthy of recalling that the class EMV of EMV-algebras is not a variety because it
is not closed under subalgebras. However, it is possible to study operators close to the operators
of subspaces, direct products and of homomorphic images, respectively, so that as it was shown
in [13, Thm 5.22], the family of subclasses closed under these three operators is countable. In
addition, in [19], wEMV-algebras were introduced in such a way that they form a variety and
naturally containing the class of EMV-algebras.

We recall that an algebra (M ;∨,∧,⊕,	, 0) of type (2, 2, 2, 2, 0) is called a wEMV-algebra (w
means weak) if it satisfies the following conditions:

(i) (M,∨,∧, 0) is a distributive lattice with the least element 0;

(ii) (M ;⊕, 0) is a commutative monoid;

(iii) (x⊕ y)	 x ≤ y;

(iv) x⊕ (y 	 x) = x ∨ y;

(v) x	 (x ∧ y) = x	 y;

(vi) z 	 (z 	 x) = x ∧ z;

(vii) z 	 (x ∨ y) = (z 	 x) ∧ (z 	 y);

(viii) (x ∧ y)	 z = (x	 z) ∧ (y 	 z);

(ix) x	 (y ⊕ z) = (x	 y)	 z;

(x) x⊕ (y ∨ z) = (x⊕ y) ∨ (x⊕ z).

2.10 Examples of wEMV-algebras

(1) If M = G+ is the positive cone of an Abelian `-group G, and if we define on G+ two operations
x ⊕ y := x + y and x 	 y := (x − y) ∨ 0, x, y ∈ G+, then (M ;∨,∧,⊕,	, 0) is an example of a
wEMV-algebra, called also a wEMV-algebra of a positive cone. We note that (M ;∨,∧,⊕, 0) is not
an EMV-algebra if G 6= {0}.

(2) Let (M ;⊕,′ , 0, 1) be an MV-algebra. If we set x	y := x�y′, x, y ∈M , then (M ;∨,∧,⊕,	, 0)
is a wEMV-algebra with a top element 1.

(3) Consider an arbitrary proper EMV-algebra (M ;∨,∧,⊕, 0). By Theorem 2.1, M can be em-
bedded into an EMV-algebra N0 with top element as a maximal ideal of N0. Then (N0;⊕, λ1, 0, 1)
is an MV-algebra. For simplicity, we use x′ instead of λ1(x), for all x ∈ N0. Let 	 be the well-
known operation on N0, that is x 	 y = (x′ ⊕ y)′ for all x, y ∈ N0. Since M is an ideal of N0,
then M is closed under 	. So, (M ;∨,∧,⊕,	, 0) is an example of a wEMV-algebra without top
element.

Therefore, if (M ;∨,∧,⊕, 0) is an arbitrary EMV-algebra, extending its language with a binary
operation 	, we obtain a wEMV-algebra (M ;∨,∧,⊕,	, 0); it is said to be a wEMV-algebra asso-
ciated with the EMV-algebra (M ;∨,∧,⊕, 0); simply we say M is an associated wEMV-algebra. We
denote by EMVa the class of associated wEMV-algebras (M ;∨,∧,⊕,	, 0), where (M ;∨,∧,⊕, 0)
is any EMV-algebra.

For wEMV-algebras, we have the following important results showing a relationship between
EMV-algebras and wEMV-algebras, for details see [19]:
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Theorem 2.2. Each wEMV-algebra is a subalgebra of an associated wEMV-algebra with top ele-
ment.

A representation theorem similar to Theorem 2.1 is as follows:

Theorem 2.3. Every wEMV-algebra M either has a top element and so it is an associated wEMV-
algebra or it can be embedded into an associated wEMV-algebra N with top element as a maximal
ideal of N . Moreover, every element of N is either the image of x ∈M or is a complement of the
image of some element x ∈M .

The following result says that the class of EMV-algebras is in some sense the least one in the
variety of wEMV-algebras.

Theorem 2.4. The class wEMV is the least subvariety of the variety wEMV containing EMVa.
Moreover, wEMV = HSP (C), where C is the class of all linearly ordered wEMV-algebras, and the
lattice of subvarieties of wEMV is countably infinite.

3 Pseudo MV-algebras and pseudo EMV-algebras

In the section, we present elements of pseudo MV-algebras and we introduce pseudo EMV-algebras
showing their most important properties.

Pseudo MV-algebras, as a non-commutative MV-algebras, were introduced in [23] and inde-
pendently in [34] as generalized MV-algebras. A pseudo MV-algebra is an algebra (M ;⊕,− ,∼ , 0, 1)
of type (2, 1, 1, 0, 0) such that the following axioms hold for all x, y, z ∈ M with an additional
binary operation � defined via

y � x = (x− ⊕ y−)∼

(A1) x⊕ (y ⊕ z) = (x⊕ y)⊕ z;

(A2) x⊕ 0 = 0⊕ x = x;

(A3) x⊕ 1 = 1⊕ x = 1;

(A4) 1∼ = 0; 1− = 0;

(A5) (x− ⊕ y−)∼ = (x∼ ⊕ y∼)−;

(A6) x⊕ (x∼ � y) = y ⊕ (y∼ � x) = (x� y−)⊕ y = (y � x−)⊕ x;

(A7) x� (x− ⊕ y) = (x⊕ y∼)� y;

(A8) (x−)∼ = x.

We note that we assume that � has higher binding priority than ∧ and ⊕, and ⊕ is higher than
∨. We denote by PMV the variety of pseudo MV-algebras.

A partial order ≤ on M is defined by x ≤ y iff x− ⊕ y = 1. Then M is a distributive lattice
with x ∨ y = x⊕ (x∼ � y) and x ∧ y = x� (x− ⊕ y). In addition, 0 ≤ x ≤ 1 for each x ∈ M and
x ≤ y iff y ⊕ x∼ = 1.

Clearly, a pseudo MV-algebra is an MV-algebra iff ⊕ is a commutative binary operation.
Also pseudo EMV-algebras are intimately connected with unital `-groups. A prototypical

example of pseudo MV-algebras is from `-groups: If u is a strong unit of a (not necessarily Abelian)
`-group G, set

Γ(G, u) := [0, u]
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and

x⊕ y := (x+ y) ∧ u,
x− := u− x,
x∼ := −x+ u,

x� y := (x− u+ y) ∨ 0,

then Γ(G, u) := ([0, u];⊕,− ,∼ , 0, u) is a pseudo MV-algebra [23]. The converse statement is also
true as it follows from the basic representation of pseudo MV-algebras by unital `-groups, see [12],
which generalizes a famous result by Mundici [31] for MV-algebras:

Theorem 3.1. For any pseudo MV-algebra M , there exists a unique (up to isomorphism of unital
`-groups) unital `-group (G, u) with a strong unit u such that M ∼= Γ(G, u). The functor Γ defines
a categorical equivalence of the category of pseudo MV-algebras with the category of unital `-groups.

We note that we have x−∼ = x = x∼−, however if x− = x∼, then it does not mean that M is
an MV-algebra. Indeed, let G be an `-group that is not Abelian, and define M = Γ(Z−→× G, (1, 0)),
where Z is the group of integers and

−→× denotes the lexicographic product on Z×G, i.e. (a, g) ≤
(b, h), (a, g), (b, h) ∈ Z×G, iff either a < b or a = b and g ≤ h. Then in this pseudo MV-algebra,
which is not commutative, we have x− = x∼, x ∈M .

In every pseudo MV-algebra, we have

x− = min{z ∈M : z ⊕ x = 1}, (2)

x∼ = min{z ∈M : x⊕ z = 1}. (3)

Let a ∈ M be a Boolean element of a pseudo MV-algebra M , i.e. a ⊕ a = a. The interval
[0, a] := {x ∈M : 0 ≤ x ≤ a} can be converted into a pseudo MV-algebra as follows: For x ∈ [0, a],
we set x−a = a − x and x∼a = −x + a, and since a ⊕ a = a, we put ⊕a = ⊕|[0,a]×[0,a]. Then
Ma = ([0, a];⊕a,−a ,∼a , 0, a) is a pseudo MV-algebra. We define two unary operators λa and ρa
on Ma = [0, a] by

λa(x) := min{z ∈ [0, a] : z ⊕ x = a}, x ∈ [0, a], (4)

and
ρa(x) := min{z ∈ [0, a] : x⊕ z = a}, x ∈ [0, a]. (5)

Hence, we have for each x ∈ [0, a]

x−a = λa(x), x∼a = ρa(x).

Therefore, we are ready to define pseudo EMV-algebras as a non-commutative generalization of
EMV-algebras as it was presented in [17].

Definition 3.2. An algebra (M ;∨,∧,⊕, 0) of type (2, 2, 2, 0) is called a pseudo EMV-algebra if it
satisfies the following conditions:

(E1) (M ;∨,∧, 0) is a distributive lattice with the least element 0;

(E2) (M ;⊕, 0) is an ordered monoid with a neutral element 0;

(E3) for each a ∈ I(M), the elements

λa(x) := min{z ∈ [0, a] : z ⊕ x = a}, ρa(x) := min{z ∈ [0, a] : x⊕ z = a}

exist in M for all x ∈ [0, a], and the algebra ([0, a];⊕, λa, ρa, 0, a) is a pseudo MV-algebra;
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(E4) for each x ∈M , there is a ∈ I(M) such that x ≤ a.

It is noteworthy of recalling that the orders following from (E1) and (E2), respectively, are the
same.

Now, we present some important examples of pseudo EMV-algebras.

3.1 EMV-algebras

We note that a pseudo EMV-algebra is an EMV-algebra iff ⊕ is commutative.

3.2 Pseudo MV-algebras

If (M ;⊕,− ,∼ , 0, 1) is a pseudo MV-algebra, then (M ;∨,∧,⊕, 0) is a pseudo EMV-algebra with a
top element 1. Conversely, if a pseudo EMV-algebra (M ;∨,∧,⊕, 0) has a top element 1, then M
can be converted into a pseudo MV-algebra whose pseudo MV-structure is compatible with the
pseudo EMV-algebraic structure of M . In addition, it is easy to show that pseudo MV-algebras
are termwise equivalent to pseudo EMV-algebras with top element; the equivalence is given by
(M ;∨,∧,⊕, 0) with a top element 1 is equivalent to (M ;⊕, λ1, ρ1, 0, 1) and vice-versa.

3.3 Sum of pseudo EMV-algebras

Let {Mi : i ∈ I} be a family of pseudo EMV-algebras. We can easily show that
∑

i∈IMi :=
{(xi)i∈I ∈

∏
i∈IMi : xi = 0 for all but a finite number of i ∈ I} is a pseudo EMV-algebra with

componentwise operations. For example, let A1 = M be a pseudo EMV-algebra with top element
and Ai = {0, 1} for all i ∈ N, then

∑
i∈I Ai is a pseudo EMV-algebra.

We note that if we take the positive cone G+ of an `-group G 6= {0}, then G+ with ⊕ = + is
not a pseudo EMV-algebras because it has only the zero idempotent which does not dominate any
non-zero element of G+.

Now, we describe some of basic properties of pseudo EMV-algebras.

Proposition 3.3. Let (M ;∨,∧,⊕, 0) be a pseudo EMV-algebra, a, b ∈ I(M) such that a ≤ b.
Then for each x ∈ [0, a], we have

(i) λb(a) = ρb(a) is an idempotent, and λa(a) = 0 = ρa(a);

(ii) λa(x) = λb(x) ∧ a and ρa(x) = ρb(x) ∧ a;

(iii) λb(x) = λa(x)⊕ λb(a) = λb(a)⊕ λa(x) and ρb(x) = ρa(x)⊕ ρb(a) = ρb(a)⊕ ρa(x);

(iv) ρa(λa(x)) = x = λa(ρa(x));

(v) λa(x) ≤ λb(x) and ρa(x) ≤ ρb(x).

In an analogy with pseudo MV-algebras, we can define a total binary operation � in the
following way: For all x, y ∈M , we define

x� y = ρa(λa(y)⊕ λa(x)),

where a ∈ I(M) and x, y ∈ [0, a]. Then x � y is correctly defined and it does not depend on
a ∈ I(M), and

x� y = λa(ρa(y)⊕ ρa(x)).



10 A. Dvurečenskij, O. Zahiri

In addition, if x, y ∈M , x ≤ y, then

y � λa(x) = y � λb(x), ρa(x)� y = ρb(x)� y (6)

for all idempotents a, b of M with x, y ≤ a, b, and

y = (y � λa(x))⊕ x = x⊕ (ρa(x)� y). (7)

If x, y ∈ [0, a] for some idempotent a ∈M , then

x� λa(y) = x� λa(x ∧ y), ρa(y)� x = ρa(x ∧ y)� x, (8)

and
(x� λa(y))⊕ (x ∧ y) = x = (x ∧ y)⊕ (ρa(y)� x). (9)

Finally, if x, y ≤ a ∈ I(M), then

((x⊕ y)� λa(x))⊕ x = x⊕ y = y ⊕ (ρa(y)� (x⊕ y)) (10)

and if x ≤ a ∈ I(M), then
x� λa(x) = 0 = ρa(x)� x. (11)

An ideal of a pseudo EMV-algebra M is any subset I of M such that (i) x, y ∈ I implies
x⊕ y ∈ I, and (ii) if x ≤ y ∈ I, then x ∈ I. An ideal I of M is (i) maximal if I is a proper subset
of M and it cannot be a proper subset of any other proper ideal of M , (ii) normal if, for each
x ∈ M , we have x ⊕ I := {x ⊕ y : y ∈ M} = {y ⊕ x : y ∈ M} = I ⊕ x. Equivalently, an ideal I is
normal if, for each x, y ∈M , we have y � λa(x) ∈ I iff ρa(x)� y ∈ I.

If M is an EMV-algebra, according to [13, Thm 5.6], M contains at least one maximal ideal.
If M is a pseudo EMV-algebra, then it can happen that it does not possess a maximal ideal which
is also normal. This is true even for pseudo EMV-algebras, see [?, Prop 7.3]. In any rate, we have
the following result:

Proposition 3.4. Every linearly ordered pseudo EMV-algebra M 6= {0} has a unique maximal
ideal, it is normal, and M possesses a top element.

Let M1 and M2 be pseudo EMV-algebras. A mapping f : M1 →M2 is said to be a homomor-
phism of pseudo EMV-algebras if f preserves ∨,∧,⊕, 0 and, for each idempotent a ∈ I(M) and
for each x ∈ [0, a], f(λa(x)) = λf(a)(f(x)) and f(ρa(x)) = ρf(a)(f(x)).

4 Representation of pseudo EMV-algebras and categorical equiv-
alence

In the section, we present a basic representation result which is parallel to Theorem 2.1 for EMV-
algebras which was established in [18, Thm 6.4]. Here we present a main steps of the proof from
[18].

Theorem 4.1. [Basic Representation Theorem] Every pseudo EMV-algebra M is either a pseudo
EMV-algebra with top element or M can be embedded into a pseudo EMV-algebra N0 with top
element as a maximal and normal ideal of N0. In the second case, every element x ∈ N0 is either
from the image of M or there is a unique x0 from the image of M such that x = ρ1(x0).
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Proof. For each idempotent a ∈ I(M), ([0, a];∨,∧,⊕, 0) is a pseudo EMV-algebra with top ele-
ment. Therefore, N =

∏
a∈I(M)[0, a] is a pseudo EMV-algebra with top element, see Proposition

3.4. It is possible to show that the mapping ϕ : M → N defined by ϕ(x) = (x ∧ a)a∈I(M)[0, a],
x ∈M , is an embedding of M into the pseudo EMV-algebra N with top element.

We define

N0 = {x ∈ N : either x = x0 ∈M or x = ρ1(x0) for some x0 ∈M}.

Claim. If x0 ∈ M and x0 ≤ a ∈ I(M), then λ2
1(x0), ρ2

1(x0) ∈ M . Moreover, λ2
1(x0) = λ2

a(x0) =:
ϕλ(x0), ρ2

1(x0) = ρ2
a(x0) =: ϕρ(x0), and ϕλ(x0) and ϕρ(x0) do not depend on a ≥ x0.

Let a ∈ I(M) be an idempotent such that x0 ≤ a. By Proposition 3.3(iii), we have λ1(x0) =
λa(x0) ⊕ λ1(a), so that by (8) and (6), we have λ2

1(x0) = λ1(λa(x0) ⊕ λ1(a)) = a � λ1(λa(x0)) =
a� (λ2

a(x0)⊕ λ1(a)) = a ∧ (λ2
a(x0) ∨ λ1(a)) = (a ∧ λ2

a(x0)) ∨ (a� λ1(a)) = a ∧ λ2
a(x0) = λ2

a(x0) =
ϕλ(x0) ∈ M . In the same way we establish ρ2

1(x0) = ϕρ(x0) ∈ M , and ϕλ(x0) and ϕρ(x0) do not
depend on a ∈ I(M) such that x0 ≤ a.

In what follows, we show thatN0 is a pseudo EMV-algebra with top element. Since (N ;⊕, λ1, ρ1,
0, 1) is a pseudo MV-algebra that is termwise equivalent to the pseudo EMV-algebra N , we will
use x− := λ1(x) and x∼ := ρ1(x), x ∈ N . First we note that according to Claim, we have
x−0 = (x−−0 )∼ = ϕλ(x0)∼ ∈ N0 for each x0 ∈M , so that, N0 is closed under − and ∼.

Clearly, M ⊆ N0 and 1 ∈ N0. Let x, y ∈ N0. Using ideas from the proof of Theorem
5.11, we show that x ⊕ y ∈ N0. There are four cases. Case (i): x = x0, y = y0 ∈ M . Then
x ∨ y, x ∧ y, x⊕ y ∈ N0.

Case (ii): x = x∼0 , y = y∼0 for some x0, y0 ∈ M . Then x ∨ y = x∼0 ∨ y∼0 = (x0 ∧ y0)∼,
x ∧ y = (x0 ∨ y0)∼ and x⊕ y = x∼0 ⊕ y∼0 = (y0 � x0)∼ ∈ N0.

Case (iii): x = x0 and y = y∼0 for some x0, y0 ∈M . Then

x⊕ y = x0 ⊕ y∼0 = (y0 � x−0 )∼ = (y0 � (x0 ∧ y0)−)∼ = (y0 � λb(x0 ∧ y0))∼,

where b is an idempotent of M such that x0, y0 ≤ b; for the last equality we use equality (6).
Hence, we have y0 � λb(x0 ∧ y0) ∈M so that x⊕ y ∈ N0.

Case (iv): x = x∼0 and y = y0 for some x0, y0 ∈ M . There is b ∈ I(M) such that x0, y0 ≤ b.
Check

x⊕ y = x∼0 ⊕ y0 = (y∼0 � x∼∼0 )− = (y∼0 � ϕρ(x0))− =
(
(y0 ∧ ϕρ(x0))∼ � ϕρ(x0)

)−
=
(
(ρb(y0 ∧ ϕρ(x0)) ∨ b∼)� ϕρ(x0)

)−−∼
=
(
ρb(y0 ∧ ϕρ(x0))� ϕρ(x0)

)−−∼
=
(
ϕλ(ρb(y0 ∧ ϕρ(x0))� ϕρ(x0))

)∼ ∈ N0.

Now, let x0 ∈M . Then x∼0 ∈ N0 \M and if we set y0 = x−−0 = ϕλ(x0) ∈M , then x−0 = y∼0 ∈
N0 \M . Claim implies x∼∼0 = ϕρ(x0) ∈ M and x−−0 = ϕλ(x0) ∈ M . Hence, (N0;⊕,− ,∼ , 0, 1) is
a pseudo MV-algebra, so that (N0;∨,∧,⊕, 0) is its termwise equivalent pseudo EMV-algebra with
top element.

The set M is a proper subset of N0 and M is closed under ⊕. Let y ≤ x0 ∈M . Then y cannot
be from N0 \M , otherwise 1 ∈M . Hence y ∈M and M is an ideal of N0. If we take y ∈ N0 \M ,
then the ideal I of N0 generated by M ∪ {y} contains 1, so that I = N0 which establishes M is a
maximal ideal of N0. To prove normality of M in N0, let y ⊕ x0 ∈ y ⊕M , y ∈ N0. It is sufficient
to assume y = y∼0 for some y0 ∈M . Then y∼0 ⊕x0 = (y∼0 ⊕x0)∨ y∼0 = ((y∼0 ⊕x0)� y0)⊕ y∼0 . Since
(y∼0 ⊕ x0) � y0 ≤ y0 ∈ M , we have (y∼0 ⊕ x0) � y0 ∈ M , so that y∼0 ⊕M ⊆ M ⊕ y∼0 . In a similar
way, we prove the opposite inclusion.
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The pseudo EMV-algebra N0 with top element from Theorem 4.1 is said to be the pseudo
EMV-algebra representing M . It can be shown that all pseudo EMV-algebras with top element
representing M are isomorphic.

Similarly as the class of EMV-algebras, the class PEMV of pseudo EMV-algebras is not a
variety because it is not closed under forming subalgebras with respect to the original operations
∨,∧,⊕, and 0, see [13, Thm 3.11]. Indeed, let M = Γ(Z−→× Z, (1, 0)) (it is also known as the
Chang MV-algebra). It defines an EMV-algebra with top element having a unique maximal ideal
I, namely I = {(0, n) : n ≥ 0}. The set I is closed under ∨,∧,⊕, 0, so it is a subalgebra of M , but
I is not an EMV-subalgebra of the EMV-algebra M because it does not have enough idempotent
elements.

Therefore, similarly as in [13, Thm 3.11], instead of the classical operators H,S, P , we define
on the class of pseudo EMV-algebras new operators, qH, qS, qP , mapping classes of pseudo EMV-
algebras to classes of pseudo EMV-algebras, which are analogues of H,S, P , as follows: Let V be
a class of pseudo EMV-algebras and M be a pseudo EMV-algebra:

qH: M ∈ qH(V) if there are a pseudo EMV-algebraN ∈ V and a surjective pEMV-homomorphism
h : N →M ;

qS: M ∈ qS(V) if there is N ∈ V such that M is a pEMV-subalgebra of N ;

qP: M ∈ qP (V) if M =
∏
tMt, where {Mt} is a system of pseudo EMV-algebras of V,

and the class V of pseudo EMV-algebras is said to be a q-variety of pseudo EMV-algebras if it
is closed under qH, qS, and qP operators. In the same way we define a q-subvariety of pseudo
EMV-algebras.

We note that if K is a family of pseudo EMV-algebras, then there is the least q-subvariety
Vq0(K) of pseudo EMV-algebras containing K. Using the same ideas as those used in the proof of
the Tarski theorem, [3, Thm 9.5], we can show that Vq0(K) = qHqSqP (K).

The Basic Representation Theorem imply the following results showing a close connection
between q-subvarieties of pseudo EMV-algebras and subvarieties of pseudo MV-algebras, for more
details see [17, Thm 5.16]:

Theorem 4.2. Given a variety V of pseudo MV-algebras, let V0(V) be the class of pseudo EMV-
algebras M ∈ PEMV such that, for each a ∈ I(M), the pseudo MV-algebra ([0, a];⊕, λa, ρa, 0, a)
belongs to V. Then V0(V) is a q-subvariety of pseudo EMV-algebras containing V∗. Conversely,
given a q-subvariety V of pseudo EMV-algebras, let V0(V) be the class of pseudo MV-algebras
(M ;⊕,− ,∼ , 0, 1) such that (M ;∨,∧,⊕, 0) belongs to V. Then V0(V) is a variety of pseudo MV-
algebras. The mappings V 7→ V0(V) and V 7→ V0(V) are bijective mappings which are mutually
invertible and preserving the set-theoretical inclusion.

In particular, the q-variety PEMV has uncountably many q-subvarieties.

We note that due to a famous result by Komori [28], the lattice of subvarieties of the variety MV
is countable, this is not case for all subvarieties of PMV, the variety of pseudo MV-algebras, and
consequently also the family of all q-subvarieties of PEMV as we have seen in the latter Theorem, is
uncountable. We note that in [10] it was shown that, for any subvariety of the variety MV, there is
a finite equational base which consists of finitely many MV-equations using only ⊕ and �. Hence,
as it was shown in [13], these equations define any q-subvariety of EMV-algebras. Therefore, if
we take an arbitrary finite base of pseudo EMV-algebras using only ⊕ and �, we can obtain a
q-subvariety of pseudo EMV-algebras.

Also the latter theorem gives a way how to define a q-subvariety of pseudo EMV-algebras. We
note that a pseudo EMV-algebra M is:
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• Representable if it is a subdirect product of linearly ordered pseudo MV-algebras; let RPEMV
be the class of representable pseudo EMV-algebras.

• Normal-valued if every value V of M is normal in its cover V ∗, that is y ⊕ V = V ⊕ y
for each y ∈ V ∗ (for unknown notions, see for them in [17]); let NVPEMV be the class of
normal-valued pseudo EMV-algebras.

• Boolean if M = I(M), we denote by B the class of Boolean pseudo MV-algebras.

• The class MPEMV of pseudo EMV-algebras M such that either M = {0} or every maximal
ideal of M is normal.

• O is the singleton consisting only of the zero pseudo EMV-algebra.

Then O, B, RPEMV, NVPEMV, MPEMV are q-subvarieties of pseudo MV-algebras such that

O ( B ( EMV ( RPEMV ( NVPEMV ( MPEMV ( PEMV. (12)

Let PPEMV be the category of proper pseudo EMV-algebras whose objects are proper pseudo
EMV-algebras and morphisms are homomorphisms of pseudo EMV-algebras, i.e. pseudo MV-
algebras which have no top element. On the other hand, let PPMV be the category whose
objects are pairs (M, I), where M is a pseudo MV-algebra with a fixed maximal and normal ideal
I of M such that (i) I has enough idempotents, i.e. for each x ∈ I, there is an idempotent a ∈ I(I)
such that x ≤ a, (ii) no x ∈ I is a top element of I, and (iii) I∪I∼ = M , where I∼ := {x∼ : x ∈ I}.
Morphisms φ : (M1, I1) → (M2, I2) in the category PPMV are homomorphisms of pseudo MV-
algebras φ : M1 → M2 such that φ(I1) ⊆ I2. Then I ∩ I∼ = ∅: If x = y∼ for x, y ∈ I, then
1 = x− ⊕ x = y ⊕ x ∈ I.

For example, if N is the Chang MV-algebra, i.e. isomorphic to Γ(Z−→× Z, (1, 0)), then I =
{(0, n) : n ≥ 0} is the unique maximal ideal of N but I does not have enough idempotents. So
(N, I) does not belong to PPMV.

Define a mapping Φ : PPMV → PPEMV as follows: For any object (N, I) ∈ PPMV, let

Φ(N, I) := I

and if (N1, I1) and (N2, I2) are objects of PPMV and φ : (N1, I1)→ (N2, I2) is a morphism, then

Φ(φ)(x) := φ(x), x ∈ I1.

It is possible to show that Φ is a well-defined functor that is faithful and full from the category
PPMV into the category PPEMV. In addition, using results from [18, Sec 7], the following result
holds:

Theorem 4.3. The functor Φ defines a categorical equivalence between the category PPMV and
the category of proper pseudo EMV-algebras PPEMV.

In addition, if h : Φ(N, I) → Φ(N ′, I ′) is a morphism of proper pseudo EMV-algebras, then
there is a unique homomorphism φ : N → N ′ of pseudo MV-algebras with φ(I) ⊆ I ′ such that we
have h = Φ(φ), and

(i) if h is surjective, so is φ;

(ii) if h is injective, so is φ.
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5 States and state-morphisms on pseudo EMV-algebras

In the section, we define states, state-morphisms and extremal states on pseudo EMV-algebras.
We present their basic properties, exhibit the weak topology of states, and we show an integral
representation of a state by a σ-additive probability measure.

A state on an MV-algebra is a mapping s : M → [0, 1] such that (i) s(1) = 1, and s(s ⊕ b) =
s(a) + s(b) whenever a� b = 0, see [32]. It is an analogue of a finitely additive probability measure
for MV-algebras. It is important to note that every non-trivial MV-algebra possesses at least one
state. If M is a pseudo MV-algebra, we can define a partial operation + on M by a+ b is defined
iff y � x = 0, and then a + b = a ⊕ b. It is possible to show that + is an associative operation.
Then a state on a pseudo MV-algebra M is a mapping s : M → [0, 1] such that (i) s(1) = 1 and (ii)
s(a+ b) = s(a) + s(b) whenever a+ b is defined in M . In contrast to MV-algebras, there are non-
trivial pseudo MV-algebras which have no state, see [?]. A criterion when a pseudo EMV-algebra
admits at least one state is the following result:

Theorem 5.1. The state space S(M) of a pseudo EMV-algebra M is non-empty if and only if M
possesses at least one maximal and normal ideal.

As a corollary, we have that every non-trivial pseudo EMV-algebra from q-varieties in (12) has
at least one state.

Also for pseudo EMV-algebras we can define a partial operation + as follows: The element
x+ y is defined in a pseudo EMV-algebra M if y � x = 0, and then we define x+ y = x⊕ y. An
absence of a top element in an EMV-algebra or in a pseudo EMV-algebra can produce a problem
in defining a state on a pseudo EMV-algebra in the demand s(1) = 1. Therefore, a state on a
pseudo EMV-algebra is defined as a mapping s : M → [0, 1] such that (i) there is x ∈ M such
that s(x) = 1, and (ii) s(x+ y) = s(x) + s(y) whenever x+ y is defined in M . If M admits a top
element, i.e. M is equivalent to a pseudo MV-algebra, then both notions of states coincide. In
[15], it was shown that every non-trivial EMV-algebra possesses at least one state. We denote by
S(M) the set of states on M . In contrast to EMV-algebras, it can happen that S(M) is empty;
this is true even for pseudo MV-algebras, see [13].

A mapping s : M → [0, 1] is said to be a state-morphism if s is a pEMV-homomorphism
such that there is an element x ∈ M such that s(x) = 1. Let SM(M) be the set of state-
morphisms. We note that every state-morphism is a state. A state s is extremal if from the
equality s = λs1 + (1 − λ)s2, where λ ∈ (0, 1) and s1, s2 ∈ S(M), we conclude s = s1 = s2. We
denote by ∂S(M) the set of extremal states on M . The basic properties of states are described in
[18, Prop 8.1]:

Proposition 5.2. Let s be a state on a pseudo EMV-algebra M . For all x, y ∈M , we have

(i) s(0) = 0;

(ii) if x ≤ y ≤ a ∈ I(M), then s(x) ≤ s(y) and s(y � λa(x)) = s(y) − s(x) = s(ρa(y) � x); in
particular, s(λa(x)) = s(a)− s(x) = s(ρa(x));

(iii) s(x ∨ y) + s(x ∧ y) = s(x) + s(y);

(iv) s(x⊕ y) + s(x� y) = s(x) + s(y);

(v) Ker(s) = {x ∈M : s(x) = 0} is a normal ideal of M and Ker1(s) = {x ∈M : s(x) = 1} is a
normal filter of the pseudo EMV-algebra M ;
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(vi) if s1, s2 ∈ S(M) and λ ∈ [0, 1] is a real number, then the convex combination s = λs1 + (1−
λ)s2 of states s1, s2 is a state on M ;

(vii) if we define a mapping ŝ on the quotient pseudo EMV-algebra M/Ker(s) by ŝ(x/Ker(s)) :=
s(x), (x ∈M), then ŝ is a state on M/Ker(s), and M/Ker(s) is a pseudo EMV-algebra with
top element;

(viii) s(x⊕ y) = s(y ⊕ x) and M/Ker(s) is an Archimedean EMV-algebra.

State-morphisms and extremal states are equivalent as the following result shows:

Theorem 5.3. Let s be a state on a pseudo EMV-algebra M . The following statements are
equivalent:

(i) s is a state-morphism.

(ii) Ker(s) is a maximal and normal ideal of M .

(iii) s is an extremal state on M .

In addition,
∂S(M) = SM(M).

Moreover, a state s is a state-morphism iff s(x ∧ y) = min{s(x), s(y)}, x, y ∈M , equivalently,
s(x⊕ y) = min{s(x) + s(y), 1}, x, y ∈M .

Now, we exhibit topological properties of states. We say that a net {sα}α of states on a pseudo
EMV-algebra M converges weakly to a state s on M , and we write {sα}α

w→ s, if limα sα(x) = s(x)
for every x ∈M . Hence, S(M) is a subset of [0, 1]M . If M has a top element, then S(M) is either
empty or compact non-void. If we endow [0, 1]M with the product topology which is a compact
Hausdorff space, we see that the weak topology, which is in fact the relative topology of the product
topology of [0, 1]M , yields a Hausdorff topological space. The case S(M) = ∅ is not excluded. In
addition, the system of subsets of S(M) of the form S(x)α,β = {s ∈ S(M) : α < s(x) < β}, where
x ∈M and α < β are real numbers, forms a subbase of the weak topology of states.

In the same way as we have defined the weak topology of states, we define the weak topology
also for the set of state-morphisms. Then SM(M) is a closed subset of S(M), and SM(M) is also
a Hausdorff space. The spaces S(M) and SM(M) are not necessarily compact sets because if, for
a net {sα} of states (state-morphisms), there is a limit s(x) = limα sα(x), x ∈ M , s preserves +
(⊕,∧,∨), but there is no guarantee that there is an element x ∈M with s(x) = 1 as the following
example from [15, Ex 4.8] shows.

Example 5.4. Let T be the set of all finite subsets of the set N of natural numbers. Then
T = (T ;∨,∧,⊕, 0) is an EMV-algebra with respect to ∨ = ∪, ∧ = ∩, ⊕ = ∨, and 0 = ∅, and
SM(T ) = {sn : n ∈ N}, where sn(A) = χA(n), A ∈ T . Given A ∈ T , there is s(A) = limn sn(A) =
0, but s is not a state on T .

The weak topology of states gives also a criterion when a pseudo EMV-algebras is with top
element:

Theorem 5.5. Let M be a pseudo EMV-algebra. Define the following statements.

(i) M has a top element.
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(ii) The space S(M) is compact.

(iii) The space SM(M) is compact.

Then (i) ⇒ (ii), (ii) ⇒ (iii). If M has the property that every maximal ideal of M is normal, then
all statements are equivalent.

Using Basic Representation Theorem 4.1, we can describe states on a pseudo EMV-algebra M
and on its representing pseudo EMV-algebra N with top element, for details see [18, Prop 8.11]:

Proposition 5.6. Let M be a pseudo EMV-algebra without top element. For each x ∈M , we put
x− = λ1(x) and x∼ = ρ1(x), where 1 is the top element of the representing pseudo EMV-algebra
N . Given a state s on M , the mapping s̃ : N → [0, 1], defined by

s̃(x) =

{
s(x) if x ∈M,

1− s(x0) if x = x∼0 , x0 ∈M,
x ∈ N, (13)

is a state on N , and the mapping s∞ : N → [0, 1] defined by s∞(x) = 0 if x ∈ M and s∞(x) = 1
if x ∈ N \ M , is a state-morphism on N . If s is a state-morphism on M , then s̃ is a state-
morphism on N . Moreover, SM(N) = {s̃ : s ∈ SM(M)} ∪ {s∞} and Ker(s̃) = Ker(s) ∪Ker∗1(s),
s ∈ SM(M), where Ker∗1(s) = {ρ1(x) : x ∈ Ker1(s)} and Ker1(s) = {x ∈M : s(x) = 1}.

A net {sα}α of states on M converges weakly to a state s on M if and only if {s̃α}α converges
weakly to s̃ on N , and the mapping φ : S(M)→ S(N) defined by φ(s) = s̃, s ∈ S(M), is injective,
continuous and affine.

We have also the following topological characterizations:

Theorem 5.7. If a pseudo EMV-algebra M does not have a top element, then SM(M) is either
an empty set or is a locally compact non-empty Hausdorff space in the weak topology such that if
a is an idempotent, then S(a) = {s ∈ SM(M) : s(a) > 0} is a compact clopen subset.

Theorem 5.8. Let M be a pseudo EMV-algebra with the property that every maximal ideal of M
is normal. If the state space of a pseudo EMV-algebra M is non-empty and locally compact, then
M has a top element.

The next result describes state-morphisms on a pseudo EMV-algebra without top element and
on a representing pseudo EMV-algebra with top element. According to Theorem 5.7, SM(M) is a
locally compact Hausdorff topological space. Due to the Alexandroff theorem, see [27, Thm 4.21],
we can do a one-point compactification of the set of state-morphisms:

Theorem 5.9. Let M be a proper pseudo EMV-algebra and N be its representing pseudo EMV-
algebra with top element. If SM(M) is non-empty, then SM(N) is the one-point compactifications
of the space SM(M).

State-morphisms which are in fact extremal states generate due to the Krein-Mil’man theorem
all states on a pseudo EMV-algebra M in the following way, for details see [18, Thm 8.18]:

Theorem 5.10. Let M be a pseudo EMV-algebra. Then

S(M) = (Con(SM(M)))−M , (14)

where −M and Con denote the closure in the weak topology of states on M and the convex hull,
respectively.
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If we denote by MN (M) the set of maximal ideals of a pseudo MV-algebra M which are also
normal, we can introduce the hull-kernel topology on MN (M), i.e. a topology, where all closed
subsets in MN (M) are of the form C(J) = {I ∈ MN (M) : I ⊇ J}. Then this topology yields a
Hausdorff topology on MN (M). Moreover, we have the following characterization:

Theorem 5.11. Let M be a pseudo EMV-algebra. The mapping θ : SM(M) →MN (M) given
by θ(s) = Ker(s), s ∈ SM(M), is a homeomorphism.

In the last part, we concentrate on integral representation of states. It generates an analogous
result for states on MV-algebras, which was established in [29, 33] saying that every state is in a
one-to-one correspondence with a σ-additive states on a Borel σ-algebra of an appropriate compact
Hausdorff topological space.

In what follows, we use the notion of a simplex in a linear space V which is affinely isomorphic
to a base for a lattice cone in some real linear space. A simplex K in a locally convex Hausdorff
space is said to be (i) Choquet if K is compact, and (ii) Bauer if K and ∂K are compact, where
∂K is the set of extreme points of K. For more info about simplices, see [25]. Then we have the
following characterization of the state space S(M) of a pseudo EMV-algebra M :

Theorem 5.12. Let M be a pseudo EMV-algebra. The state space S(M) is either empty or it is
a non-empty simplex. In addition, if M has the property that every maximal ideal of M is normal,
the following statements are equivalent:

(i) M has a top element.

(ii) S(M) is a Choquet simplex.

(iii) S(M) is a Bauer simplex.

We need the following notions. Let B(K) be the Borel σ-algebra of a Hausdorff topological
space K generated by all open subsets of K. Every element of B(K) is said to be a Borel set
and each σ-additive (signed) measure on it is said to be a Borel measure. We recall that a Borel
measure µ on B(K) is called regular if

inf{µ(O) : Y ⊆ O, O open} = µ(Y ) = sup{µ(C) : C ⊆ Y, C compact} (15)

for any Y ∈ B(K). For example, let δx be the Dirac measure concentrated at the point x ∈ K, i.e.,
δx(Y ) = 1 iff x ∈ Y , otherwise δx(Y ) = 0, then every Dirac measure is a regular Borel probability
measure whenever K is compact, see e.g. [25, Prop 5.24].

The following principal result on representing states is from [18, Thm 9.2]:

Theorem 5.13. [Integral Representation of States] Let M be a pseudo EMV-algebra such that
either M has a top element or M does not have a top element but M has the property that each
maximal ideal of M is normal. Given a state s on M , there is a unique regular Borel probability
measure µs on the Borel σ-algebra B(S(M)) with µs(SM(M)) = 1 such that

s(x) =

∫
SM(M)

x̂(t) dµs(t), x ∈M, (16)

where x̂ (x ∈ M) is a continuous affine mapping from S(M) into the interval [0, 1] such that
x̂(s) := s(x), s ∈ S(M).

Moreover, if M has no top element, there is a one-to-one correspondence between the set of reg-
ular Borel probability measures on B(SM(M)) and the set of regular Borel probability measures on
B(SM(N)) vanishing at {s∞}, where N is its representing pseudo EMV-algebra with top element.
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We note that uniqueness of µs in the latter theorem is guaranteed by the condition µs(SM(M)) =
1. For example, if s is a state on M , then the Dirac measure δs on S(M) concentrated in the point
s is a regular Borel probability measure on B(S(M)) such that s(x) =

∫
x̂(t) dδs(t), x ∈ M . But

if s is not an extremal state, then δs(SM(M)) = 0 6= 1.

Remark 5.14. It is worthy of note that the first part of Theorem 5.13 can be reformulated in the
following equivalent way: For every state s on a pseudo EMV-algebra M which has the property
that every maximal ideal of M is normal, there is a unique regular Borel probability measure µs on
B(SM(M)) such that (16) holds for each x ∈M , where x̂ is a continuous function from SM(M)
into the real interval [0, 1] such that x̂(s) = s(x), s ∈ SM(M).

We note that due to Theorem 5.11, the topological spaces SM(M) and MN (M) are homeo-
morphic under the mapping θ(s) = Ker(s). In view of Remark 5.14, we can rewrite the integral
representation of a state in the form that, for a state s on M , there is a unique σ-additive proba-
bility measure νs on B(NM(M)) such that

s(x) =

∫
NM(M)

x̃(I) dνs(I), x ∈M,

where x̃ :MN (M)→ [0, 1] is given by x̃(I) = θ−1(I)(x), I ∈MN (M).

6 Conclusions

In the paper we gave a survey on the latest research on two generalizations of MV-algebras and
generalized Boolean algebras such that a top element is not assumed a priori: One generalization
is through commutative EMV-algebras introduced in [13] and the second one is through a non-
commutative EMV-algebras called pseudo EMV-algebras studied firstly in [17, 18]. In Section 2,
we presented EMV-algebras where a main result is Theorem 2.1 showing that every EMV-algebra
M either has a top element and then is equivalent to an MV-algebra or it has no top element
and then it can be embedded into an EMV-algebra N with top element as a maximal ideal of N .
We have shown that we have countably many analogs of subvarieties. Unfortunately, the class
of EMV-algebras is not a variety because it is not closed under subalgebras. Therefore, we have
introduced wEMV-algebras which form a variety and the class of EMV-algebras can be naturally
embedded into this variety, Theorem 2.4.

Pseudo EMV-algebras are a non-commutative generalization of pseudo MV-algebras, general-
ized Boolean algebras and EMV-algebras. For them we have also presented a representation in
an analogous way as Theorem 2.1, see Theorem 4.1. We also represented the category of proper
pseudo EMV-algebras, i.e. with no top element, by a special category of pseudo MV-algebras with
a fixed maximal and normal ideal, Theorem 4.3. We have defined also q-subvarieties of pseudo
EMV-algebras. We have showed that we have uncountably many of q-subvarieties, Theorem 4.2,
and some of them were presented in (12).

Finally, we have defined states, which correspond to finitely additive measures. We showed
that state-morphisms are precisely extremal states, Theorem 5.3. We studied the weak topology of
states and we showed that in contrast to EMV-algebras, there are pseudo EMV-algebras without
any state. State-morphisms onM can be uniquely extended to state-morphisms on the representing
pseudo EMV-algebra N , and if M is proper, the one-point compactification of the set of state-
morphisms on M is precisely the set of state-morphisms of N , see Theorem 5.9. Finally, an
integral representation of states by σ-additive probability measures on the Borel σ-algebra of
S(M) is presented in Theorem 16.



What are pseudo EMV-algebras? 19

We note that the class PEMV of pseudo EMV-algebras is not a variety. Therefore, it would be
nice to have an analogue of the variety of non-commutative wEMV-algebras such that PEMV can
be naturally embedded into the variety in the same way as in the case of EMV-algebras.
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[20] A. Dvurečenskij, O. Zahiri, Generalized pseudo-EMV-effect algebras, Soft Computing, 23
(2019), 9807–9819.

[21] A. Dvurečenskij, O. Zahiri, EMV-pairs, International Journal of General Systems, 48 (2019),
382–405.

[22] L. Fuchs, Partially Ordered Algebraic Systems, Pergamon Press, Oxford, New York, (1963).

[23] G. Georgescu, A. Iorgulescu, Pseudo-MV algebras, Multi-Valued Logic, 6 (2001), 95–135.
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